(3.238.173.209) 您好!臺灣時間:2021/05/16 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王靖暢
研究生(外文):Jing-Chang Wang
論文名稱:銀奈米粒子輔助雷射脫附游離飛行時間質譜技術檢測環境水樣之個人藥物
論文名稱(外文):Silver nanoparticles assisted laser desorption/ionization mass spectrometric analysis for personal care products in environmental water
指導教授:李茂榮李茂榮引用關係
指導教授(外文):Maw-Rong Lee
口試委員:傅明仁蕭鶴軒
口試委員(外文):Ming-Ren FuhHe-Hsuan Hsiao
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:基質輔助雷射脫附游離飛行時間質譜技術銀奈米粒子新興汙染物個人照顧用藥磺胺類藥物
外文關鍵詞:Matrix assisted laser desorption/ionization mass spectrometricsilver nanoparticlesEmerging contaminantspersonal care productssulfonamide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,新興汙染物(Emerging contaminants, ECs)逐漸受到人們的關注,尤其這些化合物在人體及環境具有潛在的影響,個人藥物也是新興汙染物。然而,大多數的新興汙染物並沒有相關的規範及限制,因此開發環境樣品快速檢測的方法是非常重要的。本實驗探討不同形狀的銀奈米粒子輔助雷射脫附游離,藉由鹽析液相液相萃取針對環境水樣中抗生素藥物之分析。銀奈米粒子藉由穿透式電子顯微鏡及紫外可見光吸收儀進行鑑定。針對銀奈米粒子形狀及濃度進行選擇的探討。鹽析液相液相萃取,針對氯化鈉濃度、萃取溶劑量、pH值及萃取時間進行最佳化。在最佳化條件下,其sulfamethazine(SMT)、sulfamerazine(SMZ)及trimethoprim(TMP)的偵測線性範圍為25至1000 ng/mL;線性相關係數(R2)皆在0.9945以上;偵測極限分別為1.28(SMT)、6.82(SMZ)及4.62(TMP) ng/mL;同日及異日間檢測,其RSD分別介於0.93至3.29 %及0.58至1.61 %之間;回收率則介於93.6至109.4之間。本研究結果,可用為環境中偵測個人藥物的參考。

Recently, emerging contaminant compounds (ECs), potential hazards in human and environment, are attentive in people. However, most ECs have not yet been associated regulations management and restriction. Hence, it is important to develop a rapid analytical method for determination of ECs in environmental samples. In this study, silver nanoparticles (AgNPs) assisted laser desorption/ionization coupled to time-of-flight mass spectrometry (MALDI-TOF) matrix and salting-out LLE sample preparation was developed for high throughput analyzing of sulfonamides in environmental water. Different shapes of AgNPs were synthesized and identified by using transmission electron microscopy (TEM) and Ultraviolet-visible Spectrophotometer. The ionization efficiency of LDI for analyzing of trimethoprim using different AgNPs has been evaluated and compared in this study. Under the optimum conditions, the limit of detection was calculated to be 6.02, 4.62 and 1.28 ng/mL for sulfamethazine、sulfamerazine and trimethoprim, respectively. The proposed method is rapid and easy for determination of emerging contaminant compounds in environmental samples.

