跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊惠文
研究生(外文):Hui-Wen Yahg
論文名稱:亞銅離子介導金還原反應製備金奈米粒子嵌合納菲薄膜複合物應用於高度選擇性砷(III)離子檢測
論文名稱(外文):Cu(I)-mediating Au reduction to form Au-nanoparticle-embedded Nafion composites applied for highly selective detection of arsenic(III)
指導教授:黃景帆
口試委員:陳輝龍蔡柏宇
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:奈米金
外文關鍵詞:arsenic(III)Au-nanoparticle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文旨在使用Cu(I)離子介導金還原反應製備一個金奈米粒子崁入Nafion膜中的NF(Aunano)複合材料。NF(Aunano)複合材料的金奈米粒子有良好的分散性、高密度,且具有保護作用,金奈米晶體的尺寸分佈約為4.8±0.1 nm。NF(Aunano)複合材料的粒徑分佈及複合物的函數特徵是使用粉末式X-ray繞射、穿透式電子顯微鏡及電化學儀器。測得顯示NF(Aunano)複合材料對於砷的氧化還原反應提供了很高活性,並且使用低負載量的金作為砷檢測的感測材料。NF(Aunano)複合物修飾電極容易製備及再生。檢量線的變化範圍由0.1到12.0 μg/L(1.3到160 nM),y=23.98x (in μA/μM)+0.42迴歸係數(R2=0.999),此線性的斜率為23.98 μA/μM。螯合劑乙二胺四乙酸(Ethylenediaminetetraacetic,EDTA) 可以對干擾金屬離子有選擇性螯合並形成螯合物,該大體積的陰離子被Nafion膜阻擋。EDTA的存在能有效地消除幾種金屬離子的干擾,特別是Cu(II)和Hg(II)離子。這兩種金屬離子通常被認為是主要的干擾物。此方法適用於三個實際地下水、湖泊和飲用水樣品的微量砷分析上。

A Cu(I)-ion-mediating Au reduction is proposed for preparing an Au-nanoparticle-embedded nafion (NF(Aunano)) composite. The NF(Aunano) composite consisted of highly dense, well-dispersed, and protecting-agent-free Au nanocrystals with a narrow particle size (4.8±0.1 nm) distribution. The NF(Aunano) composite was characterized as a function of composition and particle size distribution using powder X-ray diffraction, transmission electron microscopy, and electrochemical measurements. It was demonstrated that the NF(Aunano) composite provided high activity in the redox behavior of As(III), and was used as a potential sensing material with low Au loading for As(III) detection. An NF(Aunano)-composite-modified electrode is easy to prepare and regenerate. The dynamic range of a calibration curve from 0.1 to 12.0 μg/L (from 1.3 to 160 nM), y=23.98x (in μA/μM)+0.42 (R2=0.999), showed linear behavior with a slope of 23.98 μA/μM. The detection limit is as low as 0.047 μg/L (0.63 nM). The chelating agent ethylenediaminetetraacetate (EDTA) can selectively chelate with interfering metal ions, forming bulky complexes or bulky anions that are excluded from the NF film. The presence of EDTA effectively eliminated interference from several metal ions, particularly Cu(II) and Hg(II), which are generally considered to be major interferents in the electroanalysis of As(III). This method was applicable to As(III) analysis in three real water samples, namely groundwater, lake, and drinking waters.

