跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昀陞
研究生(外文):Yun-Sheng Chen
論文名稱:紅外光中空光導管之研製以及應用在開發新型減弱式全反射紅外光感測器之效果探討
論文名稱(外文):Fabrication of infrared hollow waveguide for developing new type of evanescentwave infrared sensor for chemical analysis
指導教授:楊吉斯
指導教授(外文):Jyisy Yang
口試委員:黃悉雅黃景帆
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:論文國立中興大學
外文關鍵詞:ThesisNational Chung Hsing University
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中利用中空光導管作為傳輸以及接收紅外光的橋樑,搭配減弱式全反射的晶體,設計出新式的紅外光感測器。中空光導管以Polyethylene (PE)所製成,其本身具有質輕、柔軟度以及韌性高的的優點,在管徑內層度上金屬膜,紅外光在管內中以反射的方式傳導。本研究採以銀鏡反應的方式塗覆金屬,先固定在一溫度下,改變銀鏡反應中的因子,並探討其效能。此實驗的製程方法能有效的降低中空光導管的損失率,可達0.2 dB/cm。由此應用在紅外光感測器中,再以不同形式以及大小的減弱式全反射晶體探討,利用所偵測之能量及光譜圖的訊雜比比較,得出此感測器最佳的狀態,加上中空光導管本身能應用的波長範圍廣,進而提升此感測器的靈活性及應用性。
本研究中採用減弱式全反射之特性,在晶體上腹膜一層高分子,利用紅外光於密介質到疏介質時所發生的全反射所產生的漸逝波,修飾之此高分子與欲分析待測物間產生特殊作用力,使分子濃縮於漸逝波範圍內,產生分子的特徵光譜以達定性或定量。本研究以Nafion修飾在開發出來的感測器上,去感測尿液中的肌酸酐,因其高分子的化學惰性及水穩定性良好加上具有的磺酸根官能基與肌酸酐之間所產生的特殊作用力,達成微量分析以及選擇性提升的效能,在此研究中,針對可能影響感測訊號的因子如酸鹼值、修飾層厚度、穩定性、線性濃度區間、干擾行為,皆詳加討論。結果顯示,修飾層以酸性條件下可有效的快速感測肌酸酐且具有良好及穩定的訊號輸出值,以三倍於基線雜訊計算,估得的偵測極限約為20 μM,線性範圍可約至100 μM。在干擾行為方面,為解決尿液樣品中複雜的基質干擾,故以稀釋的方式降低訊號的干擾,在利用標準添加法可有效的定量出尿液檢體中的肌酸酐含量。


In this work, a new type of Infrared (IR) chemical sensor was developed, which was based on integrating IR hollow waveguides with an evanescent wave sensing head to form a sensitive and selective sensor for chemical detection. To prepare high performance hollow waveguide, polyethylene (PE) tube with a diameter of 3 mm was used as a template and its inner surface was coated with a layer of highly reflective metal of silver by silver mirror reaction. Through optimization of the preparation parameters, the prepared hollow waveguide can deliver the middle IR radiation efficiently with an attenuation of 0.2 dB/cm at 2100 cm-1. The geometry of evanescent wave sensing crystal was also optimized to combine with hollow waveguide. Two series of geometries were tested including a forward configuration and a reverse configuration. Results indicated that forward configuration is easier to combine with hollow waveguides for formation of IR chemical sensor.
To demonstrate the applicability of constructed IR chemical sensor, creatinine in urine was targeted as this compound exhibits important role in biological system. To increase the sensitivity in detection of this compound, nafion was used to modify the surface of the sensing crystal. Nafion bears sulfonic acid group and this function group, which can interact with creatinine through both hydrogen bonding and charge interaction. Through optimization of the influencing factors in detection of creatinine, the detection limit reached 20 μM with a linear range up to 100 μM under acidic condition (pH 5). Because of the high sensitivity in detection, samples were allowed to be diluted with a dilution factor of 40 to overcome the strong matrix effect in the urine sample. Based on detection of creatinine in several urine samples, creatinine could be detected accurately as the recoveries were ranged from 97 % to 104 %.


