|
1.Malcolmson, J. F. A study of Erwinia isolates obtained from soft rots and black-leg of potatoes. T. Brit. Mycol. Soc. 1959, 42:261-269. 2.Pérombelon, M. C. M. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 2002, 51:1-12. 3.Lund, B. M. Formation of Reducing Sugars from Sucrose by Erwinia Species. J. Gen. Microbiol. 1975, 88:367-371. 4.Jones, R. D. and Dowson, W. J. On the bacteria responsible for soft-rot in stored potatoes, and the reaction of the tuber to invasion by Bacterium carotovorum (Jones) Lehmann & Neumann. Ann. Appl. Biol. 1950, 37:563-569. 5.Phillips, J. A. and Kelman, A. Direct fluorescent antibody stain procedure applied to insect transmission of Erwinia carotovora. Phytopathology. 1982, 72:898-901. 6.Kloepper, J. W., Harrison, M. D., and Brewer, J. W. The association of Erwinia carotovora var. atroseptica and Erwinia carotovora var. carotovora with insects in Colorado. Am. Potato J. 1979, 56:351-361. 7.Chatterjee, A. K. and Starr, M. P. Donor strains of the soft-rot bacterium Erwinia chrysanthemi and conjugational transfer of the pectolytic capacity. J. Bacteriol. 1977, 132:862-869. 8.Chatterjee, A. K., Buchanan, G. E., Behrens, M. K., and Starr, M. P. Synthe-sis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Can. J. Microbiol. 1979, 25:94-102. 9.Lewus, C. B., Kaiser, A., and Montville T. J. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microb. 1991, 57:1683-1688. 10.Jabeen, N., Rasool, S. A., Ahmad, S., Ajaz M., and Saeed, S. Isolation, identifica-tion and bacteriocin production by indigenous diseased plant and soil associated bacteria. Pak. J. Biol. Sci. 2004, 7:1893-1897. 11.S?rensen, K. I., Larsen, R., Kibenich, A., Junge, M. P., and Johansen, E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. En-viron. Microb. 2000, 66:1253-1258. 12.Strauch, E., Kaspar, H., Schaudinn, C., Dersch, P., Madela, K., Gewinner, C., Hert-wig, S., Wecke, J., and Appel, B. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl. Environ. Microb. 2001, 67:5634-5642. 13.葉巍, 霍貴成. 乳酸菌細菌素應用研究進展. 乳業科學與技術. 2006, 2:56-58. 14.Diez-Gonzalez, F. Applications of Bacteriocins in Livestock. Curr. Issues Intestinal Microbiol. 2007, 8:15-24. 15.Chen, H. and Hoover, D. G. Bacteriocins and their food applications. Compr. Rev. Food sci. F. 2003, 2:82-100. 16.Konisky, J. Colicins and other bacteriocins with established modes of action. Ann. Rev. Microbiol. 1982, 36:125-144. 17.Reeves, P. The bacteriocins. Bacteriol. Rev. 1965, 29:24-45. 18.Tagg, J. R., Dajani, A. S., and Wannamaker, L. W. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 1976, 40:722-756. 19.Dale, C., Young, S. A., Haydon, D. T., and Welburn, S. C. The insect endosym-biont Sodalis glossinidius utilizes a type III secretion system for cell invasion. PNAS. 2001, 98:1883-1888. 20.Gobbetti, M., Corsetti, A., Smacchi, E., and Rossi, J. Purification and characteri-zation of a proteinaceous compound from Pseudomonas fluorescens ATCC 948 with inhibitory activity against some Gram-positive and Gram-negative bacteria of dairy interest. Dairy Sci. Technol. 1997, 77:267-278. 21.Griffiths, G. L., Sigel, S. P., Payne, S. M., and Neilands, J. B. Vibriobactin, a side-rophore from Vibrio cholerae. J. Biol. Chem. 1984, 259:383-385. 22.Oudega, B., Molen, J. V. D., and Graaf, F. K. D. In vitro binding of cloacin DF13 to its purified outer membrane receptor protein and effect of peptidoglycan on bacteriocin-receptor interaction. J. Bacteriol. 1979, 140:964-970. 23.Bradley, D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 1967, 31:230-314. 24.Chuang, D. Y., Chien, Y. C., and Wu, H. P. Cloning and expression of the Erwi-nia carotovora subsp. carotovora gene encoding the low-molecular-weight bac-teriocin carocin S1. J. Bacteriaol. 2007, 189:620-626. 25.Nguyen, A. H., Tomita, T., Hirota, M., Sato, T., Kamio, Y. A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci. Biotech. Bioch. 