目錄
謝誌 i
摘要 ii
Abstract iii
目錄 iv
第一章 簡介 1
1.1重金屬的介紹及對人體的影響 1
1.2砷的介紹 4
1-2.1砷對環境的影響 5
1-2.2砷對人體的危害 7
1-3 砷的分析方法 8
1-4 砷的電化學分析方法 10
1-5 不同的電極修飾 13
1-6 砷檢測分析的干擾 17
1-7 EDTA的介紹 17
1-8 Nafion的介紹 19
1-9 研究動機 20
第二章 原理 23
2-1 電化學方法 23
2-1.1 循環伏安法(cyclic voltammetry,CV) 23
2-1.2 方波陽極剝除伏安法(square wave anodic stripping voltammetry,SWASV) 25
2-2穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 27
2-3電化學活性表面積之計算 28
第三章藥品及儀器 29
3-1 藥品 29
3-2 實驗器材與儀器設備 30
3-3 實驗步驟 31
3-3.1電極前處理 31
3-3.2實驗藥品的製備 32
3-3.3 NF (Aunano)複合物在玻璃碳電極上的製備 33
3-3.4 TEM樣品的製備 34
3-3.5 As(III)的檢量線檢測 34
3-3.6 電化學反應槽 35
第四章 結果與討論 36
4-1 銅離子的存在在NF@GC的循環伏安圖比較 36
4-2 在NF@GC的多次伏安掃描的循環伏安圖 39
4-3 NF(Aunano)複合物的TEM微觀形態特徵圖 41
4-4 NF(Aunano)複合材料的XRD分析結果 43
4-5 NF(Aunano)複合物的電化學活性表面積 45
4-6 NF(Aunano)複合材料的粗糙度與比表面積 47
4-7分析砷在水溶液中的效果 49
4-8 最佳條件的選擇 53
4-8.1 NF(Aunano)@GC電極奈米金含量的選擇 53
4-8.2 pH的選擇 53
4-9 檢量線 57
4-10 檢測砷離子的干擾 59
4-11 實際樣品的分析 65
第五章 結論 66
參考資料 67



參考資料
[1]T. Partanen, P. Heikkila, S. Hernberg, T. Kauppinen, G. Moneta, A. Ojajarvi, Scand. J. Work. Environ. Health., 1991, 17, 231.
[2]J. W. Hamilton, R. C. Kaltreider, O. V. Bajenova, M. A. Ihnat, J. McCaffrey, B. W. Turpie, E. E. Rowell, J. Oh, M. J. Nemeth, C. A. Pesce, J. P. Lariviere, J. Environ. Health., 1998, 106, 1005.
[3]L. Maria. Biosensors for Environmental Applications. (2011), pp. 1–16
[4]A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall. Food Chem. Toxicol., 48 (2010), pp. 611–619
[5]Xavier Rajaganapathy, M.P. Sreekumar. J. Environ. Sci. Technol., 4 (2011), pp. 234–249
[6]G. Aragay, J. Pons, A. Merkoci. Chem. Rev., 111 (2011), pp. 3433–3458
[7]E.R. Sumner, A. Shanmuganathan, T.C. Sideri, S.A. Willetts, J.E. Houghton, S.V. Avery . Microbiology, 151 (2005), pp. 1939–1948
[8]L. Patrick. Altern. Med. Rev., 11 (2006), pp. 114–127
[9]S.E. Adrrienne, G.W. Anne. Guidelines for the identification and management of lead exposure in pregnant and lactating women. (2010)
[10]C. Liu, R. Bai, Q. San Ly. Water Res., 42 (2008), pp. 1511–1522
[11]N. Ercal, G.O. Hande, A.B. Nukhet. Curr. Top. Med. Chem., 1 (2001), pp. 529–539
[12]A.B. Kobal, M. Horvat, M. Preze, A. Se, M. Krsnik, T. Dizdarevi. J. Trace Elem. Med. Biol., 17 (2004), pp. 261–274
[13]J. Luiz, M. Nascimento, K.R.M. Oliveira, M.E. Crespo-lopez, M. Barbarella, L.A.L. Maués. Indian J. Med. Res., 128 (2008), pp. 373–382
[14]K.A. Graeme, V. Pollack Charles. J. Emerg. Med., 16 (1998), pp. 45–56
[15]J.L. Barringer, Z. Szabo, P.A. Reilly. Curr. Perspect. Contam. Hydrol. Water Resour. Sustain. (2012), pp. 117–147
