|
[1] http://www.who.int/mediacentre/factsheets/fs297/en/. [2] Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4:81-9. [3] Fang J, Chen YC. Nanomaterials for Photohyperthermia: A Review. Curr Pharm Design. 2013;19:6622-34. [4] Graham EG, Macneill CM, Levi-Polyachenko NH. Review of Metal, Carbon and Polymer Nanoparticles for Infrared Photothermal Therapy. Nano LIFE. 2013;03:1330002. [5] Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494-530. [6] Melamed JR, Edelstein RS, Day ES. Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy. ACS Nano. 2015;9:6-11. [7] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30-8. [8] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256-82. [9] Navarro JR, Manchon D, Lerouge F, Blanchard NP, Marotte S, Leverrier Y, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology. 2012;23:465602. [10] Lin L-S, Cong Z-X, Cao J-B, Ke K-M, Peng Q-L, Gao J, et al. Multifunctional Fe3O4@Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy. ACS Nano. 2014;8:3876-83. [11] Liu Z, Robinson JT, Sun X, Dai H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American Chemical Society. 2008;130:10876-7. [12] Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol. 2009;4:688-94. [13] Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano letters. 2011;11:2560-6. [14] Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Advanced materials. 2011;23:3542-7. [15] Cheng X, Zhang X, Yin H, Wang A, Xu Y. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science. 2006;253:2727-32. [16] Yu W, Xie H, Chen L, Li Y, Zhang C. Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents. Nanoscale Res Lett. 2009;4:465-70. [17] Salavati-Niasari M, Davar F. Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters. 2009;63:441-3. [18] Song RG, Yamaguchi M, Shimokawa K, Kushibiki N, Suzuki M, Nishimura O. Effect of laser-ablated copper nanoparticles on polymerization of 1,1,3,3-tetraphenyl-1,3-disilacyclobutane. Applied Physics A: Materials Science & Processing. 2004;78:867-75. [19] Khanehzaei H, Ahmad MB, Shameli K, Ajdari Z. Synthesis and Characterization of Cu@Cu2O Core Shell Nanoparticles Prepared in Seaweed Kappaphycus alvarezii Media. Int J Electrochem Sci. 2015;10:404-13. [20] Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. Journal of Applied Physics. 2013;113:134305. [21] Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH. Biological and Environmental Transformations of Copper-Based Nanomaterials. ACS Nano. 2013;7:8715-27. [22] Chen Z, Meng HA, Xing GM, Chen CY, Zhao YL, Jia GA, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology letters. 2006;163:109-20. [23] Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology letters. 2010;197:169-74. [24] Gaetke L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189:147-63. [25] Zhu Y, Qian Y, Zhang M, Chen Z, Xu D, Yang L, et al. Preparation and characterization of nanocrystalline powders of cuprous oxide by using γ-radiation. Materials Research Bulletin. 1994;29:377-83. [26] Ramadevudu G, Shareefuddin M, Sunitha Bai N, Lakshmipathi Rao M, Narasimha Chary M. Electron paramagnetic resonance and optical absorption studies of Cu2+ spin probe in MgO–Na2O–B2O3 ternary glasses. Journal of Non-Crystalline Solids. 2000;278:205-12. [27] Lin M, Wang D, Liu S, Huang T, Sun B, Cui Y, et al. Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS applied materials & interfaces. 2015;7:20801-12. [28] Reddy AN, Anjaneyulu K, Basak P, Rao NM, Manorama SV. A Simple Approach to the Design and Functionalization of Fe3O4–Au Nanoparticles for Biomedical Applications. ChemPlusChem. 2012;77:284-92. [29] Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD, et al. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistry of Materials. 2007;19:3624-32. [30] Alkrad JA, Mrestani Y, Stroehl D, Wartewig S, Neubert R. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV–Vis spectroscopies. Journal of Pharmaceutical and Biomedical Analysis. 2003;31:545-50. [31] Reddy KJ. Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7: Plovdiv University Press; 2013. [32] Azimi H, Kuhri S, Osvet A, Matt G, Khanzada LS, Lemmer M, et al. Effective ligand passivation of Cu(2)O nanoparticles through solid-state treatment with mercaptopropionic acid. Journal of the American Chemical Society. 2014;136:7233-6. [33] Li WM, Chen SY, Liu DM. In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 2013;9:5360-8. [34] C. H. Tsai SYC, J. M. Song, I. G. Chen and H. Y. Lee. Phase transformation of Cu@Ag core-shell nanoparticles upon heating. 2012:1-4. [35] Roper DK, Ahn W, Hoepfner M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. The Journal of Physical Chemistry C. 2007;111:3636-41. [36] Feng W, Chen L, Qin M, Zhou X, Zhang Q, Miao Y, et al. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep. 2015;5:17422. [37] Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, et al. Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano. 2011;5:9761-71. [38] Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie. 2013;52:13958-64. [39] Zheng M, Zhao P, Luo Z, Gong P, Zheng C, Zhang P, et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS applied materials & interfaces. 2014;6:6709-16. [40] Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, et al. Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. Journal of the American Chemical Society. 2013;135:8571-7. [41] Gunawan C, Teoh WY, Marquis CP, Amal R. Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano. 2011;5:7214-25. [42] Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology. 2014;8:775-85. [43] Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM. Tailoring the Synthesis and Heating Ability of Gold Nanoprisms for Bioapplications. Langmuir : the ACS journal of surfaces and colloids. 2012;28:8965-70. [44] Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. Journal of Immunological Methods. 2000;243:167-90. [45] Denecker G, Vercammen D, Declercq W, Vandenabeele P. Apoptotic and necrotic cell death induced by death domain receptors. Cellular and Molecular Life Sciences CMLS. 2001;58:356-70.
|