謝誌 i
Abstract iii
目錄 iv
表目錄 x
圖目錄 xi
第一章、緒論 1
1.1前言 1
1.2抗生素藥物 1
1.3藥物檢測方法 2
1.4 樣品前處理 5
1.4.1鹽析液相液相萃取(salting-out assisted liquid-liquid extraction, SALLE) 6
1.5磺胺劑檢測方法 7
1.6金屬奈米粒子的特別性質 9
1.6.1表面電漿共振(surface plasmon resonance, SPR) 9
1.7金屬奈米粒子製備方法 12
1.7.1光化學還原法 12
1.7.2化學還原法 14
1.7.3 保護劑之影響 15
1.7.3.1. 靜電排斥力(eletrostatic repulsion) 15
1.7.3.2.立體阻礙(steric hindrance) 15
1.7.3.3.靜電排斥力與立體阻礙 16
1.7.4晶種合成法 16
1.8 基質輔助雷射脫附游離飛行時間質譜儀(matrix-assisted laser desorption/ionization time of flight mass spectrometer) 21
1.8.1 基質輔助雷射脫附游離之發展 21
1.8.2 基質輔助雷射脫附游離之樣品製備 22
1.8.2.1樣品盤(target-plate)種類 22
1.8.2.1.1 MTP 384 target plate ground steel 22
1.8.2.1.2 MTP 384 target plate polished steel 22
1.8.2.1.3 MTP AnchorChipTM var/384 22
1.8.2.2基質特性與功能 23
1.8.2.2.1與分析物具有相同的溶解特性 23
1.8.2.2.2吸收UV雷射能量 24
1.8.2.2.3提供質子轉移使分析物游離化 24
1.8.2.2.4基質碎片位於低分子量區 24
1.8.3奈米粒子應用於LDI 26
1.8.3.1使用高分子的基質 26
1.8.3.2添加離子抑制劑 27
1.8.3.3 Matrix free 27
1.8.4基質輔助雷射脫附游離之機制 28
1.8.4.1一次離子機制 28
1.8.4.1.1激發態質子轉移(excited-state proton transfer, ESPI) 28
1.8.4.1.2多光子游離(multiphoton ionization) 29
1.8.4.2二次離子機制 29
1.8.5飛行時間質量分析器 30
1.8.5.1飛行時間質量分析器之發展 30
1.8.5.2飛行時間質量分析器之原理 30
1.8.5.2.1離子延遲導出(delayed extraction) 33
1.8.5.2.2反射型飛行時間質譜儀 33
1.8.5.3 LIFT (laser induced fragmentation technology) 34
1.9研究目的 37
第二章、研究方法 38
2.1 實驗藥品與試劑 38
2.1.1 藥品 38
2.1.2合成奈米粒子藥品 38
2.1.3 溶劑與試劑 39
2.2實驗儀器 39
2.3 標準品溶液配製 40
2.3.1 標準品儲存溶液(stock solution)之配製 40
2.3.2 10 μg/mL 及1 μg/mL之標準品溶液配製 40
2.3.3 1 μg/mL之混合標準品溶液配製 41
2.3.4水樣工作溶液之配製 41
2.3.5 10 mg/mLα-氰基-4-羥基肉桂酸(α-Cyano-4-hydroxycinnamic acid, CHCA) 41
2.3.6 10 mg/mL 2,5-二羥基苯甲酸(2,5-Dihydroxybenzoic acid, DHB) 41
2.4緩衝溶液之配製 42
2.4.1 0.1 M檸檬酸水溶液 42
2.4.2 0.2 M磷酸氫二鈉水溶液 42
2.4.3 pH值為3、4、5、6、7及8緩衝溶液之配製 42
2.5銀奈米粒子合成 42
2.5.1 圓球狀銀奈米 (Ag-shapes)的製備 42
2.5.2 棒狀銀奈米 (Ag-rods)的製備 43
2.5.3三角板銀奈米 (Ag-prisms)的置配 44
2.5.4圓盤形銀奈米 (Ag-disks)的置配 44
2.6基質最佳化條件探討 44
2.6.1本實驗基質與傳統基質之比較 44
2.6.2銀奈米粒子形狀之探討 45
2.6.2銀奈米粒子稀釋倍率之探討 45
2.6.3 Laser強度之探討 45
2.7鹽析液相-液相萃取(salting-out assisted liquid-liquid extraction, LLE)樣品前處理最佳化條件之探討 46
2.7.1 氯化鈉添加量對萃取效率之探討 46
2.7.2乙腈添加量對萃取效率之探討 46
2.7.3萃取時間對萃取效率之探討 47
2.7.4水樣pH值對萃取效率之探討 47
2.7.5水樣方法檢量線工作溶液之配製 48
2.8穿透式電子顯微鏡樣品製備 48
2.9基質輔助雷射脫附游離飛行時間質譜儀之儀器參數 49
第三章、實驗結果與討論 51
3.1銀奈米合成藉由UV-Vis及TEM之鑑定 51
3.2基質選擇之探討 55
3.2.1基質的選擇 55
3.2.2基質背景訊號 55
3.3分析物離子訊號之探討 58
3.3.1基質的影響 58
3.3.2銀奈米形狀的影響 60
3.3.3銀奈米稀釋倍率的影響 60
3.3.4雷射強度的影響 64
3.3.5 混合樣品分析 64
3.4鹽析液相-液相萃取樣品前處理最佳化條件之探討 69
3.4.1 萃取溶液之探討 69
3.4.1氯化鈉添加量對萃取效率之探討 69
3.4.2乙腈添加量對萃取效率之探討 69
3.4.3萃取時間對萃取效率之探討 71
3.4.4水樣pH值對萃取效率之探討 71
3.5 方法評估 73
3.5.1 檢量線及偵測極限 73
3.5.2再現性的探討 73
3.5.3回收率測試 75
3.6 文獻比較 75
第四章、結論 78
參考文獻 79



1.Field, J. A.; Johnson, C. A.; Rose, J. B., What is “emerging”? Environmental science & technology 2006, 40 (23), 7105-7105.
