跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許宏銘
研究生(外文):Hung-Ming Hsu
論文名稱:氧化銅系列奈米粒子作為治療癌症光熱試劑
論文名稱(外文):Copper Oxide Series Based Nanoparticles as Photothermal Agents for Cancer Therapy
指導教授:賴秉杉
口試委員:謝銘鈞廖明淵
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:65
中文關鍵詞:奈米複合物光熱治療
外文關鍵詞:coppergoldnanocompositesphotothemal therapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
光驅動的治療方式是近年來興起的一種癌症治療方法。相較於外科手術的程度,光熱治療有著較低侵入是以及低副作用的優點。在許多的光熱試劑當中能存在生物相容性的一大問題尤其在銅的材料當中。雖然我們開發出一個具有進紅外光吸收的核殼結構氧化銅奈米粒子,但當氧化銅奈米粒子材料進入到細胞培養液發現此材料對於胺基酸的親和性較高使得崩解及破壞結構的速率較高,因此在氧化銅材料對於在細胞培養液裡的穩定性是一大的課題。
為了解決氧化銅在細胞培養液的穩定性,本篇研究嘗試了不同方式保護奈米粒子對於穩定性之改善並不顯著,另外我們使用加入另一金屬前驅物來合成而形成了一個銅-金雙金屬的複合體來增加其穩定性。在光熱的表現上有較佳的表現,且在材料照光後的穩定性上在我們的測試中也有相當的光穩定性,在光熱轉換效率的表現上也有。在細胞的測試中,在尚未照射雷射情況下,材料並未看出明顯的毒性; 當提供雷射808 nm的輔助下,可以發現細胞存活率抑制到約20%。因此,銅-金雙金屬的複合體不僅降低了銅離子的釋放也增加了在細胞培養液的穩定性,在光熱治療上也有相當的助益,相信日後可以成為一個具有潛力的光熱試劑應用在癌症治療上。


Photothermal therapy (PTT) was an innovate therapy that received many attentions due to its low invasive property. However, the vast phototheraml agents had biocompatibility problem especially copper based series agents. We focused on improvement the Cu@Cu2O stability in culture medium due to its high affinity and dissolution rate too fast that led to limitation in vitro application. Therefore, we attempted to different approaches to protect the Cu@Cu2O or Cu@Cu2O@HA modification on that NPs surface. However, these approach was modified to the Cu@Cu2O or Cu@Cu2O, the stability no obviously was improved. Eventually, we directly added another metal to reform the bimetallic nanocomposites (NCs). In addition, The Cu-Au bimetallic NCs exhibited excellent photothermal performance that remain original similar photothermal property due to their strong near-infrared (NIR) absorption property. The size of Cu-Au bimetallic NCs detected by TEM about 10 nm and this size could through passive targeting due to enhance permeability and retention (EPR) effect. Moreover, improvement stability in culture medium of the Cu-Au bimetallic NCs. In vitro experiment indicated Cu-Au bimetallic NCs without 808 nm laser irradiation reveal low cytotoxicity, whereas, the almost 20% cells survival with laser irradiation in cancer cells. Consequently, the bimetallic NCs not only possessed excellent photothemral efficiency but increase biocompatibility via reducing the copper ions release in biomedical application.

致謝辭 i
Table of Contents ii
中文摘要 iv
Abstract v
List of Figures vi
List of Table x
Chapter 1 Introduction 1
1.1 Cancer 1
1.2 Photothermal Therapy 2
1.3 Copper Series Inorganic Material 7
1.4 The Risk of Copper 8
Chapter 2 Experimental Design and Methods 12
2.1 Experimental Design 12
2.2 Material 13
2.3 Characterization 15
2.4 Preparation of Cu@Cu2O Nanoparticles 15
2.5 Modification of Cu@Cu2O Nanoparticles 16
2.5.1 Preparation of Cu@Cu2O@HA Nanoparticles 16
2.5.2 Preparation of Cu@Cu2O@HA to growth CaP 16
2.5.3 Preparation of Cu@Cu2O to growth CaP 16
2.5.4 Preparation of Cu@Cu2O@HA to attach chitosan 17
2.5.5 Preparation of Cu-Au Bimetallic Nanocomposites 17
2.6 Photothermal Effect Evaluation 17
2.7 Copper Ions Release Profile 18
2.8 Cell line and Cell Culture Conditions 18
2.9 Cell Culture and Cytotoxicity Studies 18
2.10 Photothermal Ablation of Cancer Cells In Vitro 19
2.10.1 Observed by Cytotoxicity 19
2.10.2 Observed by Confocal Microscopy Image 20
Chapter 3 Results and Discussion 21
3.1 Synthesis and Characterizations of Copper Series Nanoparticles 21
3.2 Evaluation of Photothermal Ability 40
3.3 Stability of Copper Series Nanoparticles 46
3.4 In Vitro Photothermal Effect and Cell Viability Study 50
3.5 In Vitro Investigation by Optical Microscopy and Flow 53
Chapter 4 Conclusion 59
Reference 60




