|
1. Hulanicki, A.; Glab, S.; Ingman, F., Chemical Sensors Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247-1250. 2. Janata, J.; Josowicz, M.; Vanysek, P.; DeVaney, D. M., Chemical Sensors. Anal. Chem. 1998, 70, 179R-208R. 3. Grieshaber, D.; MacKenzie, R.; Voeroes, J.; Reimhult, E., Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400-1458. 4. Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B., Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14, 159-173. 5. Que, E. L.; Chang, C. J., Responsive Magnetic Resonance Imaging Contrast Agents as Chemical Sensors for Metals in Biology and Medicine. Chem. Soc. Rev. 2010, 39, 51-60. 6. Helmy, A. A.; Jeon, H.-J.; Lo, Y.-C.; Larsson, A. J.; Kulkarni, R.; Kim, J.; Silva-Martinez, J.; Entesari, K., A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer. IEEE J. Solid-State Circuits 2012, 47, 2467-2483. 7. Wu, Z.; Yu, X.; Gu, E.; Kong, Z.; Li, W., Characteristics Analysis of Chemical Concentration Sensor Based on Three-Layer FBG. Opt. & Photonics J. 2013, 03, 268-271. 8. Kohno, K.; Sokabe, T.; Tominaga, M.; Kadowaki, T., Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes. J. Neurosci. 2010, 30, 12219-29. 9. McDonagh, C.; Burke, C. S.; MacCraith, B. D., Optical Chemical Sensors. Chem. Rev. 2008, 108, 400-422. 10.Qazi, H. H.; bin Mohammad, A. B.; Akram, M., Recent Progress in Optical Chemical Sensors. Sensors (Basel) 2012, 12, 16522-56. 11. Al-Hilli, S.; Willander, M., The pH Response and Sensing Mechanism of N-type ZnO/Electrolyte Interfaces. Sensors (Basel) 2009, 9, 7445-80. 12. Narimani, K.; Nayeri, F. D.; Kolahdouz, M.; Ebrahimi, P., Fabrication, Modeling and Simulation of High Sensitivity Capacitive Humidity Sensors Based on ZnO Nanorods. Sensor. Actuat. B-Chem. 2016, 224, 338-343. 13. Harraz, F. A.; Ismail, A. A.; Ibrahim, A. A.; Al-Sayari, S. A.; Al-Assiri, M. S., Highly Sensitive Ethanol Chemical Sensor Based on Nanostructured SnO2 Doped ZnO Modified Glassy Carbon Electrode. Chem. Phys. Lett. 2015, 639, 238-242. 14. Grimes, C. A., Stoyanov, P., Seitz, W. R., Doherty, S. A., & Dickey, E. C., A Remotely Interrogatable Magnetochemical Sensor for Environmental Monitoring. Aerosp. Conf. proc. Vol. 5. 15. Grimes, C. A.; Stoyanov, P. G.; Liu, Y. C.; Tong, C. H.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R., A Magnetostatic-Coupling Based Remote Query Sensor for Environmental Monitoring. J. Phys. D. Appl. Phys.1999, 32, 1329-1335. 16. Chang, S. M.; Muramatsu, H.; Nakamura, C.; Miyake, J., The Principle and Applications of Piezoelectric Crystal Sensors. Mat. Sci. Eng. C-Bio. S. 2000, 12, 111-123. 17. Buryakov, I. A.; Buryakov, T. I.; Matsayev, V. T., Electrical, Electrochemical, and Thermometric Sensors for The Detection of Explosives. J. anal. Chem. 2016, 71, 234-242. 18. Pang, W.; Zhao, H.; Kim, E. S.; Zhang, H.; Yu, H.; Hu, X., Piezoelectric Microelectromechanical Resonant Sensors for Chemical and Biological Detection. Lab on a Chip 2012, 12, 29-44. 19. Zhou, Q.; Lau, S.; Wu, D.; Shung, K., Piezoelectric Films For High Frequency Ultrasonic Transducers In Biomedical Applications. Prog. Mater. Sci. 2011, 56, 139-174. 