2.楊慶輝, 盧進德台灣醫界 2005,12月,第48卷第12期
3.Chia, K.-J.; Huang, S.-D., Simultaneous derivatization and extraction of amphetamine-like drugs in urine with headspace solid-phase microextraction followed by gas chromatography–mass spectrometry. Analytica chimica acta 2005, 539 (1), 49-54.
4.Gunnar, T.; Engblom, C.; Ariniemi, K., Pressure-adjusted continual flow heart-cutting for the high throughput determination of amphetamine-type stimulant drugs in whole blood by fast multidimensional gas chromatography–mass spectrometry. Journal of Chromatography A 2007, 1166 (1), 171-180.
5.Lin, Y.-H.; Li, J.-H.; Ko, W.-K.; Wu, S.-M., Direct and sensitive analysis of methamphetamine, ketamine, morphine and codeine in human urine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography. Journal of Chromatography A 2006, 1130 (2), 281-286.
6.Fang, C.; Liu, J. T.; Chou, S. H.; Lin, C. H., Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography. Electrophoresis 2003, 24 (6), 1031-1037.
7.Pietsch, J.; Schulz, K.; Körner, B.; Trauer, H.; Dreßler, J.; Gey, M., Alternative Method for Forensic Determination of Lysergic Acid Diethylamide and Related Compounds in Body Fluids by Liquid–Liquid Extraction and HPLC with Fluorescence Detection. Chromatographia 2004, 60 (1-2), 89-92.
8.Du, Z.; Douglas, D.; Konenkov, N., Elemental analysis with quadrupole mass filters operated in higher stability regions. Journal of Analytical Atomic Spectrometry 1999, 14 (8), 1111-1119.
9.Apollonio, L. G.; Pianca, D. J.; Whittall, I. R.; Kyd, J. M.; Maher, W. A., A comparison of atmospheric pressure chemical ionization and electrospray ionization in testing for amphetamine‐type substances and ketamine using ultra‐performance liquid chromatography/mass spectrometry. Rapid communications in mass spectrometry 2006, 20 (18), 2777-2780.
10.Reiding, K. R.; Blank, D.; Kuijper, D. M.; Deelder, A. M.; Wuhrer, M., High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Analytical chemistry 2014, 86 (12), 5784-5793.
11.Alterman, M. A.; Gogichayeva, N. V.; Kornilayev, B. A., Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based amino acid analysis. Analytical biochemistry 2004, 335 (2), 184-191.
12.Ng, E. W. Y.; Lam, H. S.; Ng, P. C.; Poon, T. C. W., Quantification of citrulline by parallel fragmentation monitoring—A novel method using graphitized carbon nanoparticles and MALDI-TOF/TOF mass spectrometry. Clinica Chimica Acta 2013, 420, 121-127.
13.Liu, J.; Liu, Y.; Gao, M.; Zhang, X., High throughput detection of tetracycline residues in milk using graphene or graphene oxide as MALDI-TOF MS matrix. Journal of The American Society for Mass Spectrometry 2012, 23 (8), 1424-1427.
14.Xu, L.; Basheer, C.; Lee, H. K., Developments in single-drop microextraction. Journal of chromatography. A 2007, 1152 (1-2), 184-92.
15.Jeannot, M. A.; Przyjazny, A.; Kokosa, J. M., Single drop microextraction--development, applications and future trends. Journal of chromatography. A 2010, 1217 (16), 2326-36.
16.Lee, J.; Lee, H. K.; Rasmussen, K. E.; Pedersen-Bjergaard, S., Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta 2008, 624 (2), 253-68.
17.Pedersen-Bjergaard, S.; Rasmussen, K. E., Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction. Journal of chromatography. A 2008, 1184 (1-2), 132-42.