摘要 i
Abstract ii
總目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1化學感測器簡介及回顧 1
1-2紅外光傳導介質之回顧 2
1-3紅外光化學感測器感測元件與性質之回顧 3
1-4紅外光光纖感測整合系統回顧 10
1-5研究動機 12
第二章 實驗部分 14
2-1實驗藥品與儀器設備的介紹 14
2-1-1實驗藥品 14
2-1-2儀器 15
2-2中空光導管以及探頭製備過程 16
2-2-1藥品之配製 16
2-2-2流程圖 17
2-2-3晶體裁切及研磨 20
2-2-4感測晶體及實驗裝置 20
2-3感測層製備及感測步驟 22
第三章 感測器之效能討論 23
3-1中空光導管之基本性質探討 23
3-1-1 硝酸銀濃度對光管導光率影響探討 26
3-1-2流速對光管導光率影響探討 30
3-1-3 不同光管位置導光率比較 34
3-2中空光導管之穩定性探討 36
3-3感測器之設計考量及組合方式 38
3-3-1感測樣品之選擇及dp值之確認 40
3-3-2中空光導管之位置收光探討 43
3-4 ATR晶體形狀與組合方式之考量 46
3-4-1梯形之ATR晶體之探討 46
3-4-2三角形之ATR晶體之探討 51
3-4-3新式設計ATR晶體形狀及效能探討 56
3-5總結 59
第四章 感測器之應用性探討 60
4-1簡介 60
4-2 Nafion及肌酸酐之紅外光譜性質探討 62
4-3不同酸鹼值下之肌酸酐效能 64
4-4 再生性之探討 68
4-5 Nafion腹膜厚度與訊號關係探討 71
4-6濃度效應與曲線 74
4-7感測器之穩定性探討 77
4-8稀釋效應對於減少基質干擾的效果探討 79
4-9標準添加法 82
4-10 總結 87
第五章 總結 88
參考文獻 89



1. Hulanicki, A.; Glab, S.; Ingman, F., Chemical Sensors Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247-1250.
2. Janata, J.; Josowicz, M.; Vanysek, P.; DeVaney, D. M., Chemical Sensors. Anal. Chem. 1998, 70, 179R-208R.
3. Grieshaber, D.; MacKenzie, R.; Voeroes, J.; Reimhult, E., Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 2008, 8, 1400-1458.
4. Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B., Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14, 159-173.
5. Que, E. L.; Chang, C. J., Responsive Magnetic Resonance Imaging Contrast Agents as Chemical Sensors for Metals in Biology and Medicine. Chem. Soc. Rev. 2010, 39, 51-60.
6. Helmy, A. A.; Jeon, H.-J.; Lo, Y.-C.; Larsson, A. J.; Kulkarni, R.; Kim, J.; Silva-Martinez, J.; Entesari, K., A Self-Sustained CMOS Microwave Chemical Sensor Using a Frequency Synthesizer. IEEE J. Solid-State Circuits 2012, 47, 2467-2483.
7. Wu, Z.; Yu, X.; Gu, E.; Kong, Z.; Li, W., Characteristics Analysis of Chemical Concentration Sensor Based on Three-Layer FBG. Opt. & Photonics J. 2013, 03, 268-271.
8. Kohno, K.; Sokabe, T.; Tominaga, M.; Kadowaki, T., Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes. J. Neurosci. 2010, 30, 12219-29.
9. McDonagh, C.; Burke, C. S.; MacCraith, B. D., Optical Chemical Sensors. Chem. Rev. 2008, 108, 400-422.
10.Qazi, H. H.; bin Mohammad, A. B.; Akram, M., Recent Progress in Optical Chemical Sensors. Sensors (Basel) 2012, 12, 16522-56.
11. Al-Hilli, S.; Willander, M., The pH Response and Sensing Mechanism of N-type ZnO/Electrolyte Interfaces. Sensors (Basel) 2009, 9, 7445-80.
12. Narimani, K.; Nayeri, F. D.; Kolahdouz, M.; Ebrahimi, P., Fabrication, Modeling and Simulation of High Sensitivity Capacitive Humidity Sensors Based on ZnO Nanorods. Sensor. Actuat. B-Chem. 2016, 224, 338-343.
13. Harraz, F. A.; Ismail, A. A.; Ibrahim, A. A.; Al-Sayari, S. A.; Al-Assiri, M. S., Highly Sensitive Ethanol Chemical Sensor Based on Nanostructured SnO2 Doped ZnO Modified Glassy Carbon Electrode. Chem. Phys. Lett. 2015, 639, 238-242.
14. Grimes, C. A., Stoyanov, P., Seitz, W. R., Doherty, S. A., & Dickey, E. C., A Remotely Interrogatable Magnetochemical Sensor for Environmental Monitoring. Aerosp. Conf. proc. Vol. 5.
