跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡書弘
研究生(外文):Su-Hong Tsai
論文名稱:吸附位置效應對於表面催化效率之理論計算機制探討
論文名稱(外文):Adsorption Site Effect on Catalytic efficiency of Ammonia Dehydrogenation over Fe(111) Surface: A Computational Mechanistic Exploration
指導教授:李豐穎
指導教授(外文):Feng-Yin Li
口試委員:陳輝龍蔡柏宇
口試委員(外文):Hui-Lung ChenPo-Yu Tsai
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:氨氣摧化能量跨度模型周轉速率局域電子分析
外文關鍵詞:Ammonia dehydrogenationenergetic span modelturnover frequencyelectron localization function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
我們使用自旋極化密度泛函理論來研究在Fe(111)表面上探討氨氣的吸附以及分解行為的最佳反應機制,使用Energy span model (EMS) 評估催化循環的動力學特徵,通過反應位能可以有效的預測催化效率,有利的反應途徑經由動力學特徵預測與在Fe(110)文獻報導的實驗結果一致。提高催化活性的關鍵步驟是NH2吸附在與表面有具有較高相互作用的位置,為了理解這些脫氫過程,通過詳細的電子分析吸附物與表面的作用性質,我們分析表明吸附物在特定的吸附位置,吸附物與表面的作用強度是取決於表面的電子密度分布,吸附物的大小與表面應力間的立體障礙效應。中間產物通過與表面的Fe原子接觸來穩定,這種增加吸附物與表面的相互作用方式有效抑制在反鍵結軌域的電子密度。最後我們利用LDOS (local density of states)來分析各吸附物以及吸附體上之間的作用力以及其分子結構。

The adsorption and dehydrogenation behaviors of ammonia dehydrogenation on Fe(111) surface were studied through spin-polarized density functional theory to explore the optimal reaction mechanism. The global kinetic assessments were performed with energetic span model on the reaction profiles proposed in this study to evaluate their catalytic efficiencies. The predicted overall kinetic characteristics of the favorable pathway is consistent with the experimental results on Fe(110) surface reported in literature. The critical step to enhance the catalytic performance is the NH2 adsorption on the site with strong adsorbate-surface interaction. To gain the insight of these dehydrogenation processes, the interaction nature of the adsorbate and substrate on different adsorption sites was analyzed through detailed electronic analyses. Our analyses indicate that the adsorbate-surface interaction strength of adsorbate in a given adsorption site is determined by the surface electronic distribution and the steric hindrance between the adsorbate size and the surface stress. The strong adsorbate-surface interaction can substantially suppress the anti-bonding overlapping between states of the adsorbate and Fe atoms in contact to stabilize the reaction intermediates.

Acknowledgement ---------------------------------------------------------------------------i
Abstract ----------------------------------------------------------------------------------------iii
Contents ---------------------------------------------------------------------------------------iv
Tables ------------------------------------------------------------------------------------------v
Figures ----------------------------------------------------------------------------------------vi
Chapter 1 Theoretical Background -----------------------------------------------------01
1.1 The Born-Oppenheimer approximation ------------------------------------------01
1.2 Density Functional Theory ---------------------------------------------------------02
1.2.1 The Hohenberg-Kohn theorems -------------------------------------------03
1.2.2 Exchange and correlation --------------------------------------------------04
1.2.3 The Kohn-Sham equations ------------------------------------------------05
1.2.4 Local Density Approximation ---------------------------------------------07
1.2.5 Generalized Gradient Approximations -----------------------------------08
1.2.6 The Pseudipotential Approximation --------------------------------------09
Reference --------------------------------------------------------------------------------------11
Chapter 2 Theoretical Investigation Adsorption Site Effect on Catalytic efficiency of Ammonia Dehydrogenation over Fe(111) Surface Mechanistic Exploration. ------------------------------------------------------12
2.1 Introduction --------------------------------------------------------------------------12
2.2 Computational method -------------------------------------------------------------16
2.3 Result and Discussion --------------------------------------------------------------19
2.4 Conclusion ---------------------------------------------------------------------------34
Reference ----------------------------------------------------------------------------------------37


1. Christopher, K.; Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy & Environ. Sci. 2012, 5, 6640-6651.
2. Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: prospects and challenges. Renewable and Sustainable Energy Reviews. 2012, 16, 3024-3033.