18.Rezaee, M.; Assadi, Y.; Milani Hosseini, M. R.; Aghaee, E.; Ahmadi, F.; Berijani, S., Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of chromatography. A 2006, 1116 (1-2), 1-9.
19.Anthemidis, A. N.; Ioannou, K. I., Recent developments in homogeneous and dispersive liquid-liquid extraction for inorganic elements determination. A review. Talanta 2009, 80 (2), 413-21.
20.Zhang, J.; Su, T.; Lee, H. K., Headspace water-based liquid-phase microextraction. Analytical chemistry 2005, 77 (7), 1988-1992.
21.Jermak, S.; Pranaitytė, B.; Padarauskas, A., Headspace single‐drop microextraction with in‐drop derivatization and capillary electrophoretic determination for free cyanide analysis. Electrophoresis 2006, 27 (22), 4538-4544.
22.Rustum, A. M., Determination of diltiazem in human whole blood and plasma by high-performance liquid chromatography using a polymeric reversed-phase column and utilizing a salting-out extraction procedure. Journal of Chromatography B: Biomedical Sciences and Applications 1989, 490, 365-375.
23.Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international 2003, 86 (2), 412-431.
24.Matkovich, C. E.; Christian, G. D., Salting-out of acetone from water. Basis of a new solvent extraction system. analytical Chemistry 1973, 45 (11), 1915-1921.
25.Renard, J. A.; Heichelheim, H., Ternary systems. Water-acetonitrile-salts. Journal of Chemical & Engineering Data 1968, 13 (4), 485-488.
26.Renard, J. A., The Ternary Systems. Water-2 Chloroethanol-Salt and Water-Tetrahydrofurfuryl Alcohol-Salt. Journal of Chemical and Engineering Data 1962, 7 (2), 203-205
27.Valente, I. M.; Goncalves, L. M.; Rodrigues, J. A., Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures. Journal of chromatography. A 2013, 1308, 58-62.
28.Nagaosa, Y., Polarographic determination of copper (II) after salting-out extraction as thiocyanate in acetonitrile. Microchimica Acta 1979, 71 (5-6), 495-502.
29.Nagaosa, Y., Polarographic determination of indium (III) after salting-out extraction of the bromide complex into acetonitrile. Talanta 1979, 26 (11), 987-990.
30.Nagaosa, Y., Extraction-polarographic determination of cobalt (II) and nickel (II) as 2, 2′-bipyridine complexes in acetonitrile. Analytica Chimica Acta 1980, 115, 81-88.
31.Wang, H.; Zhou, X.; Zhang, Y.; Chen, H.; Li, G.; Xu, Y.; Zhao, Q.; Song, W.; Jin, H.; Ding, L., Dynamic microwave-assisted extraction coupled with salting-out liquid–liquid extraction for determination of steroid hormones in fish tissues. Journal of agricultural and food chemistry 2012, 60 (41), 10343-10351.
32.Valente, I. M.; Santos, C. M.; Moreira, M. M.; Rodrigues, J. A., New application of the QuEChERS methodology for the determination of volatile phenols in beverages by liquid chromatography. Journal of Chromatography A 2013, 1271 (1), 27-32.
33.Kole, P. L.; Venkatesh, G.; Kotecha, J.; Sheshala, R., Recent advances in sample preparation techniques for effective bioanalytical methods. Biomedical Chromatography 2011, 25 (1‐2), 199-217.
34.Rustum, A. M., Determination of diltiazem in human whole blood and plasma by high-performance liquid chromatography using a polymeric reversed-phase column and utilizing a salting-out extraction procedure. Journal of Chromatography B: Biomedical Sciences and Applications 1989, 490, 365-375.
35.Kinsella, B.; Lehotay, S. J.; Mastovska, K.; Lightfield, A. R.; Furey, A.; Danaher, M., New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography–tandem mass spectrometry. Analytica chimica acta 2009, 637 (1), 196-207.
36.Jenkins, T. F.; Miyares, P. H.; Myers, K. F.; McCormick, E. F.; Strong, A. B., Comparison of solid phase extraction with salting-out solvent extraction for preconcentration of nitroaromatic and nitramine explosives from water. Analytica Chimica Acta 1994, 289 (1), 69-78.
37.Chen, J.-H.; Liau, B.-C.; Jong, T.-T.; Chang, C.-M. J., Extraction and purification of flavanone glycosides and kaemferol glycosides from defatted Camellia oleifera seeds by salting-out using hydrophilic isopropanol. Separation and Purification Technology 2009, 67 (1), 31-37.