15. Grimes, C. A.; Stoyanov, P. G.; Liu, Y. C.; Tong, C. H.; Ong, K. G.; Loiselle, K.; Shaw, M.; Doherty, S. A.; Seitz, W. R., A Magnetostatic-Coupling Based Remote Query Sensor for Environmental Monitoring. J. Phys. D. Appl. Phys.1999, 32, 1329-1335.
16. Chang, S. M.; Muramatsu, H.; Nakamura, C.; Miyake, J., The Principle and Applications of Piezoelectric Crystal Sensors. Mat. Sci. Eng. C-Bio. S. 2000, 12, 111-123.
17. Buryakov, I. A.; Buryakov, T. I.; Matsayev, V. T., Electrical, Electrochemical, and Thermometric Sensors for The Detection of Explosives. J. anal. Chem. 2016, 71, 234-242.
18. Pang, W.; Zhao, H.; Kim, E. S.; Zhang, H.; Yu, H.; Hu, X., Piezoelectric Microelectromechanical Resonant Sensors for Chemical and Biological Detection. Lab on a Chip 2012, 12, 29-44.
19. Zhou, Q.; Lau, S.; Wu, D.; Shung, K., Piezoelectric Films For High Frequency Ultrasonic Transducers In Biomedical Applications. Prog. Mater. Sci. 2011, 56, 139-174.
20. Heller, A.; Feldman, B., Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482-2505.
21. Fritea, L.; Tertis, M.; Cristea, C.; Cosnier, S.; Sandulescu, R., Simultaneous Determination of Ascorbic and Uric Acids in Urine Using an Innovative Electrochemical Sensor Based on Beta-Cyclodextrin. Anal. Lett. 2015, 48, 89-99.
22. Hosseini, S. H.; Entezami, A. A., Chemical And Electrochemical Synthesis of Conducting Graft Copolymer of Vinyl Acetate with Pyrrole And Studies of its Gas and Vapor Sensing. J. Appl. Polym. Sci. 2003, 90, 40-48.
23. Bakker, E.; Qin, Y., Electrochemical Sensors. Anal. Chem. 2006, 78, 3965-84.
24. Brett, C. M. A., Electrochemical Sensors for Environmental Monitoring. Strategy and Examples. Pure Appl. Chem.2001, 73, 1969-1977.
25. Zhao, Y.; Zhao, D.; Li, D., Electrochemical and other Methods for Detection and Determination of Dissolved Nitrite: a Review. Int. J. Electrochem. Sci. 2015, 10, 1144-1168.
26. Huebsch, M.; Grimmeisen, F.; Zemann, M.; Fenton, O.; Richards, K. G.; Jordan, P.; Sawarieh, A.; Blum, P.; Goldscheider, N., Technical Note: Field Experiences Using UV/VIS Sensors for High-Resolution Monitoring of Nitrate in Groundwater. Hydrol. Earth Syst. Sc. 2015, 19, 1589-1598.
27. Wolfbeis, O. S., Fluorescence Optical Sensors in Analytical-Chemistry. Trac-Trend. Anal. Chem. 1985, 4, 184-188.
28. Abdelhaseib, M. U.; Singh, A. K.; Bailey, M.; Singh, M.; El-Khateib, T.; Bhunia, A. K., Fiber Optic And Light Scattering Sensors: Complimentary Approaches to Rapid Detection of Salmonella Enterica in Food Samples. Food Control 2016, 61, 135-145.
29. Ma, X.; Huo, H.; Wang, W.; Tian, Y.; Wu, N.; Guthy, C.; Shen, M.; Wang, X., Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors (Basel) 2010, 10, 11064-71.
30. Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mucke, R.; Janker, B., Near- And Mid-Infrared Laser-Optical Sensors For Gas Analysis. Opt. laser. Eng. 2002, 37, 101-114.
31. Nie, J.; Li, J.-P.; Deng, H.; Pan, H.-C., Progress on Click Chemistry and Its Application in Chemical Sensors. Chinese J. Anal. Chem. 2015, 43, 609-616.
32. Buergi, T.; Baiker, A., Attenuated Total Reflection Infrared Spectroscopy of solid Catalysts Functioning in the Presence of Liquid-Phase Reactants. Adv. Catal. , Vol 50, Gates, B. C.; Knozinger, H., Eds. 2006; Vol. 50, pp 227-283. Elsevier, Amsterdam .
