(3.238.173.209) 您好!臺灣時間:2021/05/16 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭浩峻
研究生(外文):Hao-Chun Kuo
論文名稱:建立快速光譜分析方法測試再生試劑對屑製橡膠回收效率
論文名稱(外文):Establishing a fast spectroscopic analysis method on testing effectiveness of reclaiming agents for reclamation of ground rubber tire
指導教授:李豐穎
指導教授(外文):Feng-Yin Li
口試委員:廖明淵麥富德
口試委員(外文):Ming-Yuan LiaoFu-Der Mai
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:紅外光譜再生橡膠再生試劑
外文關鍵詞:infrared spectrareclaimed rubberreclaiming agents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著環保意識的抬頭,對於廢棄橡膠輪胎的處理方法產生了變化,不同於早年的掩埋與燃燒的形式,取而代之的是以回收再利用的方式來生產再生橡膠,利用化學試劑的反應性,對於廢棄硫化橡膠進行脫硫與主鏈切割的效果。本文將研究分為兩部分探討,首先是將硫化橡膠的促進劑(N-Cyclohexyl-2-benzothiazolesulfenamide)與硫含量做配方學的優化,本文更考慮引進一項新的量測參數,藉由硫化橡膠紅外光譜的碳-硫振動頻率半定量,試著取代對於交聯密度以及凝膠-溶膠的實驗,再以拉伸強度與斷裂伸長量來判斷優化的結果;接著將優化後的比例應用於再生橡膠的配方上,本文選用了五種再生試劑,其中分別以自由基形式與親核反應形式進行再生的反應,藉由再生橡膠流變結果、交聯密度、凝膠分率以及溶膠之比濃黏度探討再生試劑在再生反應過程中的影響,並比較再生橡膠製品之拉伸強度、斷裂伸長量與老化試驗的結果,得以說明各再生試劑之再生橡膠表現優劣。

Recently, the rising awareness of environment protection becomes a topic of current interest. It is current good manufacturing practice with recycling and reclamation of waste rubber tire instead of landfilling and burning. In this work we tried to use the chemical reagent scissoring the main chain and crosslinked bonds in ground rubber tire. There are two parts in this work. Firstly, we investigated the optimization in the ratio of vulcanized rubber accelerator and sulfur. The infrared spectra of vulcanizates were used as a semi-quantitation of crosslinked density and gel fraction in the vulcanized rubber to assist the above optimization. This spectroscopic method can shorten the testing time of crosslinked density and gel fraction used in equilibrium swelling test and soxhlet extraction. A tensile strength and elongation at break of vulcanizates was performed on the vulcanized rubber treated with the optimized ratio of the recipe to evaluate the performance. Then the same procedure was performed again but on ground rubber tire treated the same recipe. Secondly, five different reclaiming agents which react with ground tire rubber by either free radical form or nucleophilic form were chosen to evaluate their reclaiming performance. The rheology, crosslinked density, gel fraction and reduced viscosity of sol part were performed to assess the effect of each reclaiming agent on the mechanical properties of the reclaiming rubber tire. The reclaiming ability were determined by comparing the results of tensile strength, elongation at break and aged test.

摘要…………………………………………………………………………I
Abstract……………………………………………………...……..………II
目錄………………………………....................................………..……...III
圖目錄……………………………………………………...…………………………...V
表目錄…………………………………………………………..…………………...VII
1. 簡介……………………………………………………………………….………….1
1.1. 輪胎產業……………………………………………………………...………1
1.2. 橡膠種類……………………………………………………………………...1
1.3. 硫化橡膠………………………………………………………...……………2
1.4. 橡膠回收……………………………………………………………………...8
1.5. 再生方法…………………………………………………………………….11
1.6. 化學添加再生……………………………………………………………….16
2. 實驗…………………………………………………………………………………19
2.1. 藥品………………………………………………………………………….19
2.2. 樣品製備…………………………………………………………………….19
2.2.1. 硫化橡膠製備………………………………………..........................19
2.2.2. 再生橡膠製備………………………………………..........................20
2.3. 實驗部分…………………………………………………………………….21
2.3.1. 流變試驗……………………………………………………………..21
2.3.2. 平衡溶脹法…………………………………………………………..22
2.3.3. 溶膠-凝膠分率……………………………………………………..23
2.3.4. 紅外光譜……………………………………………………………..24
2.3.5. 拉伸試驗……………………………………………………………..25
2.3.6. 溶膠比濃黏度………………………………………………………..28
2.3.7. 熱老化試驗…………………………………………………………..29
3. 結果與討論…………………………………………………………………………30
3.1. 硫化橡膠…………………………………………………………………….30
3.1.1. 硫化橡膠紅外光譜半定量驗證……………………………………..30
3.1.2. 硫化橡膠機械性質比較……………………………………………..35
3.2. 再生橡膠…………………………………………………………………….39
3.2.1. 再生試劑之選用……………………………………………………..39
3.2.2. 再生橡膠流變性質…………………………………………………..39
3.2.3. 再生橡膠交聯密度與溶膠-凝膠分析……………………………..41
3.2.4. 再生橡膠紅外光譜之半定量可能探討……………….……………44
3.2.5. 再生橡膠機械性質比較…………………………………………....46
3.2.6. 再生橡膠熱老化性質探討…………………………………………..48
4. 結論…………………………………………………………………………………50
5. 參考文獻……………………………………………………………………………51


1.The secretariat of the International Rubber Study Group. In Outlook for the rubber industry, International Smallholder Rubber Conference, Phnom Penh, Cambodia, Jun 24, 2009; International Rubber Study Group, 2009.
