(3.236.214.19) 您好!臺灣時間:2021/05/10 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林詠樺
研究生(外文):Yung-Hua Lin
論文名稱:創新製備石墨烯/壓克力複合海綿體作為固相萃取吸附材料結合HPLC-UV分析水樣中三嗪類除草劑之探討
論文名稱(外文):New Graphene/Acrylic resin based Composite Sponge Material as Solid Phase Extraction Sorbent for the Determination of Triazine Herbicides in Aqueous sample by HPLC-UV
指導教授:鄭政峯鄭政峯引用關係
口試委員:李茂榮楊慶成
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:石墨烯壓克力樹脂三嗪類除草劑高效能液相層析儀紫外光偵測器
外文關鍵詞:GrapheneAcrylic resinComposite Sponge materialTriazineherbicidesHPLC-UV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成創新的石墨烯與壓克力樹脂複合海綿材料,以顛覆傳統的萃取方法,結合HPLC-UV分析水樣中三嗪類除草劑。壓克力樹脂吸附能力低,但加入石墨烯可大幅提升其萃取能力。實驗中,將氧化石墨烯加入壓克力樹脂(Acrylic resin)、交聯劑、發泡劑,以發泡機攪拌均勻並打入空氣發泡,再使用兩段式加熱合成類海綿的多孔性彈性複合材料。將此材料置放於注射針筒中進行萃取,萃取過程以抽吸水樣的方式進行吸附,利用複合材料具多孔性及彈性的特質快速吸附分析物且將水擠出,再以有機溶劑脫附出來,將脫附溶劑吹乾回溶後注入HPLC-UV進行分析。
為獲得最佳的萃取效果,研究中將探討影響萃取效果的主要影響因素,如氧化石墨烯天添量、樣品溶液pH值、鹽類影響及脫附溶劑種類與脫附溶劑體積等。結果顯示在複合材料內石墨烯加入量為15 mg、水樣pH 7 及不加入任何鹽類時,並以3 mL丙酮進行脫附,通過類海綿的多孔性彈性複合材料進行微萃取可獲得最佳萃取效果。在此最佳化條件下對五種triazine除草劑進行檢測,其線性範圍為1-100 ng mL-1,線性相關係數為0.9953以上,各化合物偵測極限低於0.3 ng mL-1,定量極限低於0.9 ng mL-1,相對偏差低於3 %。以本方法應用在真實水樣中回收率介於82.8 % - 107 % 之間。實驗證明本研究開發之石墨烯與壓克力樹脂多孔性彈性複合材料作為固相萃取技術吸附材料,可大幅縮短樣品前處理的作業時間,為一省時、裝置簡單、操作方便、使用少量的有機溶劑且可重複多次使用,具有簡單、方便、高靈敏度及對環境友善之特點。


In this study, we have developed a new material ‘Graphene based acrylic resin composite sponge material’ as sold phase extraction sorbent material for the extraction of triazine herbicides in aqueous solution and determination by HPLC-UV. The adsorption capacity of acrylic resin material was enhanced by adding graphene nanosheets as fillers. This composite sponge material was prepared by mixing of graphene oxide, acrylic resin, cross-linking agents and foaming agents and then inflated with air to foam by Frother. And the foam material was heated at two stages to obtain Graphene/Acrylic resin based Composite Sponge Material.
In the extraction procedure, the sponge material was placed into the syringe and sample solution was aspirated into the syringe barrel for rapid adsorption/extraction. Then the adsorbed analytes were desorbed using organic solvent, and dried by nitrogen, then re-dissolved with 100 μL acetonitrile for HPLC-UV analysis. In order to obtain the best extraction efficiency, the parameters affecting the conditions including graphene content, the pH of sample solution, the salt addition and desorption solution were investigated thoroughly. Under the selected conditions, composite sponge materials were synthesized with 15 mg of graphene and 1 mL acrylic resin solution. 10 mL of aqueous solution (pH 7) was used for sample loading and followed with elution using 3 mL acetone. Under the optimal conditions, the limit of determination (LOD) and limit of quantitation (LOQ) for five triazine herbicides were between 0.3 ng/mL and 0.9 ng/mL. The relative standard deviations (RSD) were less than 3%. Recoveries were ranged between 82.8 % - 107 %. The total sample preparation steps were taken only 10 minutes. These results indicated that the Graphene/Acrylic resin Composite Sponge Material based solid phase extraction method is a rapid, sensitive, easy to handle and eco-friendly sample preparation method.