1999, 63:1360-1369. 26.Endo, Y., Tsuyama, H., and Nakatani, F., Studies on the production of antibac-terial agent by Erwinia carotovora and its properties. Ann. phytopath. Soc. Japan. 1975, 41:40-48. 27.Saier, M. H., Evolution of bacterial type III protein secretion systems. Trends Microbiol. 2004, 12:113-115. 28.Economou, A., Christie, P. J., Fernandez, R. C., Palmer, T., Plano, G. V., Pugsley, A. P. Secretion by numbers: protein traffic in prokaryotes. Mol. Microbiol. 2006, 62:308-319. 29.Dean, M., Hamon, Y., and Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 2001, 42:1007-1017. 30.Voulhoux, R., Ball, G., Ize, B., Vasil, M. L., Lazdunski, A., Wu, L. F., and Filloux, A. Involvement of the twin‐arginine translocation system in protein secretion via the type II pathway. The EMBO Journal. 2001, 20:6735-6741. 31.Filloux, A., Michel, G., and Bally, M. GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol. Rev. 1998, 22:177-198. 32.Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 2001, 40:271-283. 33.Sandkvist, M. Type II secretion and pathogenesis. Infect. Immun. 2001, 69:3523-3535. 34.Christie, P. J., and Vogel, J. P. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 2000, 8:354-360. 35.Salmond, G. P. C. and Reeves, P. J. Membrance traffic wardens and protein se-cretion in Gram-negative bacteria. Trends Biochem. Sci. 1993, 18:7-12. 36.Galán, J. E., and Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 1999, 284:1322-1328. 37.Desvaux, M., Hébraud, M., Henderson, I. R., and Pallen, M. J. Type III secretion: what''s in a name? Trends Microbiol. 2006, 14:157-160. 38.Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J., and Kokkini-dis, M. Conserved features of type III secretion. Cell. Microbiol. 2004, 6:805-816. 39.Cornelis, G. R. The type III secretion injectisome. Nat. Rev. Microbiol. 2006, 4:811-825. 40.Erhardt, M., Namba, K., and Hughes, K. T. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect. Biol. 2010, 2:a000299. 41.Minamino, T. and Macnab, R. M. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 1999, 181:1388-1394. 42.Minamino, T., Imada, K., and Namba, K. Mechanisms of type III protein export for bacterial flagellar assembly. Mol. BioSyst. 2008, 4:1105-1115. 43.Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Drift, C. V. D. A pro-tonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. USA. 1977, 74:3060-3064. 44.Matsuura, S., Shioi, J. I., and Imae, Y. Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett. 1977, 82:187-190. 45.Radman, M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci., Springer 1975, 355-367. 46.Ebina, Y., Takahara, Y., Kishi, F., Nakazawa, A., and Brent, R. LexA protein is a repressor of the colicin E1 gene. J. Biol. Chem. 1983, 258:13258-13261. 47.Kamenšek, S., Podlesek, Z., Gillor, O., and Darja, Z. B. Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiol. 2010, 10:283. 48.Michel, B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 2005, 3:1174-1176. 49.Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., and Sinha, R. P. Molecular me-chanisms of ultraviolet radiation-induced DNA damage and repair. Journal of nucleic acids. 2010, 2010:592980. 50.Ebina, Y. and Nakazawa, A. Cyclic AMP-dependent initiation and rho-dependent termination of colicin E1 gene transcription. J. Biol. Chem. 1983, 258:7072-7078. 51.Shirabe, K., Ebina, Y., Miki, T., Nakazawa, T., and Nakazawa, A. Positive regula-tion of the colicin E1 gene by cyclic AMP and cyclic AMP receptor protein. Nucleic Acids Res. 1985, 13:4687-4698. 52.Varley, J. M. and Boulnois, G. J. Analysis of a cloned colicin 1b gene: complete nucleotide sequence and implications for regulation of expression. Nucleic Acids Res. 1984, 12:6727-6739. 53.Schramm, E., Mende, J., Braun, V., and Kamp, R. M. Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent co-licins and receptors. J. bacteriol. 1987, 169:3350-3357. 54.Zink, R. T., Engwall, J. K., McEvoy, J. L., and Chatterjee, A. K. recA is required in the induction of pectin lyase and carotovoricin in Erwinia carotovora subsp. carotovora. J. Becteriol. 1985, 164:390-396. 55.Nguyen, H. A., Kaneko, J., and Kamio, Y. Temperature-dependent production of carotovoricin Er and pectin lyase in phytopathogenic Erwinia carotovora subsp. carotovora Er. Biosci. Biotech. Bioch. 2002, 66:444-447. 56.徐志豪. Erwinia carotovora低分子量細菌素Carocin S3的基因選殖與表現. 國立國立中興大學化學所 2009. 57.Gomelsky, M. Cyclic-di-GMP-binding CRP-like protein: a spectacular new role for a veteran signal transduction actor. J. Bacteriol. 2009, 191:6785-6787. 58.Crecy-Lagard, V., Glaser, P., Lejeune, P., Sismeiro, O., Barber, C. E., Daniels, M. J., and Danchin, A. A Xanthomonas campestris pv. campestris protein similar to ca-tabolite activation factor is involved in regulation of phytopathogenicity. J. Bacteriol. 1990, 172:5877-5883. 59.陳彥君. Pectobacterium carotovorum subsp. carotovorum低分子量細菌素受環磷酸鳥苷與環磷酸腺苷受體蛋白調控作用之探討. 國立國立中興大學化學所 2011. 60.Park, T. H., Choi, B. S., Choi, I. Y., Heu, S., and Park, B. S. Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J. Bacteriol. 2012, 194:6345-6346. 61.Sambrook, J. and Russell, D. W. Molecular cloning: a laboratory manual, 3rd ed (3 volume set). Cold Spring Harbor Laboratory Press. 2001. 62.Chiu, J., March, P. E., Lee, R., and Tillett, D. Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res. 2004, 32:e174. 63.Eklund, M. W., Poysky, F. T., Mseitif, L. M., and Strom, M. S. Evidence for plas-mid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl. Environ. Microb. 1988, 54:1405-1408. 64.Chuang, D. Y. M. A. thesis. Tohoku University, Sendai, Japan. 1997. 65.Kalmokoff, M. L., Banerjee, S. K., Cyr, T., Hefford, M. A., and Gleeson, T. Identi-fication of a new plasmid-encoded sec-dependent bacteriocin produced by Lis-teria innocua 743. Appl. Environ. Microb. 2001, 67:4041-4047. 66.Baysse, C., Meyer, J. M., Plesiat, P., Geoffroy, V., Briand, Y. M., and Cornelis, P. Uptake of pyocin S3 occurs through the outer membrane ferripyoverdine type II receptor of Pseudomonas aeruginosa. J. Bacteriol. 1999, 181:3849-3851. 67.Chan, Y. C., Wu, H. P., and Chuang, D. Y. Extracellular secretion of Carocin S1 in Pectobacterium carotovorum subsp. carotovorum occurs via the type III secretion system integral to the bacterial flagellum. BMC Microbiol. 2009, 9:181 68.Dale, C., Jones, T., and Pontes, M. Degenerative evolution and functional diversi-fication of type-III secretion systems in the insect endosymbiont Sodalis glossi-nidius. Mol. Biol. Evol. 2005, 22:758-766. 69.Chan, Y. C., Wu, J. L., Wu, H. P., Tzeng, K. C., and Chuang, D. Y. Cloning, purifi-cation, and functional characterization of Carocin S2, a ribonuclease bacteri-ocin produced by Pectobacterium carotovorum. BMC Microbiol. 2011, 11:99. 70.詹永傑. 伊文氏桿菌所生產的低分子量細菌素與其分泌機制之探討. 國立國立中興大學化學所 2011. 71.Silverman, M. and Simon, M. Characterization of Escherichia coli flagellar mu-tants that are insensitive to catabolite repression. J. Bacteriol. 1974, 120:1196-1203. 72.Helmann, J. D. Alternative sigma factors and the regulation of flagellar gene expression. Mol. Microbiol. 1991, 5:2875-2882. 73.Kutsukake, K., Ohya, Y., and Iino, T. Transcriptional analysis of the flagellar re-gulon of Salmonella typhimurium. J. Bacteriol. 1990, 172:741-747. 74.Kutsukake, K. Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 1997, 254:440-448. 75.Yanagihara, S., Iyoda, S., Ohnishi, K., Iino, T., and Kutsukake, K. Structure and transcriptional control of the flagellar master operon of Salmonella typhimu-rium. Genes Genet. Syst. 1999, 74:105-111. 76.詹永傑. Erwinia carotovora subsp. carotovora低分子量細菌素分泌蛋白基因的選殖與分析. 國立國立中興大學化學所 2005.
|