2.ETRMA. In: Association ETRM, editor. European Tyre & Rubber Manufacturers’ Association: The annual report 2014.
3.王凤菊, IRSG预测2020年世界轮胎消耗橡胶情?. 中国橡胶 2008, 18 (6).
4.Ramarad, S.; Khalid, M.; Ratnam, C. T.; Chuah, A. L.; Rashmi, W., Waste tire rubber in polymer blends: A review on the evolution, properties and future. Progress in Materials Science 2015, 72, 100-140.
5.Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry 2007, 79 (10).
6.Vert, M.; Doi, Y.; Hellwich, K.-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F., Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry 2012, 84 (2).
7.Li, S. Y.; Lamminmaki, J.; Hanhi, K., Effect of ground rubber powder and devulcanizates on the properties of natural rubber compounds. Journal of Applied Polymer Science 2005, 97 (1), 208-217.
8.Myhre, M.; Saiwari, S.; Dierkes, W.; Noordermeer, J., Rubber recycling: chemistry, processing, and applications. Rubber Chemistry and Technology 2012, 85 (3), 408-449.
9.Tao, G.; He, Q.; Xia, Y.; Jia, G.; Yang, H.; Ma, W., The effect of devulcanization level on mechanical properties of reclaimed rubber by thermal-mechanical shearing devulcanization. Journal of Applied Polymer Science 2013, 129 (5), 2598-2605.
10.Gagol, M.; Boczkaj, G.; Haponiuk, J.; Formela, K., Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber. Polymer Degradation and Stability 2015, 119, 113-120.
11.Novotny, D. S.; Marsh, R. L.; Masters, F. C.; Tally, D. N., Microwave Devulcanization of Rubber. U.S. Patent 4,104,205, Aug 1, 1978.
12.Isayev, A., Continuous Ultrasonic Devulcanization of Valcanized Elastomers. U.S. Patent 5,258,413, Nov 2, 1993.
13.Menadue, F. B., Some technical aspects of rubber reclaiming. Rubber Age 1945, 56, 511-519
14.De, D.; Das, A.; De, D.; Dey, B.; Debnath, S. C.; Roy, B. C., Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent. European Polymer Journal 2006, 42 (4), 917-927.
15.Sabzekar, M.; Chenar, M. P.; Mortazavi, S. M.; Kariminejad, M.; Asadi, S.; Zohuri, G., Influence of process variables on chemical devulcanization of sulfur-cured natural rubber. Polymer Degradation and Stability 2015, 118, 88-95.
16.Beckman, J. A.; Crane, G.; Kay, E. L.; Laman, J. R., Scrap tire disposal. Rubber Chemistry and Technology 1974, 47 (3), 597-624.
17.Sato, S.; Honda, Y.; Kuwahara, M.; Kishimoto, H.; Yagi, N.; Muraoka, K.; Watanabe, T., Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot basidiornycete, Ceriporiopsis subvermispora. Biomacromolecules 2004, 5 (2), 511-515.
18.Tripathy, A. R.; Morin, J. E.; Williams, D. E.; Eyles, S. J.; Farris, R. J., A novel approach to improving the mechanical properties in recycled vulcanized natural rubber and its mechanism. Macromolecules 2002, 35 (12), 4616-4627.
19.Yamashita, S., Reclaimed rubber from rubber scrap (2). International Polymer Science and Technology 1981, 8 (12), 77-93.