謝誌...................................i
摘要...................................ii
Abstract...............................iii
圖目錄..................................ix
表目錄..................................x
第一章 緒論............................1
1.1 前言.................................1
1.2 Triazine 除草劑介紹..................1
1.3 Triazine除草劑相關分析技術之回顧......2
1.3.1固相萃取技術........................3
1.3.2固相微萃取技術......................7
1.3.3液相微萃取技術......................11
1.3.4分散式液-液微萃取法..................14
1.3.5分子印模聚合物辨識萃取...............17
1.3.6磁性固相萃取技術.....................19
1.3.7海綿體作為固相萃取吸附材料............20
1.4 水性壓克力樹脂概述....................21
1.5 石墨烯概述...........................21
1.6 研究目的.............................24
第二章 研究方法.........................27
2.1 藥品、實驗器材與儀器設備................27
2.1.1藥品................................27
2.1.2器材................................28
2.1.3儀器設備與實驗器材....................29
2.2 藥品配製..............................31
2.2.1 緩衝溶液之配製.......................31
2.2.2 Triazine 標準品配置..................32
2.2.3 Triazine檢量線範圍濃度溶液配置........35
2.2.4 真實樣品之取樣及處理..................35
2.2.5 添加分析物於真實水樣之配製.............36
2.3 玻璃裝置之矽烷化........................36
2.4實驗方法及流程...........................37
2.4.1層析方法的建立.........................37
2.4.2氧化石墨烯之合成.......................37
2.4.3製備石墨烯/壓克力海綿體複合材料..........38
2.4.4石墨烯/壓克力海綿體複合材料固相萃取萃取步驟...40
2.5石墨烯/壓克力海綿體複合材料之特性探討.......40
2.5.1 FTIR分析..............................40
2.5.2 SEM分析...............................40
2.6固相萃取條件探討...........................42
2.6.1 複合材料中石墨烯的加入量.................42
2.6.2 樣品pH值...............................42
2.6.3 鹽析影響...............................42
2.6.4 脫附溶液選擇............................43
2.6.5 脫附溶液體積............................43
2.7 方法可行性之評估...........................43
2.7.1 儀器校正曲線製作.........................43
2.7.2 方法校正曲線製作.........................44
2.7.3 石墨烯/壓克力海綿體複合材料之重複使用性.....44
2.7.4 石墨烯/壓克力海綿體複合材料製備批次間之比較...44
2.7.5真實樣品分析..............................45
2.7.6 回收率之測定.............................45
第三章 結果與討論.............................46
3.1石墨烯/壓克力海綿體複合材料之特性測試..........46
3.1.1石墨烯/壓克力海綿體複合材料之體積............46
3.1.2石墨烯/壓克力海綿體複合材料之IR圖............48
3.1.3石墨烯/壓克力海綿體複合材料之SEM圖...........50
3.2石墨烯/壓克力海綿體複合材料固相萃取最佳化.......50
3.2.1複合材料中石墨烯的加入量....................50
3.2.2樣品pH值影響...............................52
3.2.3鹽類對萃取效率之影響........................56
3.2.4脫附溶劑之選擇.............................58
3.2.5脫附溶劑體積之選擇..........................58
3.3方法可行性評估與真實樣品之測定.................62
3.3.1 儀器校正曲線製作...........................62
3.3.2方法校正曲線...............................64
3.3.3真實樣品之測定.............................66
3.3.4回收率之測定...............................74
3.3.5石墨烯/壓克力海綿體複合材料之穩定性與再現性....74
3.3.6 石墨烯/壓克力海綿體複合材料之批次間的比較.....75
3.3.7方法比較...................................75
第四章 結論....................................81
參考文獻 ........................................83



1.蔣永正; 蔣慕琰, 常用除草劑之特性與應用. 作物診斷與農藥安全使用技術手冊. 台中, 臺灣. 國立國立中興大學農業暨自然資源學院農業推廣中心 2008, 205-226.