38.So, T. S.; Huie, C. W., Salting‐out solvent extraction for the off‐line preconcentration of benzalkonium chloride in capillary electrophoresis. Electrophoresis 2001, 22 (11), 2143-2149.
39.Leggett, D. C.; Jenkins, T. F.; Miyares, P. H., Salting-out solvent extraction for preconcentration of neutral polar organic solutes from water. Analytical Chemistry 1990, 62 (13), 1355-1356.
40.Jenkins, T. F.; Miyares, P. H.; Myers, K. F.; McCormick, E. F.; Strong, A. B., Comparison of solid phase extraction with salting-out solvent extraction for preconcentration of nitroaromatic and nitramine explosives from water. Analytica Chimica Acta 1994, 289 (1), 69-78.
41.Myasein, F.; Kim, E.; Zhang, J.; Wu, H.; El-Shourbagy, T. A., Rapid, simultaneous determination of lopinavir and ritonavir in human plasma by stacking protein precipitations and salting-out assisted liquid/liquid extraction, and ultrafast LC–MS/MS. Analytica chimica acta 2009, 651 (1), 112-116.
42.Chen, J.-H.; Liau, B.-C.; Jong, T.-T.; Chang, C.-M. J., Extraction and purification of flavanone glycosides and kaemferol glycosides from defatted Camellia oleifera seeds by salting-out using hydrophilic isopropanol. Separation and Purification Technology 2009, 67 (1), 31-37.
43.Chung, N. H.; Tabata, M., Selective extraction of gold (III) in the presence of Pd (II) and Pt (IV) by salting-out of the mixture of 2-propanol and water. Talanta 2002, 58 (5), 927-933.
44.Chung, N. H.; Nishimoto, J.; Kato, O.; Tabata, M., Selective extraction of thallium (III) in the presence of gallium (III), indium (III), bismuth (III) and antimony (III) by salting-out of an aqueous mixture of 2-propanol. Analytica chimica acta 2003, 477 (2), 243-249.
45.陳仕聯,藥品分析化學,第三版,科學家書局,218-222,民國73年
46.Korsrud, G. O.; Papich, M. G.; Fesser, A. C.; Salisbury, C. D.; MacNeill, J. D., Laboratory testing of the Charm Test II receptor assays and the Charm Farm Test with tissues and fluids from hogs fed sulfamethazine, chlortetracycline, and penicillin G. Journal of Food Protection® 1996, 59 (2), 161-166.
47.Lin, C.-E.; Lin, W.-C.; Chen, Y.-C.; Wang, S.-W., Migration behavior and selectivity of sulfonamides in capillary electrophoresis. Journal of Chromatography A 1997, 792 (1), 37-47.
48.Ashworth, R. B., Liquid Chromatographic Assay of Sulfonamide in Tissues of Dood-Producing animals. Journal of Associate Official Analysis Chemistry. 1985, 68, 1013-1019
49.Kmošťák, S.; Dvořák, M., Capillary gas chromatographic determination of sulphadimidine in pork tissues. Journal of Chromatography A 1990, 503, 260-265.
50.林崇立,軟膏基質及磺胺劑軟膏安定性之研究,朝陽科技大學應用化學系碩士論文
51.You, T.; Yang, X.; Wang, E., Determination of sulfadiazine and sulfamethoxazole by capillary electrophoresis with end-column electrochemical detection. Analyst 1998, 123 (11), 2357-2360.
52.Ito, Y.; Oka, H.; Ikai, Y.; Matsumoto, H.; Miyazaki, Y.; Nagase, H., Application of ion-exchange cartridge clean-up in food analysis: V. Simultaneous determination of sulphonamide antibacterials in animal liver and kidney using high-performance liquid chromatography with ultraviolet and mass spectrometric detection. Journal of Chromatography A 2000, 898 (1), 95-102.
53.Gehring, T. A.; Griffin, B.; Williams, R.; Geiseker, C.; Rushing, L. G.; Siitonen, P. H., Multiresidue determination of sulfonamides in edible catfish, shrimp and salmon tissues by high-performance liquid chromatography with postcolumn derivatization and fluorescence detection. Journal of Chromatography B 2006, 840 (2), 132-138.
54.Renew, J. E.; Huang, C.-H., Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A 2004, 1042 (1), 113-121.