20. Heller, A.; Feldman, B., Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482-2505. 21. Fritea, L.; Tertis, M.; Cristea, C.; Cosnier, S.; Sandulescu, R., Simultaneous Determination of Ascorbic and Uric Acids in Urine Using an Innovative Electrochemical Sensor Based on Beta-Cyclodextrin. Anal. Lett. 2015, 48, 89-99. 22. Hosseini, S. H.; Entezami, A. A., Chemical And Electrochemical Synthesis of Conducting Graft Copolymer of Vinyl Acetate with Pyrrole And Studies of its Gas and Vapor Sensing. J. Appl. Polym. Sci. 2003, 90, 40-48. 23. Bakker, E.; Qin, Y., Electrochemical Sensors. Anal. Chem. 2006, 78, 3965-84. 24. Brett, C. M. A., Electrochemical Sensors for Environmental Monitoring. Strategy and Examples. Pure Appl. Chem.2001, 73, 1969-1977. 25. Zhao, Y.; Zhao, D.; Li, D., Electrochemical and other Methods for Detection and Determination of Dissolved Nitrite: a Review. Int. J. Electrochem. Sci. 2015, 10, 1144-1168. 26. Huebsch, M.; Grimmeisen, F.; Zemann, M.; Fenton, O.; Richards, K. G.; Jordan, P.; Sawarieh, A.; Blum, P.; Goldscheider, N., Technical Note: Field Experiences Using UV/VIS Sensors for High-Resolution Monitoring of Nitrate in Groundwater. Hydrol. Earth Syst. Sc. 2015, 19, 1589-1598. 27. Wolfbeis, O. S., Fluorescence Optical Sensors in Analytical-Chemistry. Trac-Trend. Anal. Chem. 1985, 4, 184-188. 28. Abdelhaseib, M. U.; Singh, A. K.; Bailey, M.; Singh, M.; El-Khateib, T.; Bhunia, A. K., Fiber Optic And Light Scattering Sensors: Complimentary Approaches to Rapid Detection of Salmonella Enterica in Food Samples. Food Control 2016, 61, 135-145. 29. Ma, X.; Huo, H.; Wang, W.; Tian, Y.; Wu, N.; Guthy, C.; Shen, M.; Wang, X., Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors (Basel) 2010, 10, 11064-71. 30. Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mucke, R.; Janker, B., Near- And Mid-Infrared Laser-Optical Sensors For Gas Analysis. Opt. laser. Eng. 2002, 37, 101-114. 31. Nie, J.; Li, J.-P.; Deng, H.; Pan, H.-C., Progress on Click Chemistry and Its Application in Chemical Sensors. Chinese J. Anal. Chem. 2015, 43, 609-616. 32. Buergi, T.; Baiker, A., Attenuated Total Reflection Infrared Spectroscopy of solid Catalysts Functioning in the Presence of Liquid-Phase Reactants. Adv. Catal. , Vol 50, Gates, B. C.; Knozinger, H., Eds. 2006; Vol. 50, pp 227-283. Elsevier, Amsterdam . 33. Gates, B. C.; Knozinger, H., Eds., Jentoft, F. C., Ultraviolet-Visible-Near Infrared Spectroscopy in Catalysis: Theory, Experiment, Analysis, and Application under Reaction Conditions. Adv. Catal. 2009; Vol. 52, pp 129-211; Elsevier. Amsterdam. 34. Stenberg, B.; Rossel, R. A. V.; Mouazen, A. M.; Wetterlind, J., Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010; Vol. 107, pp 163-215. Elsevier. Amsterdam. 35. Harrington, J. A., A review of IR Transmitting, Hollow Waveguides. Fiber Integr. Opt. 2000, 19, 211-227. 36. Patimisco, P.; Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Bledt, C. M.; Harrington, J. A., Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications. Sensors (Basel) 2013, 13, 1329-40. 