2.Pacáková, V.; Štulík, K.; Jiskra, J., High-performance separations in the determination of triazine herbicides and their residues. Journal of chromatography A 1996, 754 (1), 17-31.
3.Sathiakumar, N.; Delzell, E., A review of epidemiologic studies of triazine herbicides and cancer. Critical Reviews in Toxicology 1997, 27 (6), 599-612.
4.LeBaron, H. M.; Mc Farland, J.; Burnside, O., The triazine herbicides. Elsevier: 2011.
5.Perry, J.; Firbank, L.; Champion, G.; Clark, S.; Heard, M.; May, M.; Hawes, C.; Squire, G.; Rothery, P.; Woiwod, I., Ban on triazine herbicides likely to reduce but not negate relative benefits of GMHT maize cropping. Nature 2004, 428 (6980), 313-316.
6.Pfister, F.; Carroll, B.; Parshley, T., Production, Development, and Registration of Triazine. The Triazine Herbicides 2011, 31.
7.蔣永正; 蔣慕琰, 植物抗氧化系統與除草劑之氧化性毒害. 藥毒所專題報導 2004, 72, 1-12.
8.Sundby, C.; Chow, W. S.; Anderson, J. M., Effects on photosystem II function, photoinhibition, and plant performance of the spontaneous mutation of serine-264 in the photosystem II reaction center D1 protein in triazine-resistant Brassica napus L. Plant physiology 1993, 103 (1), 105-113.
9.Francois, D.; Robinson, G., Indices of triazine toxicity in Chlamydomonas geitleri Ettl. Aquatic Toxicology 1990, 16 (3), 205-227.
10.Costello, S.; Cockburn, M.; Bronstein, J.; Zhang, X.; Ritz, B., Parkinson''s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. American journal of epidemiology 2009, 169 (8), 919-926.
11.Simpson, N. J., Solid-phase extraction: principles, techniques, and applications. CRC press: 2000.
12.Gonzalez, M.; Gallego, M.; Valcarcel, M., Gas chromatographic flow method for the preconcentration and simultaneous determination of antioxidant and preservative additives in fatty foods. Journal of Chromatography A 1999, 848 (1), 529-536.
13.Wang, L.; Zhang, X.; Wang, Y.; Wang, W., Simultaneous determination of preservatives in soft drinks, yogurts and sauces by a novel solid-phase extraction element and thermal desorption-gas chromatography. Analytica Chimica Acta 2006, 577 (1), 62-67.
14.Gfrerer, M.; Wenzl, T.; Quan, X.; Platzer, B.; Lankmayr, E., Occurrence of triazines in surface and drinking water of Liaoning Province in Eastern China. Journal of Biochemical and Biophysical methods 2002, 53 (1), 217-228.
15.Frıas, S.; Sánchez, M.; Rodrıguez, M., Determination of triazine compounds in ground water samples by micellar electrokinetic capillary chromatography. Analytica chimica acta 2004, 503 (2), 271-278.
16.Tanabe, A.; Kawata, K., Determination of triazine pesticides and related compounds in environmental water by liquid chromatography-mass spectrometry. Analytical sciences: the international journal of the Japan Society for Analytical Chemistry 2004, 20 (1), 227-230.
17.Cai, Z.; Wang, D.; Ma, W., Gas chromatography/ion trap mass spectrometry applied for the analysis of triazine herbicides in environmental waters by an isotope dilution technique. Analytica chimica acta 2004, 503 (2), 263-270.
18.Zhou, Q.; Xiao, J.; Wang, W.; Liu, G.; Shi, Q.; Wang, J., Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta 2006, 68 (4), 1309-1315.