33. Gates, B. C.; Knozinger, H., Eds., Jentoft, F. C., Ultraviolet-Visible-Near Infrared Spectroscopy in Catalysis: Theory, Experiment, Analysis, and Application under Reaction Conditions. Adv. Catal. 2009; Vol. 52, pp 129-211; Elsevier. Amsterdam.
34. Stenberg, B.; Rossel, R. A. V.; Mouazen, A. M.; Wetterlind, J., Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010; Vol. 107, pp 163-215. Elsevier. Amsterdam.
35. Harrington, J. A., A review of IR Transmitting, Hollow Waveguides. Fiber Integr. Opt. 2000, 19, 211-227.
36. Patimisco, P.; Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Bledt, C. M.; Harrington, J. A., Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications. Sensors (Basel) 2013, 13, 1329-40.
37. Lin, A.; Zhang, A.; Bushong, E. J.; Toulouse, J., Solid-Core Tellurite Glass Fiber for Infrared and Nonlinear Applications. Optics Express 2009, 17, 16716-16721.
38. Gai, X.; Han, T.; Prasad, A.; Madden, S.; Choi, D.-Y.; Wang, R.; Bulla, D.; Luther-Davies, B., Progress in Optical Waveguides Fabricated from Chalcogenide Glasses. Optics Express 2010, 18, 26635-26646.
39. Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A. M.; Danto, S.; Badding, J. V.; Fink, Y.; Ballato, J.; Abouraddy, A. F., Infrared Fibers. Adv. Opt. Photonics 2015, 7, 379-458.
40. Barkay, N.; Levite, A.; Moser, F.; Katzir, A., Mechanical-Properties of Mixed Silver-Halide Crystals and Polycrystalline Optical Fibers. J. Appl. Phys. 1988, 64, 5256-5258.
41. Damin, C. A.; Sommer, A. J., Characterization of Silver Halide Fiber Optics and Hollow Silica Waveguides for Use in the Construction of a Mid-Infrared Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy Probe. Appl. Spectrosc. 2013, 67, 1252-1263.
42. Mikhailov, M. D.; Karpova, E. A.; Borisova, Z. U.; Gutsol, A. D., Electrical and Optical-Properties of Homogeneous Films of the AS-TE System. Inorg. Mater. 1981, 17, 1299-1302.
43. Tang, Z.; Shiryaev, V. S.; Furniss, D.; Sojka, L.; Sujecki, S.; Benson, T. M.; Seddon, A. B.; Churbanov, M. F., Low Loss Ge-As-Se Chalcogenide Glass Fiber, Fabricated Using Extruded Preform, for Mid-Infrared Photonics. Opt. Mater. Express 2015, 5, 1722-1737.
44. Abel, T.; Hirsch, J.; Harrington, J. A., Hollow Glass Wave-Guides for Broad-Band Infrared Transmission. Opt. Lett. 1994, 19, 1034-1036.
45. Gregory, C. C.; Harrington, J. A., Attenuation, Modal, and Polarization Properties of N-Less-Than-1, Hollow Dielectric Wave-Guides. Appl. Optics 1993, 32, 5302-5309.
46. Harrington, J. A.; Gregory, C. C., Hollow Sapphire Fibers for the Delivery of Co2-Laser Energy. Opt. Lett.1990, 15, 541-543.
47. Matsuura, Y.; Miyagi, M., Bending Losses and Beam Profiles of Zinc Selenide-Coated Silver Wave-Guides for Carbon-Dioxide Laser-Light. Appl. Optics 1992, 31, 6441-6445.
48. Croitoru, N.; Dror, J.; Gannot, I., Characterization of Hollow Fibers for the Transmission of Infrared Radiation. Appl. Optics 1990, 29, 1805-1809.
49. Miyagi, M.; Hongo, A.; Aizawa, Y.; Kawakami, S., Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission. Appl. Phys. Lett. 1983, 43, 430-432.
50. Jelinkova, H.; Nemec, M.; Sulc, J.; Cerny, P.; Miyagi, M.; Shi, Y. W.; Matsuura, Y., Hollow Waveguide Delivery Systems for Laser Technological Application. Prog. Quant. Electron. 2004, 28, 145-164.
51. Hass, G., Reflectance and Preparation of Front-Surface Mirrors for Use at Various Angles of Incidence from the Ultraviolet to the Far Infrared. J. Opt. Soc. Am. 1982, 72, 27-39.