55.Batt, A. L.; Aga, D. S., Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Analytical chemistry 2005, 77 (9), 2940-2947.
56.Göbel, A.; Thomsen, A.; McArdell, C. S.; Alder, A. C.; Giger, W.; Theiß, N.; Löffler, D.; Ternes, T. A., Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. Journal of Chromatography A 2005, 1085 (2), 179-189.
57.S?rensen, L.; Elbaek, T., Simultaneous determination of trimethoprim, sulfadiazine, florfenicol and oxolinic acid in surface water by liquid chromatography tandem mass spectrometry. Chromatographia 2004, 60 (5-6), 287-291.
58.Ngumba, E.; Gachanja, A.; Tuhkanen, T., Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Science of the Total Environment 2016, 539, 206-213.
59.曾賢德,物理雙月刊(32卷二期),2010年4月。
60.Jain, P. K.; El-Sayed, M. A., Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano letters 2008, 8 (12), 4347-4352.
61.Faraday, M., The Bakerian lecture: experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, 147, 145-181.
62.Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik 1908, 330 (3), 377-445.
63.Link, S.; El-Sayed, M. A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B 1999, 103 (40), 8410-8426.
64.Kottmann, J. P.; Martin, O. J.; Smith, D. R.; Schultz, S., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B 2001, 64 (23), 235402.
65.Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
66.Kéki, S.; Török, J.; Deák, G.; Daróczi, L.; Zsuga, M., Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. Journal of colloid and interface science 2000, 229 (2), 550-553.
67.Kim, F.; Song, J. H.; Yang, P., Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 2002, 124 (48), 14316-14317.
68.Faraday, M., XLVII. Experimental relations of gold (and other metals) to light.—The bakerian lecture. Philosophical Magazine Series 4 1857, 14 (95), 401-417.
69.連昭晴, 鐵/金核殼型磁性複合奈米粒子 之製備與應用. 成功大學化學工程學系學位論文 2004, 1-113.
70.Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. See http://www. rsc. org/suppdata/cc/b1/b100521i. Chemical Communications 2001, (7), 617-618.
71.Lee, G.-J.; Shin, S.-I.; Kim, Y.-C.; Oh, S.-G., Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics 2004, 84 (2), 197-204.
72.Posthumus, M.; Kistemaker, P.; Meuzelaar, H.; Ten Noever de Brauw, M., Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Analytical Chemistry 1978, 50 (7), 985-991.
73.Lindner, B.; Seydel, U., Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Analytical Chemistry 1985, 57 (4), 895-899.
74.Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
75.Tanaka, K.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. In Detection of high mass molecules by laser desorption time-of-flight mass spectrometry, Proceedings of the Second Japan-China Joint Symposium on Mass Spectrometry, 1987.
76.Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry 1988, 60 (20), 2299-2301.
77.Caldwell, K. L.; Murray, K. K., Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix. Applied surface science 1998, 127, 242-247.
78.Egelhofer, V.; Büssow, K.; Luebbert, C.; Lehrach, H.; Nordhoff, E., Improvements in protein identification by MALDI-TOF-MS peptide mapping. Analytical chemistry 2000, 72 (13), 2741-2750.
79.Sechi, S.; Chait, B. T., Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Analytical chemistry 1998, 70 (24), 5150-5158.
80.使用說明MTP384 target plate ground steel BC; Bruker, 2013
81.Levis, R. J., Laser desorption and ejection of biomolecules from the condensed phase into the gas phase. Annual review of physical chemistry 1994, 45 (1), 483-518.
82.Zenobi, R.; Knochenmuss, R., Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews 1998, 17 (5), 337-366.
83.Knochenmuss, R., Ion formation mechanisms in UV-MALDI. Analyst 2006, 131 (9), 966-986.
84.Overberg, A.; Karas, M.; Bahr, U.; Kaufmann, R.; Hillenkamp, F., Matrix‐assisted infrared‐laser (2.94 μm) desorption/ionization mass spectrometry of large biomolecules. Rapid Communications in mass spectrometry 1990, 4 (8), 293-296.
85.Bahr, U.; Karas, M.; Hillenkamp, F., Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fresenius'' journal of analytical chemistry 1994, 348 (12), 783-791.
86.Nizioł, J.; Rode, W.; Zieliński, Z.; Ruman, T., Matrix-free laser desorption–ionization with silver nanoparticle-enhanced steel targets. International Journal of Mass Spectrometry 2013, 335, 22-32.