37. Lin, A.; Zhang, A.; Bushong, E. J.; Toulouse, J., Solid-Core Tellurite Glass Fiber for Infrared and Nonlinear Applications. Optics Express 2009, 17, 16716-16721. 38. Gai, X.; Han, T.; Prasad, A.; Madden, S.; Choi, D.-Y.; Wang, R.; Bulla, D.; Luther-Davies, B., Progress in Optical Waveguides Fabricated from Chalcogenide Glasses. Optics Express 2010, 18, 26635-26646. 39. Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A. M.; Danto, S.; Badding, J. V.; Fink, Y.; Ballato, J.; Abouraddy, A. F., Infrared Fibers. Adv. Opt. Photonics 2015, 7, 379-458. 40. Barkay, N.; Levite, A.; Moser, F.; Katzir, A., Mechanical-Properties of Mixed Silver-Halide Crystals and Polycrystalline Optical Fibers. J. Appl. Phys. 1988, 64, 5256-5258. 41. Damin, C. A.; Sommer, A. J., Characterization of Silver Halide Fiber Optics and Hollow Silica Waveguides for Use in the Construction of a Mid-Infrared Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy Probe. Appl. Spectrosc. 2013, 67, 1252-1263. 42. Mikhailov, M. D.; Karpova, E. A.; Borisova, Z. U.; Gutsol, A. D., Electrical and Optical-Properties of Homogeneous Films of the AS-TE System. Inorg. Mater. 1981, 17, 1299-1302. 43. Tang, Z.; Shiryaev, V. S.; Furniss, D.; Sojka, L.; Sujecki, S.; Benson, T. M.; Seddon, A. B.; Churbanov, M. F., Low Loss Ge-As-Se Chalcogenide Glass Fiber, Fabricated Using Extruded Preform, for Mid-Infrared Photonics. Opt. Mater. Express 2015, 5, 1722-1737. 44. Abel, T.; Hirsch, J.; Harrington, J. A., Hollow Glass Wave-Guides for Broad-Band Infrared Transmission. Opt. Lett. 1994, 19, 1034-1036. 45. Gregory, C. C.; Harrington, J. A., Attenuation, Modal, and Polarization Properties of N-Less-Than-1, Hollow Dielectric Wave-Guides. Appl. Optics 1993, 32, 5302-5309. 46. Harrington, J. A.; Gregory, C. C., Hollow Sapphire Fibers for the Delivery of Co2-Laser Energy. Opt. Lett.1990, 15, 541-543. 47. Matsuura, Y.; Miyagi, M., Bending Losses and Beam Profiles of Zinc Selenide-Coated Silver Wave-Guides for Carbon-Dioxide Laser-Light. Appl. Optics 1992, 31, 6441-6445. 48. Croitoru, N.; Dror, J.; Gannot, I., Characterization of Hollow Fibers for the Transmission of Infrared Radiation. Appl. Optics 1990, 29, 1805-1809. 49. Miyagi, M.; Hongo, A.; Aizawa, Y.; Kawakami, S., Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission. Appl. Phys. Lett. 1983, 43, 430-432. 50. Jelinkova, H.; Nemec, M.; Sulc, J.; Cerny, P.; Miyagi, M.; Shi, Y. W.; Matsuura, Y., Hollow Waveguide Delivery Systems for Laser Technological Application. Prog. Quant. Electron. 2004, 28, 145-164. 51. Hass, G., Reflectance and Preparation of Front-Surface Mirrors for Use at Various Angles of Incidence from the Ultraviolet to the Far Infrared. J. Opt. Soc. Am. 1982, 72, 27-39. 52. Sadwick, L. P.; Doradla, P.; Joseph, C. S.; Kumar, J.; Giles, R. H.; O''Sullivan, C. M., Propagation Loss Optimization In Metal/Dielectric Coated Hollow Flexible Terahertz Waveguides. Intern. Soc. Opt.&Photonics 2012, 8261, 82610P. 53. Hodgkinson, J.; Tatam, R. P., Optical Gas Sensing: a Review. Meas. Sci. Technol . 2013, 24. 54. Zhou, P.; Wang, X.; Ma, Y.; Lu, H.; Liu, Z., Review on Recent Progress on Mid-Infrared Fiber Lasers. Laser Phys. 2012, 22, 1744-1751. 