52. Sadwick, L. P.; Doradla, P.; Joseph, C. S.; Kumar, J.; Giles, R. H.; O''Sullivan, C. M., Propagation Loss Optimization In Metal/Dielectric Coated Hollow Flexible Terahertz Waveguides. Intern. Soc. Opt.&Photonics 2012, 8261, 82610P.
53. Hodgkinson, J.; Tatam, R. P., Optical Gas Sensing: a Review. Meas. Sci. Technol . 2013, 24.
54. Zhou, P.; Wang, X.; Ma, Y.; Lu, H.; Liu, Z., Review on Recent Progress on Mid-Infrared Fiber Lasers. Laser Phys. 2012, 22, 1744-1751.
55. Perez-Guaita, D.; Kokoric, V.; Wilk, A.; Garrigues, S.; Mizaikoff, B., Towards the Determination of Isoprene in Human Breath Using Substrate-Integrated Hollow Waveguide Mid-Infrared Sensors. J. Breath Res. 2014, 8, 026003.
56. Seichter, F.; Wilk, A.; Worle, K.; Kim, S. S.; Vogt, J. A.; Wachter, U.; Radermacher, P.; Mizaikoff, B., Multivariate Determination of 13CO2/12CO2 Ratios in Exhaled Mouse Breath with Mid-Infrared Hollow Waveguide Gas Sensors. Anal. Bioanal. Chem. 2013, 405, 4945-51.
57. Frey, C. M.; Luxenburger, F.; Droege, S.; Mackoviak, V.; Mizaikoff, B., Near-Infrared Hollow Waveguide Gas Sensors. Appl. Spectrosc. 2011, 65, 1269-74.
58.Young, C. R.; Menegazzo, N.; Riley, A. E.; Brons, C. H.; DiSanzo, F. P.; Givens, J. L.; Martin, J. L.; Disko, M. M.; Mizaikoff, B., Infrared Hollow Waveguide Sensors for Simultaneous Gas Phase Detection of Benzene, Toluene, and Xylenes in Field Environments. Anal. Chem. 2011, 83, 6141-6147.
59. Liska, I.; Krupcik, J.; Leclercq, P. A., The Use of Solid Sorbents for Direct Accumulation of Organic-Compounds from Water Matrices - A Review of Solid-Phase Extraction Techniques. J. High Resolut. Chromatogr. 1989, 12, 577-590.
60. Maguire, R. J.; Tkacz, R. J., Potential Underestimation of Chlorinated-Hydrocarbon Concentrations in Fresh-Water. Chemosphere 1989, 19, 1277-1287.
61. Yang, J.; Her, J. W.; Chen, S. H., Development of an Infrared Hollow Waveguide Sensing Device for Detection of Organic Compounds in Aqueous Solutions. Anal. Chem. 1999, 71, 3740-3746.
62. Seelenbinder, J. A.; Brown, C. W.; Pivarnik, P.; Rand, A. G., Colloidal Cold Filtrates as Metal Substrates for Surface-Enhanced Infrared Absorption Spectroscopy. Anal. Chem. 1999, 71, 1963-1966.
63. Yang, J.; Griffiths, P. R., Preparation and Characterization by Surface-Enhanced Infrared Absorption Spectroscopy of Silver Nanoparticles Formed on Germanium Substrates By Electroless Displacement. Anal. Bioanal. Chem. 2007, 388, 109-119.
64. Campbell, R. A.; Bain, C. D., External-Reflection FT-IR Spectroscopy of C10E8 at an Expanding Water Surface. Vib. Spectrosc. 2004, 35, 205-211.
65. Bjuggren, M.; Krummenacher, L.; Mattsson, L., Noncontact Surface Roughness Measurement of Engineering Surfaces by Total Integrated Infrared Scattering. Precis. Eng. 1997, 20, 33-45.
66. Thomas, J. E.; Kelley, M. J., Interaction of Mineral Surfaces with Simple Organic Molecules By Diffuse Reflectance IR Spectroscopy (DRIFT). J. Colloid. Interf. Sci. 2008, 322, 516-526.
67. Wei, Y. K.; Yang, J., Evanescent Wave Infrared Chemical Sensor Possessing a Sulfonated Sensing Phase for the Selective Detection of Arginine In Biological Fluids. Talanta 2007, 71, 2007-2014.