[16]M. Valko, H. Morris, M.T.D. Cronin. Curr. Med. Chem., 12 (2005), pp. 1161–1208
[17]K. de Mora, N. Joshi, B.L. Balint, F.B. Ward, A. Elfick, C.E. French. Anal. Bioanal. Chem., 400 (2011), pp. 1031–1039
[18]M.F. Hughes, B.D. Beck, Y. Chen, A.S. Lewis, D.J. Thomas. Toxicol. Sci., 123 (2011), pp. 305–332
[19]S.K. Dey, S. Roy. Iran. J. Toxicol., 2 (2009), pp. 260–267
[20]H. Gong, X. Li. Analyst, 136 (2011), pp. 3–8
[21]J. Nriagu. Zinc toxicity in humans. (2007), pp. 1–7
[22]M. Hashemi, S. Ghavami, M. Eshraghi, E.P. Booy, M. Los. Eur. J. Pharmacol., 557 (2007), pp. 9–19
[23]S. Selvaraj, S. Krishnaswamy, V. Devashya, S. Sethuraman, U.M. Krishnan. Langmuir, 27 (2011), pp. 13374–13382
[24]M. F. Ahmed, C&EN, Periodic Table. http://pubs.acs.org/cen/80th/arsenic.html
[25]J. Y. Xu, H. B. Li, S.Liang, J. Luo, L. N. Q. Ma, Pteris vittata Environ. Pollut., 2014, 194, 105– 111
[26]C. Calvo, S. Bolado, J. Alvarez-Benedí, M. A. Andrade, J. Environ. Sci. Health, Part B 2006, 41 ( 4) 459– 470
[27]R. Singh, S. Singh, P. Parihar, V. P. Singh, S. M. Prasad, Ecotoxicol. Environ. Saf. 2015, 112 ( 0) 247– 270
[28]S. Yamamura, S. Amachi, J. Biosci. Bioeng. 2014, 118 ( 1) 1– 9
[29]R. J. Ampiah-Bonney, J. F. Tyson, G. R. Lanza, Int. J. Phytorem., 2007, 9 ( 1) 31– 40
[30]M. Roy, A. K. Giri, S. Dutta, P. Mukherjee, Environ. Int. 2015, 75 ( 0) 180– 198
[31]J. S. Edmonds, K. A. Francesconi, Organometallic Compounds in the Environment;Craig, P. J., Ed.; John Wiley and Sons: New York, 2003; pp 196– 222.
[32]M. Shamsipur, N. Fattahi, Y. Assadi, M. Sadeghi, K. Sharafi, Talanta, 2014, 130, 26– 32
[33]P. M. Finnegan, W. Chen, Front. Physiol. 2012, 3, 1– 18
[34]E. J. Tokar, B. A. Diwan, M. P. Waalkes, Environ. Health Perspect., 2010, 118 ( 1) 108– 115
[35]A. Gomez-Caminero, P. Howe, M. Hughes, E. Kenyon, D. R. Lewis, M. Moore, J. Ng, A. Aitio and G. Becking, World Health Organization, Geneva, 2001
[36]J. H. T. Luong, E. Lam, K. B. Male. Anal. Methods., 2014,6, 6157-6169
[37]A. Pena-Fernandez, M. J. Gonzalez-Munoz, M. C. Lobo-Bedmar, Environ. Int. 2014, 72, 176– 185
[38]A. Mandal, T. J. Purakayastha, A. K. Patra, Biol. Fertil. Soils., 2014, 50 ( 8) 1247– 1252
[39]M. S. Islam, M. K. Ahmed, M. Habibullah-Al-Mamun, S. Masunaga, Environ. Monit. Assess., 2014, 186 ( 12) 8727– 8739
[40]J. M. Rosas-Castor, J. L. Guzman-Mar, J. M. Alfaro-Barbosa, A. Hernandez-Ramirez, I. N. Perez-Maldonado, A. Caballero-Quintero, L. Hinojosa-Reyes, Sci. Total Environ., 2014, 497, 153– 162
[41]G. Mazumder, Indian J. Med. Res. 2008, 128 ( 4) 436– 447