55. Perez-Guaita, D.; Kokoric, V.; Wilk, A.; Garrigues, S.; Mizaikoff, B., Towards the Determination of Isoprene in Human Breath Using Substrate-Integrated Hollow Waveguide Mid-Infrared Sensors. J. Breath Res. 2014, 8, 026003. 56. Seichter, F.; Wilk, A.; Worle, K.; Kim, S. S.; Vogt, J. A.; Wachter, U.; Radermacher, P.; Mizaikoff, B., Multivariate Determination of 13CO2/12CO2 Ratios in Exhaled Mouse Breath with Mid-Infrared Hollow Waveguide Gas Sensors. Anal. Bioanal. Chem. 2013, 405, 4945-51. 57. Frey, C. M.; Luxenburger, F.; Droege, S.; Mackoviak, V.; Mizaikoff, B., Near-Infrared Hollow Waveguide Gas Sensors. Appl. Spectrosc. 2011, 65, 1269-74. 58.Young, C. R.; Menegazzo, N.; Riley, A. E.; Brons, C. H.; DiSanzo, F. P.; Givens, J. L.; Martin, J. L.; Disko, M. M.; Mizaikoff, B., Infrared Hollow Waveguide Sensors for Simultaneous Gas Phase Detection of Benzene, Toluene, and Xylenes in Field Environments. Anal. Chem. 2011, 83, 6141-6147. 59. Liska, I.; Krupcik, J.; Leclercq, P. A., The Use of Solid Sorbents for Direct Accumulation of Organic-Compounds from Water Matrices - A Review of Solid-Phase Extraction Techniques. J. High Resolut. Chromatogr. 1989, 12, 577-590. 60. Maguire, R. J.; Tkacz, R. J., Potential Underestimation of Chlorinated-Hydrocarbon Concentrations in Fresh-Water. Chemosphere 1989, 19, 1277-1287. 61. Yang, J.; Her, J. W.; Chen, S. H., Development of an Infrared Hollow Waveguide Sensing Device for Detection of Organic Compounds in Aqueous Solutions. Anal. Chem. 1999, 71, 3740-3746. 62. Seelenbinder, J. A.; Brown, C. W.; Pivarnik, P.; Rand, A. G., Colloidal Cold Filtrates as Metal Substrates for Surface-Enhanced Infrared Absorption Spectroscopy. Anal. Chem. 1999, 71, 1963-1966. 63. Yang, J.; Griffiths, P. R., Preparation and Characterization by Surface-Enhanced Infrared Absorption Spectroscopy of Silver Nanoparticles Formed on Germanium Substrates By Electroless Displacement. Anal. Bioanal. Chem. 2007, 388, 109-119. 64. Campbell, R. A.; Bain, C. D., External-Reflection FT-IR Spectroscopy of C10E8 at an Expanding Water Surface. Vib. Spectrosc. 2004, 35, 205-211. 65. Bjuggren, M.; Krummenacher, L.; Mattsson, L., Noncontact Surface Roughness Measurement of Engineering Surfaces by Total Integrated Infrared Scattering. Precis. Eng. 1997, 20, 33-45. 66. Thomas, J. E.; Kelley, M. J., Interaction of Mineral Surfaces with Simple Organic Molecules By Diffuse Reflectance IR Spectroscopy (DRIFT). J. Colloid. Interf. Sci. 2008, 322, 516-526. 67. Wei, Y. K.; Yang, J., Evanescent Wave Infrared Chemical Sensor Possessing a Sulfonated Sensing Phase for the Selective Detection of Arginine In Biological Fluids. Talanta 2007, 71, 2007-2014. 68. Huang, G. G.; Wang, C. T.; Tang, H. T.; Huang, Y. S.; Yang, J., ZnO Nanoparticle-Modified Infrared Internal Reflection Elements for Selective Detection of Volatile Organic Compounds. Anal. Chem. 2006, 78, 2397-2404. 69. Hull, M. C.; Cambrea, L. R.; Hovis, J. S., Infrared Spectroscopy of Fluid Lipid Bilayers. Anal. Chem. 2005, 77, 6096-6099. 