68. Huang, G. G.; Wang, C. T.; Tang, H. T.; Huang, Y. S.; Yang, J., ZnO Nanoparticle-Modified Infrared Internal Reflection Elements for Selective Detection of Volatile Organic Compounds. Anal. Chem. 2006, 78, 2397-2404.
69. Hull, M. C.; Cambrea, L. R.; Hovis, J. S., Infrared Spectroscopy of Fluid Lipid Bilayers. Anal. Chem. 2005, 77, 6096-6099.
70. Roggo, Y.; Jent, N.; Edmond, A.; Chalus, P.; Ulmschneider, M., Characterizing Process Effects on Pharmaceutical Solid Forms Using Near-Infrared Spectroscopy and Infrared Imaging. Eur. J. Pharm. Biopharm. 2005, 61, 100-110.
71. Vigano, C.; Ruyssehaert, J. M.; Goormaghtigh, E., Sensor Applications of Attenuated Total Reflection Infrared Spectroscopy. Talanta 2005, 65, 1132-1142.
72. Zhang, Z. Y.; Pawliszyn, J., Headspace Analysis of Soil Samples Using Solid-Phase Microextraction. Abstr. Pap. Am. Chem. S. 1993, 206, 6-ENVR.
73. Heo, J.; Rodrigues, M.; Saggese, S. J.; Sigel, G. H., Remote Fiberoptic Chemical Sensing Using Evanescent-Wave Interactions in Chalcogenide Glass-Fibers. Appl. Optics 1991, 30, 3944-3951.
74. Yang, J. S.; Her, J. W., Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solutions. Anal. Chem. 1999, 71, 1773-1779.
75. Krska, R.; Kellner, R.; Schiessl, U.; Tacke, M.; Katzir, A., Fiber Optic Sensor for Chlorinated Hydrocarbons in Water-Based on Infrared Fibers and Tunable Diode-Lasers. Appl. Phys. Lett. 1993, 63, 1868-1870.
76. Ertanlamontagne, M. C.; Lowry, S. R.; Seitz, W. R.; Tomellini, S. A., Polymer-Coated, Tapered Cylindrical ATR Elements for Sensitive Detection of Organic Solutes in Water. Appl. Spectrosc. 1995, 49, 1170-1173.
77. Cheng, M.-L.; Yang, J., Self-Oriented Glucose-Modified Infrared Sensor for the Detection of Compounds Bearing Carboxylic Acid Groups. Appl. Spectrosc. 2008, 62, 38-45.
78. Yang, J.; Huang, Y. S., IR Chemical Sensor for Detection of Aromatic Compounds in Aqueous Solutions Using Alkylated Polystyrene-Coated ATR Waveguides. Appl. Spectrosc.2000, 54, 202-208.
79. da Silveira Petruci, J. F.; Fortes, P. R.; Kokoric, V.; Wilk, A.; Raimundo, I. M., Jr.; Cardoso, A. A.; Mizaikoff, B., Real-Time Monitoring of Ozone in Air Using Substrate-Integrated Hollow Waveguide Mid-Infrared Sensors. Sci. Rep. 2013, 3.
80. Tütüncü, E.; Nägele, M.; Fuchs, P.; Fischer, M.; Mizaikoff, B., iHWG-ICL: Methane Sensing with Substrate-Integrated Hollow Waveguides Directly Coupled to Interband Cascade Lasers. ACS Sensors 2016.
81. Wilk, A.; Carter, J. C.; Chrisp, M.; Manuel, A. M.; Mirkarimi, P.; Alameda, J. B.; Mizaikoff, B., Substrate-Integrated Hollow Waveguides: A New Level of Integration in Mid-Infrared Gas Sensing. Anal. Chem. 2013, 85, 11205-11210.
82. Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D. T. H., On-Chip Mid-Infrared Gas Detection Using Chalcogenide Glass Waveguide. Appl. Phys. Lett. 2016, 108, 141106.
83. Lin, P. T.; Singh, V.; Hu, J.; Richardson, K.; Musgraves, J. D.; Luzinov, I.; Hensley, J.; Kimerling, L. C.; Agarwal, A., Chip-Scale Mid-Infrared Chemical Sensors Using Air-Clad Pedestal Silicon Waveguides. Lab on a Chip. 2013, 13, 2161-6.