19.Yu, Z.-g.; Qin, Z.; Ji, H.-r.; Du, X.; Chen, Y.-h.; Pan, P.; Wang, H.; Liu, Y.-y., Application of SPE using multi-walled carbon nanotubes as adsorbent and rapid resolution LC-MS-MS for the simultaneous determination of 11 triazine herbicides residues in river water. Chromatographia 2010, 72 (11-12), 1073-1081.
20.Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M., Effervescence-assisted carbon nanotubes dispersion for the micro-solid-phase extraction of triazine herbicides from environmental waters. Analytical and bioanalytical chemistry 2013, 405 (10), 3269-3277.
21.Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry 1990, 62 (19), 2145-2148.
22.Zhang, Z.; Yang, M. J.; Pawliszyn, J., Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem 1994, 66 (17), 844A-853A.
23.Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis. Journal of chromatography A 2000, 880 (1), 35-62.
24.Eisert, R.; Levsen, K., Determination of organophosphorus, triazine and 2, 6-dinitroaniline pesticides in aqueous samples via solid-phase microextraction (SPME) and gas chromatography with nitrogen-phosphorus detection. Fresenius'' journal of analytical chemistry 1995, 351 (6), 555-562.
25.Huang, S.-D.; Huang, H.-I.; Sung, Y.-H., Analysis of triazine in water samples by solid-phase microextraction coupled with high-performance liquid chromatography. Talanta 2004, 64 (4), 887-893.
26.Basheer, C.; Lee, H. K., Hollow fiber membrane-protected solid-phase microextraction of triazine herbicides in bovine milk and sewage sludge samples. Journal of Chromatography A 2004, 1047 (2), 189-194.
27.Rocha, C.; Pappas, E. A.; Huang, C.-h., Determination of trace triazine and chloroacetamide herbicides in tile-fed drainage ditch water using solid-phase microextraction coupled with GC–MS. Environmental pollution 2008, 152 (1), 239-244.
28.Đurović, R. D.; ĐorĐević, T. M.; Šantrić, L. R.; GaŠić, S. M.; Ignjatović, L. M., Headspace solid phase microextraction method for determination of triazine and organophosphorus pesticides in soil. Journal of Environmental Science and Health Part B 2010, 45 (7), 626-632.
29.See, H.; Marsin Sanagi, M.; Ibrahim, W. A. W.; Naim, A., Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. Journal of Chromatography A 2010, 1217 (11), 1767-1772.
30.Roldán-Pijuán, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M.; Kabir, A.; Furton, K. G., Stir fabric phase sorptive extraction for the determination of triazine herbicides in environmental waters by liquid chromatography. Journal of Chromatography A 2014.
31.Cunha, S. C.; Fernandes, J.; Oliveira, M., Current trends in liquid-liquid microextraction for analysis of pesticide residues in food and water. Pesticides–Strategies for Pesticides Analysis 2011, 1-27.
32.Shen, G.; Lee, H. K., Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Analytical Chemistry 2002, 74 (3), 648-654.
33.Gao, S.; You, J.; Zheng, X.; Wang, Y.; Ren, R.; Zhang, R.; Bai, Y.; Zhang, H., Determination of phenylurea and triazine herbicides in milk by microwave assisted ionic liquid microextraction high-performance liquid chromatography. Talanta 2010, 82 (4), 1371-1377.
34.Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S., Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A 2006, 1116 (1), 1-9.
35.Nagaraju, D.; Huang, S.-D., Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. Journal of Chromatography A 2007, 1161 (1), 89-97.
36.Berijani, S.; Assadi, Y.; Anbia, M.; Hosseini, M.-R. M.; Aghaee, E., Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A 2006, 1123 (1), 1-9.
37.Sanagi, M. M.; Abbas, H. H.; Ibrahim, W. A. W.; Aboul-Enien, H. Y., Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chemistry 2012, 133 (2), 557-562.
