(18.207.253.100) 您好!臺灣時間:2021/05/06 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡雅婷
研究生(外文):Ya-Ting Tsai
論文名稱:頂空固相微萃取結合氣相層析質譜與液液萃取結合液相層析串聯質譜應用於大豆油非目標性油炸前後物質之變化
論文名稱(外文):Characterization of the Degradation Products of Fried Soybean Oil by HS-SPME-GC-MS and LLE Combined with LC-MS/MS
指導教授:李茂榮李茂榮引用關係
口試委員:鄭政峰傅明仁
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:大豆油非目標性油炸質譜頂空固相微萃取法
外文關鍵詞:soybean oilmass spectrometryfriednon-targeted
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用頂空固相微萃取法結合氣相層析質譜與液液萃取法結合液相層析質譜偵測大豆油經高溫烹煮前後是否會產生降解或生成新物質,期望可利用此實驗偵測出的指標化合物區辨新鮮的大豆油或經處理過再使用的大豆油。
  本實驗比較標準品大豆油及市售兩種品牌大豆油。在頂空固相微萃取法結合氣相層析質譜部分分別使用三種萃取纖維:CAR/PDMS、DVB/CAR/PDMS及PDMS/DVB進行實驗,在未加熱油萃取溫度 50 ℃ 、平衡時間3分鐘,萃取時間30分鐘時可以得到最佳的萃取效果,並額外比較不同加熱時間對大豆油之影響;在液液萃取法結合液相層析質譜部分取0.5 g 大豆油,加入1.5 mL 乙腈,經震盪離心後取上清液氮氣吹乾,最後用 500 μL 正己烷及乙醇以3:2 (v/v) 比例回溶。
  質譜分析的數據利用主成分分析及資料庫搜尋出可能性指標化合物,實驗結果顯示,氣相層析質譜部分偵測到2個只存在於未加熱油中的揮發性化合物: 1-Undecanol及1-Nonanol,7個只存在於加熱後油中的揮發性化合物:Oleic Acid、(Z)-2-Decenal、1-Penten-3-ol、(Z,Z)-9,12-Octadecadienoic acid、Nonanal、n-Hexadecanoic acid及Octadecanoic acid;液相層析質譜部分偵測到1個只存在於未加熱油中的非揮發性化合物:3,7-dimethyl-2,6-Octadienoic acid methyl ester,3個只存在於加熱後油中的非揮發性化合物:cis-6-Octadecenoic acid 4,4-dimethyloxazoline (dmox) derivative、(E,E)-2,4-Decadien-1-ol、10-Oxodecanoic acid methyl ester,資料庫搜尋出的可能性指標化合物對照物質安全資料表皆對人體沒有致癌性,而在不同加熱時間中偵測到2個指標化合物:cis-13-Eicosenoic acid, picolinyl ester及N,N-dihexyl-Furan-2-carboxamide會隨加熱時間變化而含量有所不同。因此可以利用本實驗偵測的9個揮發性化合物及4個非揮發性化合物來鑑定大豆油的新鮮度,提供一具參考價值的分析方法。

  In this study, HS-SPME-GC-MS and LLE-LC-MS/MS method were developed for determination of the volatile and non-volatile compounds in soybean oils before and after frying process. Headspace solid phase microextraction (HS-SPME) as a sample pretreatment in GC that oil sample incubated at 175 ℃ / 50 ℃ then extracted for 30 min, while liquid-liquid extraction (LLE) in LC that oil sample extracted from ACN and dried the supernatants then reconstituted with 500 μL hexane and ethanol (3:2, v/v). For comparing the volatile and non-volatile compounds in standard soybean oil, brand A and brand B soybean oil, the MS data were analyzed with principal components analysis (PCA) method. The obviously difference between heated and un-heated soybean oil was found by using PCA under 95% confidence interval. The diagrams chosen only if it satisfied PC1+PC2>50%. Volcano plot was used to highlight the potential biomarkers for distinguishing the heated and un-heated soybean oil. From NIST database showed 2 volatile compounds existed in unheated oil while 7 compounds existed in heated oil in GC. For non-volatile compounds, 1 compounds existed in unheated oil and 3 compounds existed in heated oil. The biomarkers found in this study could be used for differentiation between the fresh soybean oil and reused soybean oil.