[42]V. D. Martinez, E. A. Vucic, D. D. Becker-Santos, L. Gil, W. L. Lam, J. Toxicol., 2011, 2011, 1– 13
[43]S. H. Lamm, S. Robbins, R. Chen, J. Lu, B. Goodrich, M. Feinleib, Toxicology, 2014, 326 ( 0) 25– 35
[44]K. J. Herbert, A. Holloway, A. L. Cook, S. P. Chin, E. T. Snow, Toxicol. Appl. Pharmacol., 2014, 281 ( 1) 136– 145
[45]V. D. Martinez, D. D. Becker-Santos, E. A. Vucic, S. Lam, W. L. Lam, J. Skin Cancer 2011, 2011, 1– 9
[46]S. Ghatak, A. Biswas, G. K. Dhali, A. Chowdhury, J. L. Boyer, A. Santra, Toxicol. Appl. Pharmacol. 2011, 251 ( 1) 59– 69
[47]H. Xie, S. Huang, S. Martin, J. P. Wise, Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2014, 760, 33– 41
[48]J. S. Tsuji, D. D. Alexander, V. Perez, P. J. Toxicology., 2014, 317 ( 0) 17– 30
[49]N. L. Dangleben, C. F. Skibola, M. T. Smith, Environ. Health 2013, 12 ( 1) 73
[50]K. P. Singh, J. W. DuMond Jr., Int. J. Oncol., 2007, 30 ( 1) 253– 260
[51]Z. Zhang, P. Pratheeshkumar, A. Budhraja, Y.-O. Son, D. Kim, X. Shi, Biochem. Biophys. Res. Commun. 2015, 456 ( 2) 643– 648
[52]R. Yamagishi, N. Hosoda, S.-i. Hoshino, Biochem. Biophys. Res. Commun. 2014, 455 ( 3–4) 323– 331
[53]N. D. Thang, I. Yajima, M. Y. Kumasaka, M. Kato, PLoS One 2014, 9 ( 5) 1– 7
[54]D. Melak, C. Ferreccio, D. Kalman, R. Parra, J. Acevedo, L. Pérez, S. Cortés, A. H. Smith, Y. Yuan, J. Liaw, C. Steinmaus, Toxicol. Appl. Pharmacol. 2014, 274 ( 2) 225– 231
[55]K. P. Singh, R. Kumari, J. Treas, J. W. DuMond, Chem. Res. Toxicol. 2011, 24 ( 3) 340– 349
[56]Hettick B.E., J.E. Cañas-Carrell, French A.D., Klein D.M.J., Agric. Food Chem., 2015, 63 (32), pp 7097–7107
[57]L.V. Rajaković, D.D. Marković, V.N. Rajaković-Ognjanović, D.Z. Antanasijević. Talanta, 102 (2012), pp. 79–87
[58]C. B’Hymer, J.A. Caruso. Journal of Chromatography A, 1045 (2004), pp. 1–13
[59]L.O. Leal, L. Ferrer, R. Forteza, V. Cerdà. Trends in Analytical Chemistry, 30 (2011), pp. 761–770
[60]A. Mandal, T. J. Purakayastha, A. K. Patra, S. K. Sanyal, Int. J. Phytorem. 2012, 14 ( 6) 621– 628
[61]S. Garcia-Manyes, G. Jiménez, A. Padró, R. Rubio and G. Rauret, Talanta, 2002, 58, 97–109
[62]D. T. Heitkemper, N. P. Vela, K. R. Stewart and C. S. Westphal, J. Anal. At. Spectrom., 2001, 16, 299–306
[63]U.S. Environmental Protection Agency, Analytical Methods Support Document for Arsenic in Drinking Water, Washington, 1999
[64]J. G. Hering, P. Chen, J. A. Wilkie, M. Elimelech and S. Liang, J. - Am. Water Works Assoc., 1996, 88, 155–167
[65]P. A. Creed, C. A. Schwegel and J. T. Creed, J. Environ. Monit., 2005, 7, 1079–1084
[66]A. Hussam, S. Ahuja, N. Jesperen (Eds.), 47 (2007) 663.