3. Jacobson, M.; Colella, W.; Golden, D. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science. 2005, 308, 1901-1905.
4. Neef, H.-J. International overview of hydrogen and fuel cell research. Energy. 2009, 34, 327-333.
5. Choudhary, T. V.; Goodman, D. CO-free fuel processing for fuel cell applications. Catal. Today. 2002, 77, 65-78.
6. Holladay, J. D.; Hu, J.; King, D. L.; Wang Y. An overview of hydrogen production technologies. Catal. Today. 2009, 139, 244-260.
7. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources. 2007, 165, 739-756.
8. Choudhary, T. V.; Sivadinarayana, C.; Goodman, D. W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197-201.
9. Chellappa, A. S.; Fischer, C. M.; Thomson, W. J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal., A. 2002, 227, 231-240.
10. Li, L.; Hurley, J. A. Ammonia-based hydrogen source for fuel cell applications. Int. J. Hydrogen Energy. 2007, 32, 6-10.
11. Rahimpour, M. R.; Asgari, A. Production of hydrogen from purge gases of ammonia plants in a catalytic hydrogen-permselective membrane reactor. Int. J. Hydrogen Energy. 2009, 34, 5795-5802.
12. S?rensen, R. Z.; Nielsen, L. J.; Jensen, S.; Hansen, O.; Johannessen, T.; Quaade, U.; Christensen, C. H. Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells. Catal. Commun. 2005, 6, 229-232.
13. Klerke, A.; Christensen, C. H.; N?rskov, J. K.; Vegge, T. Ammonia for hydrogen storage: challenges and opportunities. J. Mater. Chem. 2008, 18, 2304-2310
14. Yin, S. F.; Xu, B. Q.; Zhou, X. P.; Au, C. T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal., A. 2004, 277, 1-9.
15. Cheddie, D. Ammonia as a hydrogen source for fuel cells: A review. In Hydrogen Energy - Challenges and Perspectives; Minic, D. Eds.; InTech: Croatia, 2012; pp 333-362.
16. García-Bordejé, E; Armenise, S.; Roldán, L. Toward Practical Application Of H2 Generation From Ammonia Decomposition Guided by Rational Catalyst Design. Cat. Rev. 2014, 56, 220-237.
17. Chiuta, S.; Everson, R. C.; Neomagus, H.; van der Gryp, P.; Bessarabov, D. G. Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review. Int. J. Hydrogen Energy. 2013, 38, 14968-14991.
18. Lin, R.-J.; Li, F.-Y.; Chen, H.-L. Computational investigation on adsorption and dissociation of the NH3 molecule on the Fe (111) surface. J. Phys. Chem. C. 2010, 115, 521-528.
19. Yeo, S. C.; Han, S. S.; Lee, H. M. Mechanistic Investigation of the Catalytic Decomposition of Ammonia (NH3) on an Fe (100) Surface: A DFT Study. J. Phys. Chem. C. 2014, 118, 5309-5316.
20. Lanzani, G.; Laasonen, K. NH3 adsorption and dissociation on a nanosized iron cluster. Int. J. Hydrogen Energy. 2010, 35, 6571-6577.
21. Yeo, S. C.; Lo, Y. C.; Li, J.; Lee, H. M. Theoretical study of the ammonia nitridation rate on an Fe (100) surface: A combined density functional theory and kinetic Monte Carlo study. J. Chem. Phys. 2014, 141, 134108.
22. Duan, X.; Ji, J.; Qian, G.; Fan, C.; Zhu, Y.; Zhou, X.; Chen, D.; Yuan, W. Ammonia decomposition on Fe (110), Co (111) and Ni (111) surfaces: a density functional theory study. J. Mol. Catal. A: Chem. 2012, 357, 81-86.