謝誌 i
中文摘要 ii
英文摘要 iv
目錄 v
表目錄 x
圖目錄 xi

壹、緒論 1
1.1 前言 1
1.2 固相微萃取法 3
1.3 液液萃取法 13
1.4 氣相層析法 13
1.5 質譜術原理 14
1.5.1 氣相層析離子源 15
1.5.1 液相層析離子源 20
 1.5.2.1 大氣壓游離法 20
 1.5.2.2 電灑游離法 (Electrospray Ionization, ESI) 21
 1.5.2.3 電灑游離法形成機制 23
 1.5.3 質量分析器 29
 1.5.3.1 四極矩 (Quadrupole) 質量分析器 29
 1.5.3.2 軌道阱 (Orbitrap) 質量分析器 32
 1.5.4 串聯質譜儀 (tandem mass spectrometry, MS/MS) 32
1.6 主成分分析 34
1.7 研究動機與目的 37
貳、實驗 38
2.1 藥品、實驗器材與儀器設備 38
2.1.1 藥品、溶劑與試劑 38
2.1.2 實驗器材與儀器設備 39
2.2 藥品配置 40
2.1.1 氣相層析儀部分 40
2.1.2 液相層析儀部分 40
2.3 氣相層析質譜儀操作參數 40
2.3.1 氣相層析儀 41
2.3.2 四極矩質譜儀 41
2.4 液相層析質譜儀操作參數 42
2.4.1 液相層析儀 42
2.4.2 軌道阱質譜儀 43
2.5 頂空固相微萃取法之探討 43
2.5.1 固相微萃取纖維活化 (Condition) 45
2.5.2 萃取纖維之比較 45
2.5.3 平衡時間最佳化 (incubation time) 45
2.5.4 未加熱油萃取溫度最佳化 46
2.5.5 加熱油隨時間增加之變化狀況 46
2.6 液液萃取法之探討 46
2.6.1 乙腈添加量最佳化 46
2.6.2 回溶溶劑種類之選擇 47
2.6.3 回溶溶劑比例最佳化 47
2.6.4 加熱油隨時間增加之變化狀況 47
2.7 主成分分析 48
2.7.1 MZmine 48
2.7.2 MetaboAnalyst 49
2.7.3 NIST 49
2.8 真實樣品分析 50

參、結果與討論 51
3.1 頂空固相微萃取法之最佳化條件探討 51
3.1.1 萃取纖維探討 51
3.1.2 平衡時間最佳化探討 51
3.1.3 未加熱油萃取溫度最佳化探討 55
3.1.4 加熱油隨時間增加之變化狀況探討 55
3.2 液液萃取法之最佳化條件探討 58
3.2.1 乙腈添加量最佳化探討 58
3.2.2 回溶溶劑種類之選擇 58
3.2.3 回溶溶劑比例最佳化探討 64
3.2.4 加熱油隨時間增加之變化狀況探討 67
3.3 主成分分析 67
3.3.1 氣相層析質譜所得結果 67
 3.3.1.1 標準品大豆油之主成分分析結果 67
 3.3.1.2 品牌A大豆油之主成分分析結果 69
 3.3.1.3 品牌B大豆油之主成分分析結果 72
 3.3.1.4 不同加熱時間大豆油之主成分分析結果 74
3.3.2 液相層析質譜所得結果 76
 3.3.2.1 標準品大豆油之主成分分析結果 76
 3.3.2.2 品牌A大豆油之主成分分析結果 76
 3.3.2.3 品牌B大豆油之主成分分析結果 79
 3.3.2.4 不同加熱時間大豆油之主成分分析結果 80
3.4 資料庫搜尋結果 82
3.4.1 氣相層析質譜得出加熱前後揮發性指標化合物 82
3.4.2 液相層析質譜得出加熱前後非揮發性指標化合物 88
3.4.3 液相層析質譜得出不同加熱時間大豆油指標化合物 92
3.5 真實樣品分析 92
肆、結論 95
伍、參考文獻 97