[67]D.E. Mays, A. Hussam. Anal. Chim. Acta, 646 (2009), pp. 6–16
[68]A.C. Chen, B. Shah. Anal. Methods, 5 (2013), pp. 2158–2173
[69]C. Gao, X.J. Huang. TrAC Trends Anal. Chem, 51 (2013), pp. 1–12
[70]D. Wang, Y. Zhao, H. Jin, J. Zhuang, W. Zhang, S. Wang, et al. ACS Appl. Mater. Interfaces, 5 (2013), pp. 5733–5740
[71]Y. Song, G.M. Swain. Anal. Chim. Acta, 593 (2007), pp. 7–12
[72]L. Rassaei, M. Sillanpaeae, R.W. French, R.G. Compton, F. Marken. Electroanalysis, 20 (2008), pp. 1286–1292
[73]G. Cepriá, S. Hamida, F. Laborda, J. Ramon Castillo. Anal. Lett, 42 (2009), pp. 1971–1985
[74]M. Khairy, D.K. Kampouris, R.O. Kadara, C.E. Banks. Electroanalysis, 22 (2010), pp. 2496–2501
[75]A.O. Simm, C.E. Banks, R.G. Compton. Electroanalysis, 17 (2005), pp. 1727–1733
[76]A.O. Simm, C.E. Banks, R.G. Compton. Electroanalysis, 17 (2005), pp. 335–342
[77]A. Giacomino, O. Abollino, M. Lazzara, M. Malandrino, E. Mentasti. Talanta, 83 (2011), pp. 1428–1435
[78]P. Shakkthivel, P. Singh. Int. J. Electrochem. Sci, 2 (2007), pp. 311–320
[79]F.R. Bento, M.T. Grassi, A. Sales, L.H. Mascaro. Int. J. Electrochem. Sci, 3 (2008), pp. 1523–1533
[80]Y. He, Y. Zheng, M. Ramnaraine, D.C. Locke. Anal. Chim. Acta, 511 (1) (2004), p. 55
[81]Zhong-Gang Liu, Xing-Jiu Huang . TrAC Trends in Analytical Chemistry, Volume 60, 2014, P 25-35
[82]D. Yamada, T.A. Ivandini, M. Komatsu, A. Fujishima, Y. Einaga. J. Electroanal. Chem., 615 (2008), p. 145
[83]E. Majid, S. Hrapovic, Y. Liu, K. B. Male and J. H. T. Luong, Anal. Chem., 2006, 78, 762–769
[84]G. Forsberg, J.W. O’Laughlin, R.G. Megargle. Anal. Chem., 47 (9) (1975), p. 1586
[85]L. Xiao, G.G. Wildgoose, R.G. Compton. Anal. Chim. Acta, 620 (2008), p. 44
[86]X. Fuku, F. Iftikar, E. Hess, E. Iwuoha, P. Baker. Anal. Chim. Acta, 730 (2012), pp. 49–59
[87]T. Gu, L. Bu, Z. Huang, Y. Liu, Z. Tang, Y. Liu, et al. Electrochem. Commun, 33 (2013), pp. 43–46
[88]Y. Lan, H. Luo, X. Ren, Y. Wang, L. Wang. Anal. Lett, 45 (2012), pp. 1184–1196
[89]M.M.O. Thotiyl, H. Basit, J.A. Sánchez, C. Goyer, L. Coche-Guerente, P. Dumy, et al.. J. Colloid Interface Sci, 383 (2012), pp. 130–139
[90]K. Gibbon-Walsh, P. Salaun, C.M.G. van den Berg. Anal. Chim. Acta, 662 (2010), pp. 1–8
[91]P. Salaun, K.B. Gibbon-Walsh, G.M.S. Alves, H.M.V.M. Soares, C.M.G. van den Berg. Anal. Chim. Acta, 746 (2012), pp. 53–62
[92]S. Prakash, T. Chakrabarty, A.K. Singh, V.K. Shahi. Electrochim. Acta, 72 (2012), pp. 157–164
[93]Ivandini T.A., Sato R., Makide Y., Fujishima A., Einaga Y., Anal. Chem. 2006, 78, 6291-6298
[94]Y. Liu, W. Wei. Electrochem. Commun, 10 (2008), pp. 872–875
[95]X. Fuku, F. Iftikar, E. Hess, E. Iwuoha, P. Baker. Anal. Chim. Acta, 730 (2012), pp. 49–59
[96]S. Sanllorente-Méndez, O. Domínguez-Renedo, M.J. Arcos-Martinez. Talanta, 93 (2012), pp. 301–306
[97]T.W. Chen, T.H. Tsai, S.M. Chen, K.C. Lin. Int. J. Electrochem. Sci, 6 (2011), pp. 2043–2057
[98]Zen, J.-M.; Kumar, A. S.; Tsai, D.-M. Electroanalysis, 2003, 15, 1073-1087.
[99]X. Dai, R.G. Compton. Analyst, 131 (2006), pp. 516–521
[100]H. M. Anawar, J. Akai, K. M. G. Mostofa, S. Safiullah and S. M. Tareq, Environ. Int., 2002, 27, 597
[101]X. Dai and R. G. Compton, Electroanalysis, 2005, 17, 1325.