23. Duan, X.; Qian, G.; Fan, C.; Zhu, Y.; Zhou, X.; Chen, D.; Yuan, W. First-principles calculations of ammonia decomposition on Ni (110) surface. Surf. Sci. 2012, 606, 549-553.
24. Stolbov, S.; Rahman, T. S. First-principles study of some factors controlling the rate of ammonia decomposition on Ni and Pd surfaces. J. Chem. Phys. 2005, 123, 204716.
25. Duan, X.; Qian, G.; Liu, Y.; Ji, J.; Zhou, X.; Chen, D.; Yuan, W. Structure sensitivity of ammonia decomposition over Ni catalysts: A computational and experimental study. Fuel Process. Technol. 2013, 108, 112-117.
26. Novell-Leruth, G.; Valcarcel, A.; Pérez-Ramírez, J.; Ricart, J. M. Ammonia Dehydrogenation over Platinum-Group Metal Surfaces. Structure, Stability, and Reactivity of Adsorbed NHx Species. J. Phys. Chem. C. 2007, 111, 860-868.
27. Novell-Leruth, G.; Valcarcel, A.; Clotet, A.; Ricart, J. M.; Perez-Ramirez, J. DFT characterization of adsorbed NHx species on Pt (100) and Pt (111) surfaces. J. Phys. Chem. B. 2005, 109, 18061-18069.
28. Offermans, W.; Jansen, A.P.; Van Santen, R.A.; Novell-Leruth, G.; Ricart, J.; Perez-Ramirez, J. Ammonia dissociation on Pt {100}, Pt {111}, and Pt {211}: a comparative density functional theory study. J. Phys. Chem. C. 2007, 11147, 17551-17557.
29. Offermans, W. K.; Jansen, A. P. J.; van Santen, R.A. Ammonia activation on platinum {111}: A density functional theory study. Surf. Sci. 2006, 600, 1714-1734.
30. Popa, C.; Offermans, W.; van Santen, R. A.; Jansen, A. P. J. Ab initio density-functional theory study of NHx dehydrogenation and reverse reactions on the Rh (111) surface. Phys. Rev. B. 2006, 74, 155428.
31. Deng, Z.; Lu, X.; Wen, Z.; Wei, S.; Liu, Y.; Fu, D.; Zhao, L.; Guo, W. Mechanistic insight into the hydrazine decomposition on Rh (111): effect of reaction intermediate on catalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 16172-16182.
32. Huang, W.; Cheng, C.; Feng, E. Adsorption and decomposition of NH3 on Ir (111): A density functional theory study. Surf. Sci. 2013, 616, 29-35.
33. Huang, W.; Lai, W.; Xie, D. First-principles study of decomposition of NH3 on Ir (100). Surf. Sci. 2008, 602, 1288-1294.
34. Zhang, Y.; Xiao, X.; Cao, Y.; Cai, Y.; Wang, J. NH3/Ir (100): Electronic structure and dehydrogenation. Int. J. Hydrogen Energy. 2013, 38, 2965-2972.
35. Xiao, X.-Z.; Cao, Y.-L.; Cai, Y.-Y. Decomposition of NH3 on Ir (110): A first-principle study. Surf. Sci. 2011, 605, 802-807.
36. Wang, Y.; Jacobi, K. Adsorption and reaction of ammonia on the Ru (1120) surface. J. Phys. Chem. B. 2004, 108, 14726-14732.
37. Wang, Y.; Lafosse, A.; Jacobi, K. Stepwise dehydrogenation of NH3 at the Ru (1120) surface. Surf. Sci. 2002, 507, 773-777.
38. Maier, S.; Stass, I.; Cerda, J. I.; Salmeron, M. Bonding of Ammonia and Its Dehydrogenated Fragments on Ru (0001). J. Phys. Chem. C. 2012, 116, 25395-25400.
39. Hsiao, M.-K.; Wu, S.-K.; Chen, H.-L. Adsorption and Dehydrogenation Behaviors of the NH3 Molecule on the W (111) Surface: A First-Principles Study. J. Phys. Chem. C. 2015, 119, 4188-4198.