70. Roggo, Y.; Jent, N.; Edmond, A.; Chalus, P.; Ulmschneider, M., Characterizing Process Effects on Pharmaceutical Solid Forms Using Near-Infrared Spectroscopy and Infrared Imaging. Eur. J. Pharm. Biopharm. 2005, 61, 100-110. 71. Vigano, C.; Ruyssehaert, J. M.; Goormaghtigh, E., Sensor Applications of Attenuated Total Reflection Infrared Spectroscopy. Talanta 2005, 65, 1132-1142. 72. Zhang, Z. Y.; Pawliszyn, J., Headspace Analysis of Soil Samples Using Solid-Phase Microextraction. Abstr. Pap. Am. Chem. S. 1993, 206, 6-ENVR. 73. Heo, J.; Rodrigues, M.; Saggese, S. J.; Sigel, G. H., Remote Fiberoptic Chemical Sensing Using Evanescent-Wave Interactions in Chalcogenide Glass-Fibers. Appl. Optics 1991, 30, 3944-3951. 74. Yang, J. S.; Her, J. W., Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solutions. Anal. Chem. 1999, 71, 1773-1779. 75. Krska, R.; Kellner, R.; Schiessl, U.; Tacke, M.; Katzir, A., Fiber Optic Sensor for Chlorinated Hydrocarbons in Water-Based on Infrared Fibers and Tunable Diode-Lasers. Appl. Phys. Lett. 1993, 63, 1868-1870. 76. Ertanlamontagne, M. C.; Lowry, S. R.; Seitz, W. R.; Tomellini, S. A., Polymer-Coated, Tapered Cylindrical ATR Elements for Sensitive Detection of Organic Solutes in Water. Appl. Spectrosc. 1995, 49, 1170-1173. 77. Cheng, M.-L.; Yang, J., Self-Oriented Glucose-Modified Infrared Sensor for the Detection of Compounds Bearing Carboxylic Acid Groups. Appl. Spectrosc. 2008, 62, 38-45. 78. Yang, J.; Huang, Y. S., IR Chemical Sensor for Detection of Aromatic Compounds in Aqueous Solutions Using Alkylated Polystyrene-Coated ATR Waveguides. Appl. Spectrosc.2000, 54, 202-208. 79. da Silveira Petruci, J. F.; Fortes, P. R.; Kokoric, V.; Wilk, A.; Raimundo, I. M., Jr.; Cardoso, A. A.; Mizaikoff, B., Real-Time Monitoring of Ozone in Air Using Substrate-Integrated Hollow Waveguide Mid-Infrared Sensors. Sci. Rep. 2013, 3. 80. Tütüncü, E.; Nägele, M.; Fuchs, P.; Fischer, M.; Mizaikoff, B., iHWG-ICL: Methane Sensing with Substrate-Integrated Hollow Waveguides Directly Coupled to Interband Cascade Lasers. ACS Sensors 2016. 81. Wilk, A.; Carter, J. C.; Chrisp, M.; Manuel, A. M.; Mirkarimi, P.; Alameda, J. B.; Mizaikoff, B., Substrate-Integrated Hollow Waveguides: A New Level of Integration in Mid-Infrared Gas Sensing. Anal. Chem. 2013, 85, 11205-11210. 82. Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D. T. H., On-Chip Mid-Infrared Gas Detection Using Chalcogenide Glass Waveguide. Appl. Phys. Lett. 2016, 108, 141106. 83. Lin, P. T.; Singh, V.; Hu, J.; Richardson, K.; Musgraves, J. D.; Luzinov, I.; Hensley, J.; Kimerling, L. C.; Agarwal, A., Chip-Scale Mid-Infrared Chemical Sensors Using Air-Clad Pedestal Silicon Waveguides. Lab on a Chip. 2013, 13, 2161-6. 84. Seichter, F.; Wilk, A.; Woerle, K.; Kim, S.-S.; Vogt, J. A.; Wachter, U.; Radermacher, P.; Mizaikoff, B., Multivariate Determination of (CO2)-C-13/(CO2)-C-12 Ratios in Exhaled Mouse Breath with Mid-Infrared Hollow Waveguide Gas Sensors. Anal. Bioanal. Chem. 2013, 405, 4945-4951. 85. Mackanos, M. A.; Hargrove, J.; Wolters, R.; Du, C. B.; Friedland, S.; Soetikno, R. M.; Contag, C. H.; Arroyo, M. R.; Crawford, J. M.; Wang, T. D., Use of an Endoscope-Compatible Probe to Detect Colonic Dysplasia with Fourier Transform Infrared Spectroscopy. J. Biomed. Opt. 2009, 14. 