[102]Georgina M.S. Alvesa, Júlia M.C.S. Magalhãesa, Pascal Salaünb, Constant M.G. van den Bergb, Helena M.V.M. Soaresa. Analytica Chimica Acta, 703 (2011) 1– 7
[103]C. Barton, Encyclopedia of Toxicology. 2014, P 310–311
[104]Hickner MA1, Ghassemi H, Kim YS, Einsla BR, McGrath JE. Chem Rev. 2004 Oct;104(10):4587-611
[105]A. Townshend. Encyclopedia of Analytical Science (Second Edition) 2005, Pages 105–113
[106]J. Wang. Electroanalysis, 17 (2005), pp. 1341–1346
[107]L. Xiao, G.G. Wildgoose, R.G. Compton. Anal. Chim. Acta, 620 (2008), pp. 44–49
[108]M. Leermakers, W. Baeyens, M. De Gieter, B. Smedts, C. Meert, H.C. De Bisschop, R. Morabito, P. Quevauviller. Trac-Trends Anal. Chem., 25 (2006), pp. 1–10
[109]M.R. Karagas, T.D. Tosteson, J.D. Blum, B. Klaue, J.E. Weiss, V. Stannard, V. Spate, J.S. Morris. Am. J. Epidemiol., 152 (2000), pp. 84–90
[110]D.Q. Hung, O. Nekrassova, R.G. Compton. Talanta, 64 (2004), pp. 269–277
[111]J. Gong, T. Zhou, D. Song, L. Zhang, X. Hu. Anal. Chem., 82 (2010), pp. 567–573
[112]W. Qin, R. Liang, X. Fu, Q. Wang, T. Yin, W. Song. Anal. Chem., 84 (2012), pp. 10509–10513
[113]X. Dai, O. Nekrassova, M.E. Hyde, R.G. Compton. Anal. Chem., 76 (2004), pp. 5924–5929
[114]S.J. Guo, E.K. Wang. Nano Today, 6 (2011), pp. 240–264
[115]J.F. Huang. Talanta, 77 (2009), pp. 1694–1700
[116]J.F. Huang. Chem. Commun. (2009), pp. 1270–1272
[117]M.C. Daniel, D. Astruc. Chem. Rev., 104 (2004), pp. 293–346.
[118]T. Panda, K. Deepa. J. Nanosci. Nanotechnol., 11 (2011), pp. 10279–10294
[119]K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello. Chem. Rev., 112 (2012), pp. 2739–2779
[120]J.-F. Huang, W.-R. Chang., J. Mater. Chem., 22 (2012), pp. 17961–17966
[121]X. Dai, G.G. Wildgoose, C. Salter, A. Crossley, R.G. Compton. Anal. Chem., 78 (2006), pp. 6102–6108
[122]C.Y. Wang. Chem. Rev., 104 (2004), pp. 4727–4765
[123]S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong. Anal. Chem., 76 (2004), pp. 1083–1088
[124]M.N. Szentirmay, C.R. Martin. Anal. Chem., 56 (1984), pp. 1898–1902
[125]Q. Gao, Y.Y. Guo, J. Liu, X.Q. Yuan, H.L. Qi, C.X. Zhang. Bioelectrochemistry, 81 (2011), pp. 109–113
[126]K.J. Chen, C.F. Lee, J. Rick, S.H. Wang, C.C. Liu, B.J. Hwang. Biosens. Bioelectron., 33 (2012), pp. 75–81
[127]J. Wang, M. Musameh, Y.H. Lin. J. Am. Chem. Soc., 125 (2003), pp. 2408–2409
[128]T. Mizuta, J. Wang, K. Miyoshi. Bull. Chem. Soc. Jpn., 66 (1993), pp. 2547–2551
[129]J. Wang, Analytical Electrochemistry. (3st ed.) John Wiley & Sons, 2006
[130]F.G. Donnan, Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie" (The theory of membrane equilibrium and membrane potential in the presence of a non-dialyzable electrolyte. A contribution to physical-chemical physiology), Zeitschrift für Elektrochemie und angewandte physikalische Chemie, (1911), 17 (10) , pp. 572-581.
[131]B.D. Cullity, Elements of X-ray Diffraction, Addision-Wesley, Reading, MA (1978)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top