87.Karas, M.; Bahr, U.; Gießmann, U., Matrix‐assisted laser desorption ionization mass spectrometry. Mass spectrometry reviews 1991, 10 (5), 335-357.
88.Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical chemistry 1991, 63 (24), 1193A-1203A.
89.Wu, Y. C.; Hsieh, C. H.; Tam, M. F., Matrix‐assisted laser desorption/ionization of peptides on AnchorChip™ targets with α‐cyano‐4‐hydroxycinnamic acid and nitrocellulose as matrix. Rapid communications in mass spectrometry 2006, 20 (2), 309-312.
90.Ayorinde, F.; Hambright, P.; Porter, T.; Keith, Q., Use of meso‐tetrakis (pentafluorophenyl) porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ionization time‐of‐flight mass spectrometry. Rapid communications in mass spectrometry 1999, 13 (24), 2474-2479
91.Yu, H.; Lopez, E.; Young, S. W.; Luo, J.; Tian, H.; Cao, P., Quantitative analysis of free fatty acids in rat plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with meso-tetrakis porphyrin as matrix. Analytical biochemistry 2006, 354 (2), 182-191.
92.Sunner, J.; Dratz, E.; Chen, Y.-C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Analytical chemistry 1995, 67 (23), 4335-4342.
93.Wei, J.; Buriak, J. M.; Siuzdak, G., Desorption–ionization mass spectrometry on porous silicon. Nature 1999, 399 (6733), 243-246.
94.Piret, G.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Boukherroub, R., Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir 2009, 26 (2), 1354-1361.
95.Cuiffi, J. D.; Hayes, D. J.; Fonash, S. J.; Brown, K. N.; Jones, A. D., Desorption-ionization mass spectrometry using deposited nanostructured silicon films. Analytical chemistry 2001, 73 (6), 1292-1295.
96.Tsao, C.-W.; Kumar, P.; Liu, J.; DeVoe, D. L., Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. Analytical chemistry 2008, 80 (8), 2973-2981.
97.Walker, B. N.; Stolee, J. A.; Pickel, D. L.; Retterer, S. T.; Vertes, A., Tailored silicon nanopost arrays for resonant nanophotonic ion production. The Journal of Physical Chemistry C 2010, 114 (11), 4835-4840.
98.Finkel, N. H.; Prevo, B. G.; Velev, O. D.; He, L., Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry. Analytical Chemistry 2005, 77 (4), 1088-1095.
99.Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S., On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. The Journal of chemical physics 2008, 128 (1), 014711.
100.Shariatgorji, M.; Amini, N.; Ilag, L. L., Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules. Journal of nanoparticle research 2009, 11 (6), 1509-1512.
101.Sherrod, S. D.; Diaz, A. J.; Russell, W. K.; Cremer, P. S.; Russell, D. H., Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Analytical chemistry 2008, 80 (17), 6796-6799.
102.Huang, Y.-F.; Chang, H.-T., Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Analytical chemistry 2007, 79 (13), 4852-4859.
103.Kawasaki, H.; Yonezawa, T.; Watanabe, T.; Arakawa, R., Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. The Journal of Physical Chemistry C 2007, 111 (44), 16278-16283.
104.Kailasa, S. K.; Kiran, K.; Wu, H.-F., Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical chemistry 2008, 80 (24), 9681-9688.
105.Taira, S.; Kitajima, K.; Katayanagi, H.; Ichiishi, E.; Ichiyanagi, Y., Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications. Science and Technology of Advanced Materials 2016.
106.Shastri, L. A.; Kailasa, S. K.; Wu, H. F., Cysteine‐capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometric analysis. Rapid Communications in Mass Spectrometry 2009, 23 (15), 2247-2252.
107.Kailasa, S. K.; Wu, H.-F., Multifunctional ZrO2 nanoparticles and ZrO2-SiO2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Analytical and bioanalytical chemistry 2010, 396 (3), 1115-1125.
108.Chen, W.-Y.; Chen, Y.-C., Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Analytical and bioanalytical chemistry 2006, 386 (3), 699-704.
109.Chen, C.-T.; Chen, Y.-C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Analytical chemistry 2005, 77 (18), 5912-5919.
110.Kawasaki, H.; Akira, T.; Watanabe, T.; Nozaki, K.; Yonezawa, T.; Arakawa, R., Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Analytical and bioanalytical chemistry 2009, 395 (5), 1423-1431.