[1] http://www.who.int/mediacentre/factsheets/fs297/en/.
[2] Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4:81-9.
[3] Fang J, Chen YC. Nanomaterials for Photohyperthermia: A Review. Curr Pharm Design. 2013;19:6622-34.
[4] Graham EG, Macneill CM, Levi-Polyachenko NH. Review of Metal, Carbon and Polymer Nanoparticles for Infrared Photothermal Therapy. Nano LIFE. 2013;03:1330002.
[5] Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494-530.
[6] Melamed JR, Edelstein RS, Day ES. Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy. ACS Nano. 2015;9:6-11.
[7] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30-8.
[8] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256-82.
[9] Navarro JR, Manchon D, Lerouge F, Blanchard NP, Marotte S, Leverrier Y, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology. 2012;23:465602.
[10] Lin L-S, Cong Z-X, Cao J-B, Ke K-M, Peng Q-L, Gao J, et al. Multifunctional Fe3O4@Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy. ACS Nano. 2014;8:3876-83.
[11] Liu Z, Robinson JT, Sun X, Dai H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. Journal of the American Chemical Society. 2008;130:10876-7.
[12] Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol. 2009;4:688-94.
[13] Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano letters. 2011;11:2560-6.
[14] Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Advanced materials. 2011;23:3542-7.
[15] Cheng X, Zhang X, Yin H, Wang A, Xu Y. Modifier effects on chemical reduction synthesis of nanostructured copper. Applied Surface Science. 2006;253:2727-32.
[16] Yu W, Xie H, Chen L, Li Y, Zhang C. Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents. Nanoscale Res Lett. 2009;4:465-70.
[17] Salavati-Niasari M, Davar F. Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Materials Letters. 2009;63:441-3.
[18] Song RG, Yamaguchi M, Shimokawa K, Kushibiki N, Suzuki M, Nishimura O. Effect of laser-ablated copper nanoparticles on polymerization of 1,1,3,3-tetraphenyl-1,3-disilacyclobutane. Applied Physics A: Materials Science & Processing. 2004;78:867-75.
[19] Khanehzaei H, Ahmad MB, Shameli K, Ajdari Z. Synthesis and Characterization of Cu@Cu2O Core Shell Nanoparticles Prepared in Seaweed Kappaphycus alvarezii Media. Int J Electrochem Sci. 2015;10:404-13.
[20] Santillán JMJ, Videla FA, Fernández van Raap MB, Schinca DC, Scaffardi LB. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids. Journal of Applied Physics. 2013;113:134305.
[21] Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH. Biological and Environmental Transformations of Copper-Based Nanomaterials. ACS Nano. 2013;7:8715-27.
[22] Chen Z, Meng HA, Xing GM, Chen CY, Zhao YL, Jia GA, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology letters. 2006;163:109-20.
[23] Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology letters. 2010;197:169-74.
[24] Gaetke L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189:147-63.
[25] Zhu Y, Qian Y, Zhang M, Chen Z, Xu D, Yang L, et al. Preparation and characterization of nanocrystalline powders of cuprous oxide by using γ-radiation. Materials Research Bulletin. 1994;29:377-83.
[26] Ramadevudu G, Shareefuddin M, Sunitha Bai N, Lakshmipathi Rao M, Narasimha Chary M. Electron paramagnetic resonance and optical absorption studies of Cu2+ spin probe in MgO–Na2O–B2O3 ternary glasses. Journal of Non-Crystalline Solids. 2000;278:205-12.
[27] Lin M, Wang D, Liu S, Huang T, Sun B, Cui Y, et al. Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS applied materials & interfaces. 2015;7:20801-12.
[28] Reddy AN, Anjaneyulu K, Basak P, Rao NM, Manorama SV. A Simple Approach to the Design and Functionalization of Fe3O4–Au Nanoparticles for Biomedical Applications. ChemPlusChem. 2012;77:284-92.
[29] Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD, et al. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chemistry of Materials. 2007;19:3624-32.
[30] Alkrad JA, Mrestani Y, Stroehl D, Wartewig S, Neubert R. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV–Vis spectroscopies. Journal of Pharmaceutical and Biomedical Analysis. 2003;31:545-50.
[31] Reddy KJ. Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7: Plovdiv University Press; 2013.
[32] Azimi H, Kuhri S, Osvet A, Matt G, Khanzada LS, Lemmer M, et al. Effective ligand passivation of Cu(2)O nanoparticles through solid-state treatment with mercaptopropionic acid. Journal of the American Chemical Society. 2014;136:7233-6.
[33] Li WM, Chen SY, Liu DM. In situ doxorubicin-CaP shell formation on amphiphilic gelatin-iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater. 2013;9:5360-8.
[34] C. H. Tsai SYC, J. M. Song, I. G. Chen and H. Y. Lee. Phase transformation of Cu@Ag core-shell nanoparticles upon heating. 2012:1-4.
[35] Roper DK, Ahn W, Hoepfner M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. The Journal of Physical Chemistry C. 2007;111:3636-41.
[36] Feng W, Chen L, Qin M, Zhou X, Zhang Q, Miao Y, et al. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep. 2015;5:17422.
[37] Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, et al. Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano. 2011;5:9761-71.
[38] Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie. 2013;52:13958-64.
[39] Zheng M, Zhao P, Luo Z, Gong P, Zheng C, Zhang P, et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS applied materials & interfaces. 2014;6:6709-16.
[40] Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, et al. Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. Journal of the American Chemical Society. 2013;135:8571-7.
[41] Gunawan C, Teoh WY, Marquis CP, Amal R. Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano. 2011;5:7214-25.
[42] Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology. 2014;8:775-85.
[43] Pelaz B, Grazu V, Ibarra A, Magen C, del Pino P, de la Fuente JM. Tailoring the Synthesis and Heating Ability of Gold Nanoprisms for Bioapplications. Langmuir : the ACS journal of surfaces and colloids. 2012;28:8965-70.
[44] Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. Journal of Immunological Methods. 2000;243:167-90.
[45] Denecker G, Vercammen D, Declercq W, Vandenabeele P. Apoptotic and necrotic cell death induced by death domain receptors. Cellular and Molecular Life Sciences CMLS. 2001;58:356-70.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