86. Mackanos, M. A.; Contag, C. H., Fiber-Optic Probes Enable Cancer Detection with FTIR Spectroscopy. Trends. Biotechnol. 2010, 28, 317-23. 87. Blair, D. S.; Burgess, L. W.; Brodsky, A. M., Evanescent Fiber Optic Chemical Sensor for Monitoring Volatile Organic Compounds in Water. Anal. Chem. 1997, 69, 2238-2246. 88. Bindig, U.; Muller, G., Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR). J. Phys. D. Appl. Phys. 2005, 38, 2716-2731. 89. Kino, S.; Matsuura, Y., Nontoxic And Chemically Stable Hollow Optical Fiber Probe for Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 1334-1337. 90. Matsuura, Y.; Kino, S.; Katagiri, T., Hollow-Fiber-Based Flexible Probe for Remote Measurement of Infrared Attenuated Total Reflection. Appl. Optics 2009, 48, 5396-5400. 91. Gobel, R.; Krska, R.; Kellner, R.; Kastner, J.; Lambrecht, A.; Tacke, M.; Katzir, A., Enhancing the Sensitivity of Chemical Sensors for Chlorinated Hydrocarbons in Water by the Use of Tapered Silver-Halide Fibers and Tunable Diode-Lasers. Appl. Spectrosc. 1995, 49, 1174-1177. 92. Alcudia-Leon, M. C.; Lucena, R.; Cardenas, S.; Valcarcel, M., Characterization of an Attenuated Total Reflection-Based Sensor for Integrated Solid-Phase Extraction and Infrared Detection. Anal. Chem. 2008, 80, 1146-1151. 93. Mizaikoff, B., Mid-IR Fiber-Optic Sensors. Anal. Chem. 2003, 75, 258A-267A. 94. Karlowatz, M.; Kraft, M.; Mizalkoff, B., Simultaneous Quantitative Determination of Benzene, Toluene, And Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy. Anal. Chem. 2004, 76, 2643-2648. 95. Pejcic, B.; Barton, C.; Crooke, E.; Eadington, P.; Jee, E.; Ross, A., Hydrocarbon Sensing. Part 1: Some Important Aspects About Sensitivity of a Polymer-Coated Quartz Crystal Microbalance in The Aqueous Phase. Sensor. Actuat. B-Chem. 2009, 135, 436-443. 96. Bryant, C. K.; LaPuma, P. T.; Hook, G. L.; Houser, E. J., Chemical Agent Identification by Field-Based Attenuated Total Reflectance Infrared Detection and Solid-Phase Microextraction. Anal. Chem. 2007, 79, 2334-2340. 97. Acha, V.; Meurens, M.; Naveau, H.; Agathos, S. N., ATR-FTIR Sensor Development for Continuous On-Line Monitoring of Chlorinated Aliphatic Hydrocarbons in a Fixed-Bed Bioreactor. Biotechnol. Bioeng. 2000, 68, 473-487. 98. Yang, J.; Ramesh, A., Membrane-Introduced Infrared Spectroscopic Chemical Sensing Method for the Detection of Volatile Organic Compounds in Aqueous Solutions. Analyst 2005, 130, 397-403. 99. Hahn, O. E. W.; Hill, H. A. O.; Ritchie, M. D.; Sear, J. W., The Electrochemistry of Proteins Entrapped in Nafion. J. Chem. Soc. Chem. Comm. 1990, 125-126. 100.Rubinstein, I., & Bard, A. J. Polymer Films on Electrodes. 5. Electrochemistry and Chemiluminescence at Nafion-Coated Electrodes. J. Am. Chem. Soc. 1981, 103.17: 5007-5013. 101.George, S.; Lee, H. K., Direct Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/Carbon Nanochip Film on Glassy Carbon Electrode. J. Phys. Chem. B 2009, 113, 15445-15454. 