111.Zenobi, R.; Knochenmuss, R., Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews 1998, 17 (5), 337-366.
112.Knochenmuss, R., Ion formation mechanisms in UV-MALDI. Analyst 2006, 131 (9), 966-986.
113.Ehring, H.; Karas, M.; Hillenkamp, F., Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix‐assisted laser desorption lonization mass spectrometry. Organic mass spectrometry 1992, 27 (4), 472-480
114.Knochenmuss, R., Photoionization pathways and free electrons in UV-MALDI. Analytical chemistry 2004, 76 (11), 3179-3184.
115.Kosaka, T.; Kinoshita, T.; Takayama, M., Ion Formation and Fragmentation of Sinapinic Acid in Electron Ionization, Liquid Secondary Ion and Matrix‐assisted Laser Desorption/Ionization Mass Spectrometry. Rapid communications in mass spectrometry 1996, 10 (4), 405-408.
116.Cameron, A.; Eggers Jr, D., An Ion``Velocitron''. Review of Scientific Instruments 1948, 19 (9), 605-607.
117.Wiley, W.; McLaren, I. H., Time‐of‐flight mass spectrometer with improved resolution. Review of Scientific Instruments 1955, 26 (12), 1150-1157.
118.ultrafleXtreme User Manual; Bruker Daltonics, 2013; vol. 1.
119.Schmid, R. P.; Weickhardt, C., Designing reflectron time-of-flight mass spectrometers with and without grids: a direct comparison. International Journal of Mass Spectrometry 2001, 206 (3), 181-190.
120.Cotter, R. J., Time-of-flight mass spectrometry for the structural analysis of biological molecules. Analytical chemistry 1992, 64 (21), 1027A-1039A.
121.Ho, M.-L.; Chi, B.-J.; Hung, T.-Y.; Liao, H.-Y.; Wang, J.-C.; Wang, T.-Y.; Shyue, J.-J., Enhanced photochromism of chromen-based colorants near silver nanorods in sol–gel matrix. CrystEngComm 2013, 15 (30), 5969-5979.
122.Ho, M.-L.; Yu, Y.-P.; Chen, Y.-T.; Lin, M.-H., Solid state photochromism of pyrano [3, 2-c] chromen-5-one moiety with the assistance of localized surface plasmons. CrystEngComm 2012, 14 (11), 4049-4059.
123.Kilin, D. S.; Prezhdo, O. V.; Xia, Y., Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters 2008, 458 (1), 113-116.
124.Munro, C.; Smith, W.; Garner, M.; Clarkson, J.; White, P., Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 1995, 11 (10), 3712-3720.
125.Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials 2002, 14 (11), 4736-4745.
126.Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y., A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? Journal of the American Chemical Society 2011, 133 (46), 18931-18939.
127.Torres, V.; Popa, M.; Crespo, D.; Moreno, J. M. C., Silver nanoprism coatings on optical glass substrates. Microelectronic engineering 2007, 84 (5), 1665-1668.
128.Yu, P.; Huang, J.; Yuan, C. T.; Tang, J., Synthesis of silver nanoprisms and nanodiscs an applications in fluorescence blinking suppression. Journal of the Chinese Chemical Society 2010, 57 (3B), 528-533.
129.Knochenmuss, R., Ion formation mechanisms in UV-MALDI. Analyst 2006, 131 (9), 966-986.
130.Owega, S.; Lai, E. P., Silver cationization of thia fatty acids and esters in laser desorption/ionization time‐of‐flight mass spectrometry. Journal of mass spectrometry 1999, 34 (8), 872-879.
131.Pruns, J. K.; Vietzke, J. P.; Strassner, M.; Rapp, C.; Hintze, U.; König, W., Characterization of low molecular weight hydrocarbon oligomers by laser desorption/ionization time‐of‐flight mass spectrometry using a solvent‐free sample preparation method. Rapid communications in mass spectrometry 2002, 16 (3), 208-211.
132.Majors, R. E., Salting-Out Liquid-Liquid Extraction. LC GC North America 2009, 27 (7).
133.Tarazona, I.; Chisvert, A.; Salvador, A., Determination of benzophenone-3 and its main metabolites in human serum by dispersive liquid–liquid microextraction followed by liquid chromatography tandem mass spectrometry. Talanta 2013, 116, 388-395.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top