84. Seichter, F.; Wilk, A.; Woerle, K.; Kim, S.-S.; Vogt, J. A.; Wachter, U.; Radermacher, P.; Mizaikoff, B., Multivariate Determination of (CO2)-C-13/(CO2)-C-12 Ratios in Exhaled Mouse Breath with Mid-Infrared Hollow Waveguide Gas Sensors. Anal. Bioanal. Chem. 2013, 405, 4945-4951.
85. Mackanos, M. A.; Hargrove, J.; Wolters, R.; Du, C. B.; Friedland, S.; Soetikno, R. M.; Contag, C. H.; Arroyo, M. R.; Crawford, J. M.; Wang, T. D., Use of an Endoscope-Compatible Probe to Detect Colonic Dysplasia with Fourier Transform Infrared Spectroscopy. J. Biomed. Opt. 2009, 14.
86. Mackanos, M. A.; Contag, C. H., Fiber-Optic Probes Enable Cancer Detection with FTIR Spectroscopy. Trends. Biotechnol. 2010, 28, 317-23.
87. Blair, D. S.; Burgess, L. W.; Brodsky, A. M., Evanescent Fiber Optic Chemical Sensor for Monitoring Volatile Organic Compounds in Water. Anal. Chem. 1997, 69, 2238-2246.
88. Bindig, U.; Muller, G., Fibre-Optic Laser-Assisted Infrared Tumour Diagnostics (FLAIR). J. Phys. D. Appl. Phys. 2005, 38, 2716-2731.
89. Kino, S.; Matsuura, Y., Nontoxic And Chemically Stable Hollow Optical Fiber Probe for Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 1334-1337.
90. Matsuura, Y.; Kino, S.; Katagiri, T., Hollow-Fiber-Based Flexible Probe for Remote Measurement of Infrared Attenuated Total Reflection. Appl. Optics 2009, 48, 5396-5400.
91. Gobel, R.; Krska, R.; Kellner, R.; Kastner, J.; Lambrecht, A.; Tacke, M.; Katzir, A., Enhancing the Sensitivity of Chemical Sensors for Chlorinated Hydrocarbons in Water by the Use of Tapered Silver-Halide Fibers and Tunable Diode-Lasers. Appl. Spectrosc. 1995, 49, 1174-1177.
92. Alcudia-Leon, M. C.; Lucena, R.; Cardenas, S.; Valcarcel, M., Characterization of an Attenuated Total Reflection-Based Sensor for Integrated Solid-Phase Extraction and Infrared Detection. Anal. Chem. 2008, 80, 1146-1151.
93. Mizaikoff, B., Mid-IR Fiber-Optic Sensors. Anal. Chem. 2003, 75, 258A-267A.
94. Karlowatz, M.; Kraft, M.; Mizalkoff, B., Simultaneous Quantitative Determination of Benzene, Toluene, And Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy. Anal. Chem. 2004, 76, 2643-2648.
95. Pejcic, B.; Barton, C.; Crooke, E.; Eadington, P.; Jee, E.; Ross, A., Hydrocarbon Sensing. Part 1: Some Important Aspects About Sensitivity of a Polymer-Coated Quartz Crystal Microbalance in The Aqueous Phase. Sensor. Actuat. B-Chem. 2009, 135, 436-443.
96. Bryant, C. K.; LaPuma, P. T.; Hook, G. L.; Houser, E. J., Chemical Agent Identification by Field-Based Attenuated Total Reflectance Infrared Detection and Solid-Phase Microextraction. Anal. Chem. 2007, 79, 2334-2340.
97. Acha, V.; Meurens, M.; Naveau, H.; Agathos, S. N., ATR-FTIR Sensor Development for Continuous On-Line Monitoring of Chlorinated Aliphatic Hydrocarbons in a Fixed-Bed Bioreactor. Biotechnol. Bioeng. 2000, 68, 473-487.
98. Yang, J.; Ramesh, A., Membrane-Introduced Infrared Spectroscopic Chemical Sensing Method for the Detection of Volatile Organic Compounds in Aqueous Solutions. Analyst 2005, 130, 397-403.
99. Hahn, O. E. W.; Hill, H. A. O.; Ritchie, M. D.; Sear, J. W., The Electrochemistry of Proteins Entrapped in Nafion. J. Chem. Soc. Chem. Comm. 1990, 125-126.
100.Rubinstein, I., & Bard, A. J. Polymer Films on Electrodes. 5. Electrochemistry and Chemiluminescence at Nafion-Coated Electrodes. J. Am. Chem. Soc. 1981, 103.17: 5007-5013.