40. Wang, C.-C.; Yang, Y.-J.; Jiang, J.-C. DFT Study of NHx (x= 1− 3) Adsorption on RuO2 (110) Surfaces. J. Phys. Chem. C. 2009, 113, 2816-2821.
41. Wang, C.-C.; Siao, S. S.; Jiang, J.-C. Density Functional Theory Study of NHx (x= 0− 3) and N2 Adsorption on IrO2 (110) Surfaces. J. Phys. Chem. C. 2010, 114, 18588-18593.
42. Wang, C.-C.; Yang, Y.-J.; Jiang, J.-C. DFT Study of NHx (x= 1− 3) Adsorption on RuO2 (110) Surfaces. J. Phys. Chem. C. 2009, 113, 2816-2821.
43. Hansgen, D. A.; Vlachos, D. G.; Chen, J. G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chemistry.2010, 2, 484-489.
44. Hsiao, M.-K.; Su, C.-H.; Liu, C.-Y.; Chen, H.-L. Computational investigation of NH3 adsorption and dehydrogenation on a W-modified Fe (111) surface. Phys. Chem. Chem. Phys. 2015, 17, 30598-30605.
45. Garcia-Garcia, F. R.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Role of B5-type sites in Ru catalysts used for the NH3 decomposition reaction. Top. Catal. 2009, 52, 758-764.
46. Kozuch, S.; Shaik, S. A combined kinetic-quantum mechanical model for assessment of catalytic cycles: application to cross-coupling and heck reactions. J. Am. Chem. Soc. 2006, 128, 3355-3365.
47. Kozuch, S.; Shaik, S. Kinetic-Quantum Chemical Model for Catalytic Cycles: The Haber− Bosch Process and the Effect of Reagent Concentration. J. Phys. Chem. A. 2008, 112, 6032-6041.
48. Uhe, A.; Kozuch, S.; Shaik, S. Automatic analysis of computed catalytic cycles. J. Comput. Chem. 2011, 32, 978-985.
49. Błoński, P. and Kiejna, A. Structural, electronic, and magnetic properties of bcc iron surfaces. Surf. Sci. 2007, 601, 123-133.
50. Spencer, N. D.; Schoonmaker, R. C.; Somorjai, G. A. Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. J. Catal. 1982, 74, 129-135.
51. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993, 47, 558.
52. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.
53. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
54. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
55. Hammer, B.; Hansen, L. B.; N?rskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 1999, 59, 7413.
56. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.
57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953.
58.Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188.
59.Delbecq, F.; Zaera, F. Origin of the selectivity for trans-to-cis isomerization in 2-butene on Pt (111) single crystal surfaces. J. Am. Chem. Soc. 2008, 130, 14924-14925.
60. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
61. Bozso, F.; Ertl, G.; Grunze, M.; Weiss, M. Interaction of nitrogen with iron surfaces: I. Fe (100) and Fe (111). J. Catal. 1977, 49, 18-41.
62. Weiss, M.; Ertl, G.; Nitschké, F. Adsorption and decomposition of ammonia on Fe (110). Appl. Surf. Sci. 1979, 2, 614-635.
63. Loffreda, D.; Delbecq, F.; Vigne, F.; Sautet, P. Fast prediction of selectivity in heterogeneous catalysis from extended Br?nsted–Evans–Polanyi relations: a theoretical insight. Angew. Chem. Int. Ed. 2009, 48, 8978-8980.
64. Dahl, S.; Logadottir, A.; Jacobsen, C. J. H.; N?rskov, J. K. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl. Catal. A. 2001, 222, 19-29.
65. Wang, S.; Temel, B.; Shen, J.; Jones, G.; Grabow, L. C. Universal br?nsted-evans-polanyi relations for c–c, c–o, c–n, n–o, n–n, and o–o dissociation reactions. Catal. Lett. 2011, 141, 370-373.
66. Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. Reviews of modern Physics. 1988, 60, 601-628.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top