102.Turner, K. S.; Powell, D. W.; Carney, C. N.; Orlando, R. C.; Bozymski, E. M., Transmural Electrical Potential Difference in Mammalian Esophagus Invivo. Gastroenterology 1978, 75, 286-291. 103.Randviir, E. P.; Banks, C. E., Analytical Methods for Quantifying Creatinine within Biological Media. Sensor. Actuat. B-Chem. 2013, 183, 239-252. 104.Wyss, M.; Kaddurah-Daouk, R., Creatine and Creatinine Metabolism. Physiological Reviews 2000, 80, 1107-1213. 105.Mohabbati-Kalejahi, E.; Azimirad, V.; Bahrami, M.; Ganbari, A., A Review on Creatinine Measurement Techniques. Talanta 2012, 97, 1-8. 106.Narayanan, S.; Appleton, H. D., Creatinine - A Review. Clin. Chem. 1980, 26, 1119-1126. 107.Randviir, E. P.; Kampouris, D. K.; Banks, C. E., An Improved Electrochemical Creatinine Detection Method Via a Jaffe-Based Procedure. Analyst 2013, 138, 6565-6572. 108.Khan, G. F.; Wernet, W., A Highly Sensitive Amperometric Creatinine Sensor. Anal. Chim. Acta 1997, 351, 151-158. 109.Pundir, C. S.; Yadav, S.; Kumar, A., Creatinine Sensors. Trac-Trend. Anal. Chem. 2013, 50, 42-52. 110.Killard, A. J.; Smyth, M. R., Creatinine Biosensors: Principles and Designs. Trends Biotechnol. 2000, 18, 433-437. 111.de Araujo, W. R.; Salles, M. O.; Paixao, T. R. L. C., Development of an Enzymeless Electroanalytical Method for the Indirect Detection of Creatinine in Urine Samples. Sensor. Actuat. B-Chem.2012, 173, 847-851. 112.Harlan, R.; Clarke, W.; Di Bussolo, J. M.; Kozak, M.; Straseski, J.; Meany, D. L., An Automated Turbulent Flow Liquid Chromatography-Isotope Dilution Mass Spectrometry (LC-IDMS) Method for Quantitation Of Serum Creatinine. Clin. Chim. Acta 2010, 411, 1728-1734. 113.MacNeil, L.; Hill, L.; MacDonald, D.; Keefe, L.; Cormier, J. F.; Burke, D. G.; Smith-Palmer, T., Analysis Of Creatine, Creatinine, Creatine-D(3) and Creatinine-D(3) in Urine, Plasma, and Red Blood Cells by HPLC and GC-MS to Follow the Fate of Ingested Creatine-D(3). J. Chromato gr. B Analyt. Technol. Biomed. Life. 2005, 827, 210-215. 114.Smith-Palmer, T., Separation Methods Applicable to Urinary Creatine and Creatinine. J. Chromato gr. B Anal yt. Technol. Biomed. Life. 2002, 781, 93-106. 115.George, S. K.; Dipu, M. T.; Mehra, U. R.; Singh, P.; Verma, A. K.; Ramgaokar, J. S., Improved HPLC Method for the Simultaneous Determination of Allantoin, Uric Acid and Creatinine in Cattle Urine. J. Chromato gr. B Analyt. Technol. Biomed. Life.2006, 832, 134-137. 116.Jen, J. F.; Hsiao, S. L.; Liu, K. H., Simultaneous Determination of Uric Acid and Creatinine in Urine by an Eco-Friendly Solvent-Free High Performance Liquid Chromatographic Method. Talanta 2002, 58, 711-717. 117.Berge-Lefranc, D.; Schaef, O.; Denoyel, R.; Berge-Lefranc, J.-L.; Guieu, R.; Brunet, P.; Hornebecq, V., The Extraction of Creatinine from a Physiological Medium by a Microporous Solid and its Quantification by Diffuse Reflectance UV Spectroscopy. Micropor. Mesopor. Mat. 2010, 129, 144-148. 118.Wang, S. M.; Liu, P.; Wang, X. X.; Fu, X. Z., Homogeneously Distributed Cds Nanoparticles in Nafion Membranes: Preparation, Characterization, and Photocatalytic Properties. Langmuir 2005, 21, 11969-11973.
|