1.經濟部,2014年食品產業年鑑,經濟部技術處產業技術知識服務計畫,2014,175。
2.衛生福利部,民國103年死因統計年報,衛生福利部統計處,民國103年。
3.Yang, H.; Irudayaraj, J.; Paradkar, M. M., Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry 2005, 93 (1), 25-32.
4.Yang, Y.; Ferro, M. D.; Cavaco, I.; Liang, Y., Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics. Journal of agricultural and food chemistry 2013, 61 (15), 3693-3702.
5.B?hn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R., Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chemistry 2014, 153, 207-215.
6.Beltrán, A.; Ramos, M.; Grané, N.; Martín, M.; Garrigós, M., Monitoring the oxidation of almond oils by HS-SPME–GC–MS and ATR-FTIR: Application of volatile compounds determination to cultivar authenticity. Food Chemistry 2011, 126 (2), 603-609.
7.Cimato, A.; Monaco, D. D.; Distante, C.; Epifani, M.; Siciliano, P.; Taurino, A.; Zuppa, M.; Sani, G., Analysis of single-cultivar extra virgin olive oils by means of an Electronic Nose and HS-SPME/GC/MS methods. Sensors and Actuators B: Chemical 2006, 114 (2), 674-680.
8.Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 1990, 62 (19), 2145-2148.
9.Mester, Z.; Sturgeon, R.; Pawliszyn, J., Solid phase microextraction as a tool for trace element speciation. Spectrochimica Acta Part B: Atomic Spectroscopy 2001, 56 (3), 233-260.
10.Vas, G.; Vekey, K., Solid‐phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of mass spectrometry 2004, 39 (3), 233-254.
11.Wercinski, S. A., Solid phase microextraction: a practical guide. CRC Press: 1999.
12.Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of chromatography A 2000, 880 (1), 35-62.
13.Lord, H.; Pawliszyn, J., Evolution of solid-phase microextraction technology. Journal of Chromatography A 2000, 885 (1), 153-193.
14.Skoog, D. A., Fundamentals of analytical chemistry. Grupo Editorial Norma: 2004, 202-204.
15.Karasek, F. W.; Clement, R. E., Basic gas chromatography-mass spectrometry: principles and techniques. Elsevier: 2012.
16.Fernández-González, V.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D., Solid-phase microextraction–gas chromatographic–tandem mass spectrometric analysis of polycyclic aromatic hydrocarbons: towards the European Union water directive 2006/0129 EC. Journal of Chromatography A 2007, 1176 (1), 48-56.
17.Dass, C., Fundamentals of contemporary mass spectrometry. John Wiley & Sons: 2007; Vol. 16.
18.Roboz, J., Mass Spectrometry in cancer research. CRC Press: 2002.
19.de Hoffmann, E.; Stroobant, V., Mass Spectrometry: Principles and Applications. John Wiley & Sons: 2007.
20.Holčapek, M.; Jirásko, R.; Lísa, M., Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. Journal of Chromatography A 2010, 1217 (25), 3908-3921.
21.Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459.
22.Rohner, T. C.; Lion, N.; Girault, H. H., Electrochemical and theoretical aspects of electrospray ionisation. Physical chemistry chemical physics 2004, 6 (12), 3056-3068.
23.Thermo Fisher Scientific, H-ESI Probe User Guide, 2009, 2.
24.Thermo Fisher Scientific, Q-Extractive Plus Hardware Manual, 2013.
25.Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Analytical chemistry 2000, 72 (6), 1156-1162.
26.Person, K., On Lines and Planes of Closest Fit to System of Points in Space. Philiosophical Magazine, 2, 559-572. 1901.
27.Sharma, S., Applied multivariate techniques. John Wiley & Sons, Inc.: 1995, 58-81.
28.Yang, L.; Jin, F.; Zhang, P.; Zhang, Y.; Wang, J.; Shao, H.; Jin, M.; Wang, S.; Zheng, L.; Wang, J., Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2015, 63 (38), 8364-8371.
29.Cecchi, T.; Alfei, B., Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME–GC–MS: Newly identified compounds, flavors molecular markers, and terpenic profile. Food chemistry 2013, 141 (3), 2025-2035.
30.Trujillo-Rodríguez, M. J.; Yu, H.; Cole, W. T.; Ho, T. D.; Pino, V.; Anderson, J. L.; Afonso, A. M., Polymeric ionic liquid coatings versus commercial solid-phase microextraction coatings for the determination of volatile compounds in cheeses. Talanta 2014, 121, 153-162.
31.Jelen, H. H.; Obuchowska, M.; Zawirska-Wojtasiak, R.; Wasowicz, E., Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. Journal of Agricultural and Food Chemistry 2000, 48 (6), 2360-2367.
32.Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M., MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC bioinformatics 2010, 11 (1), 1.
33.Katajamaa, M.; Miettinen, J.; Orešič, M., MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 2006, 22 (5), 634-636.
34.Xia, J.; Mandal, R.; Sinelnikov, I. V.; Broadhurst, D.; Wishart, D. S., MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic acids research 2012, 40 (W1), W127-W133.
35.Linstrom, P. J.; Mallard, W., NIST Chemistry webbook; NIST standard reference database No. 69. 2001.
36.楊金興,油脂作物品種開發與栽培,綠色油田在農業永續發展扮演的角色,2007,23-45.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