20.Onouchi, Y.; Inagaki, S.; Okamoto, H.; Furukawa, J., Reclamation of scrap rubber vulcanizates III: reclamation of crushed tire scrap with dimethylsulfoxide. International Polymer Science and Technology 1982, 55 (7), 58-62.
21.Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R.; Sheran, K.; Wudl, F., A thermally re-mendable cross-linked polymeric material. Science 2002, 295 (5560), 1698-1702.
22.Zhang, Y.; Broekhuis, A. A.; Picchioni, F., Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 2009, 42 (6), 1906-1912.
23.Bai, J.; Li, H.; Shi, Z.; Yin, J., An eco-friendly scheme for the cross-linked polybutadiene elastomer via Thiol-Ene and Diels-Alder click chemistry. Macromolecules 2015, 48 (11), 3539-3546.
24.B. Adhikari, D. D., S. Maiti, Reclamation and recycling of waste rubber. Progress in Polymer Science 2000, 25 (7), 40.
25.Abraham, E.; Cherian, B. M.; Elbi, P.; Pothen, L. A.; Thomas, S., 2. Recent advances in the recycling of rubber waste. Recent Developments in Polymer Recycling 2011, 47, 100.
26.Lee, S. H.; Hwang, S. H.; Kontopoulou, M.; Sridhar, V.; Zhang, Z. X.; Xu, D.; Kim, J. K., The effect of physical treatments of waste rubber powder on the mechanical properties of the revulcanizate. Journal of Applied Polymer Science 2009, 112 (5), 3048-3056.
27.Poyraz, S.; Liu, Z.; Liu, Y.; Zhang, X., Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Current Organic Chemistry 2013, 17 (20), 2243-2248.
28.De, D.; Maiti, S.; Adhikari, B., Reclaiming of rubber by a renewable resource material (RRM). II. Comparative evaluation of reclaiming process of NR vulcanizate by RRM and diallyl disulfide. Journal of Applied Polymer Science 1999, 73 (14), 2951-2958.
29.Bohm, G. G.; Stephanopoulos, G. N., Method of Microbial and/or Enzymatic Devulcanization of Rubber. U.S. Patent 5,258,413, Nov 2, 1993.
30.Phadke, A. A.; Bhowmick, A. K.; De, S. K., Effect of cryoground rubber on properties of NR. Journal of Applied Polymer Science 1986, 32 (3), 4063-4074.
31.Mayo, F. R.; Heller, J.; Walrath, R.; Irwin, K. C., Accelerated oxidations of polyisoprene. II. Effects of hydrazines, sulfur compounds, and Phenyl-β-Napthylamine in solution. Rubber Chemistry and Technology 1968, 41 (2), 289-295.
32.Morin, J. E.; Williams, D. E.; Farris, R. J., A novel method to recycle scrap tires: High-pressure high-temperature sintering. Rubber Chemistry and Technology 2002, 75 (5), 955-968.
33.Jana, G. K.; Das, C. K., Recycling natural rubber vulcanizates through mechanochemical devulcanization. Macromol Res 2005, 13 (1), 30-38.
34.Sperling, L. H. Introduction to Physical Polymer Science; Wiley & Sons: New Jersey, 2006; p 472-473.
35.Mark, J. E. Physical Properties of Polymers Handbook; Springer: New York, 1996; p179-195.
36.林建中, 高分子加工學; 文京圖書有限公司: 台北市, 1999.
37.Rattanasom, N.; Prasertsri, S., Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level. Polymer Testing 2009, 28 (3), 270-276.
38.De, D.; De, D., Processing and material characteristics of a reclaimed ground rubber tire reinforced styrene butadiene rubber. Materials Sciences and Applications 2011, 2 (05), 486.
39.Socrates, G. Infrared Characteristic Group Frequencies; Wiley & Sons: Bath, 1980.
40.Koenig, J.; Coleman, M.; Shelton, J.; Starmer, P., Raman spectrographic studies of the vulcanization of rubbers. I. Raman spectra of vulcanized rubbers. Rubber Chemistry and Technology 1971, 44 (1), 71-86.
41.Wang, X. J.; Shi, C. P.; Zhang, L.; Zhang, Y. C., Effects of shear stress and subcritical water on devulcanization of styrene-butadiene rubber based ground tire rubber in a twin-screw extruder. Journal of Applied Polymer Science 2013, 130 (3), 1845-1854.
42.Rooj, S.; Basak, G. C.; Maji, P. K.; Bhowmick, A. K., New route for devulcanization of natural rubber and the properties of devulcanized rubber. Journal of Polymers and the Environment 2011, 19 (2), 382-390.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文