101.George, S.; Lee, H. K., Direct Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/Carbon Nanochip Film on Glassy Carbon Electrode. J. Phys. Chem. B 2009, 113, 15445-15454.
102.Turner, K. S.; Powell, D. W.; Carney, C. N.; Orlando, R. C.; Bozymski, E. M., Transmural Electrical Potential Difference in Mammalian Esophagus Invivo. Gastroenterology 1978, 75, 286-291.
103.Randviir, E. P.; Banks, C. E., Analytical Methods for Quantifying Creatinine within Biological Media. Sensor. Actuat. B-Chem. 2013, 183, 239-252.
104.Wyss, M.; Kaddurah-Daouk, R., Creatine and Creatinine Metabolism. Physiological Reviews 2000, 80, 1107-1213.
105.Mohabbati-Kalejahi, E.; Azimirad, V.; Bahrami, M.; Ganbari, A., A Review on Creatinine Measurement Techniques. Talanta 2012, 97, 1-8.
106.Narayanan, S.; Appleton, H. D., Creatinine - A Review. Clin. Chem. 1980, 26, 1119-1126.
107.Randviir, E. P.; Kampouris, D. K.; Banks, C. E., An Improved Electrochemical Creatinine Detection Method Via a Jaffe-Based Procedure. Analyst 2013, 138, 6565-6572.
108.Khan, G. F.; Wernet, W., A Highly Sensitive Amperometric Creatinine Sensor. Anal. Chim. Acta 1997, 351, 151-158.
109.Pundir, C. S.; Yadav, S.; Kumar, A., Creatinine Sensors. Trac-Trend. Anal. Chem. 2013, 50, 42-52.
110.Killard, A. J.; Smyth, M. R., Creatinine Biosensors: Principles and Designs. Trends Biotechnol. 2000, 18, 433-437.
111.de Araujo, W. R.; Salles, M. O.; Paixao, T. R. L. C., Development of an Enzymeless Electroanalytical Method for the Indirect Detection of Creatinine in Urine Samples. Sensor. Actuat. B-Chem.2012, 173, 847-851.
112.Harlan, R.; Clarke, W.; Di Bussolo, J. M.; Kozak, M.; Straseski, J.; Meany, D. L., An Automated Turbulent Flow Liquid Chromatography-Isotope Dilution Mass Spectrometry (LC-IDMS) Method for Quantitation Of Serum Creatinine. Clin. Chim. Acta 2010, 411, 1728-1734.
113.MacNeil, L.; Hill, L.; MacDonald, D.; Keefe, L.; Cormier, J. F.; Burke, D. G.; Smith-Palmer, T., Analysis Of Creatine, Creatinine, Creatine-D(3) and Creatinine-D(3) in Urine, Plasma, and Red Blood Cells by HPLC and GC-MS to Follow the Fate of Ingested Creatine-D(3). J. Chromato gr. B Analyt. Technol. Biomed. Life. 2005, 827, 210-215.
114.Smith-Palmer, T., Separation Methods Applicable to Urinary Creatine and Creatinine. J. Chromato gr. B Anal yt. Technol. Biomed. Life. 2002, 781, 93-106.
115.George, S. K.; Dipu, M. T.; Mehra, U. R.; Singh, P.; Verma, A. K.; Ramgaokar, J. S., Improved HPLC Method for the Simultaneous Determination of Allantoin, Uric Acid and Creatinine in Cattle Urine. J. Chromato gr. B Analyt. Technol. Biomed. Life.2006, 832, 134-137.
116.Jen, J. F.; Hsiao, S. L.; Liu, K. H., Simultaneous Determination of Uric Acid and Creatinine in Urine by an Eco-Friendly Solvent-Free High Performance Liquid Chromatographic Method. Talanta 2002, 58, 711-717.
117.Berge-Lefranc, D.; Schaef, O.; Denoyel, R.; Berge-Lefranc, J.-L.; Guieu, R.; Brunet, P.; Hornebecq, V., The Extraction of Creatinine from a Physiological Medium by a Microporous Solid and its Quantification by Diffuse Reflectance UV Spectroscopy. Micropor. Mesopor. Mat. 2010, 129, 144-148.
118.Wang, S. M.; Liu, P.; Wang, X. X.; Fu, X. Z., Homogeneously Distributed Cds Nanoparticles in Nafion Membranes: Preparation, Characterization, and Photocatalytic Properties. Langmuir 2005, 21, 11969-11973.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