38.Wang, Y.; Sun, Y.; Xu, B.; Li, X.; Jin, R.; Zhang, H.; Song, D., Magnetic ionic liquid-based dispersive liquid–liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. Journal of Chromatography A 2014, 1373, 9-16.
39.Zacharis, C. K.; Tzanavaras, P. D.; Roubos, K.; Dhima, K., Solvent-based de-emulsification dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry for determination of trace organochlorine pesticides in environmental water samples. Journal of Chromatography A 2010, 1217 (38), 5896-5900.
40.Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Garcia-Monteagudo, J. C.; Cela, R., Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. Journal of Chromatography A 2008, 1190 (1), 27-38.
41.Sellergren, B., Molecularly imprinted polymers: man-made mimics of antibodies and their application in analytical chemistry. Elsevier: 2000; Vol. 23.
42.Qiao, F.; Sun, H.; Yan, H.; Row, K. H., Molecularly imprinted polymers for solid phase extraction. Chromatographia 2006, 64 (11-12), 625-634.
43.Bjarnason, B.; Chimuka, L.; Ramström, O., On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Analytical chemistry 1999, 71 (11), 2152-2156.
44.Chapuis, F.; Pichon, V.; Lanza, F.; Sellergren, B.; Hennion, M.-C., Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers: application to the extraction of triazines from complex matrices. Journal of Chromatography B 2004, 804 (1), 93-101.
45.Sambe, H.; Hoshina, K.; Haginaka, J., Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method: Their application to the determination of methylthiotriazine herbicides in river water. Journal of Chromatography A 2007, 1152 (1), 130-137.
46.Hu, X.; Hu, Y.; Li, G., Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. Journal of Chromatography A 2007, 1147 (1), 1-9.
47.Djozan, D.; Ebrahimi, B., Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica chimica acta 2008, 616 (2), 152-159.
48.Djozan, D.; Farajzadeh, M. A.; Sorouraddin, S. M.; Baheri, T.; Norouzi, J., Inside-needle extraction method based on molecularly imprinted polymer for solid-phase dynamic extraction and preconcentration of triazine herbicides followed by GC–FID determination. Chromatographia 2012, 75 (3-4), 139-148.
49.吴科盛; 许恒毅; 郭亮; 梁语嫣; 熊勇华, 磁性固相萃取在检测分析中的应用研究进展. 食品科学 2011, 32 (23), 317-320.
50.Zhi, W.; Chun, W., 磁性固相萃取技术研究的新进展. 色谱 2012, 30 (10), 977-979.
51.Zhao, G.; Song, S.; Wang, C.; Wu, Q.; Wang, Z., Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Analytica chimica acta 2011, 708 (1), 155-159.
52.CARVALHO COSTA, I.; Salaro, C. P.; Costa, M. C., Polymethylmethacrylate facial implant: a successful personal experience in Brazil for more than 9 years. Dermatologic Surgery 2009, 35 (8), 1221-1227.
53.Thaler, M. P.; Ubogy, Z. I., Artecoll: the Arizona experience and lessons learned. Dermatologic surgery 2005, 31 (s4), 1566-1576.
54.Reichenberger, M. A.; Stoff, A.; Richter, D. F., Polymethylmethacrylate for managing frontal bone deformities. Aesthetic plastic surgery 2007, 31 (4), 397-400.
55.Frazer, R. Q.; Byron, R. T.; Osborne, P. B.; West, K. P., PMMA: an essential material in medicine and dentistry. Journal of long-term effects of medical implants 2005, 15 (6).
56.Kohlschütter, V.; Haenni, P., Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure. Zeitschrift für anorganische und allgemeine Chemie 1919, 105 (1), 121-144.
57.Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
58.Long, R. Q.; Yang, R. T., Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society 2001, 123 (9), 2058.
59.Serrano, A.; Gallego, M., Fullerenes as sorbent materials for benzene, toluene, ethylbenzene, and xylene isomers preconcentration. Journal of separation science 2006, 29 (1), 33-40.
60.Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401.
61.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature materials 2007, 6 (3), 183-191.
62.Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials 2010, 22 (35), 3906-3924.
63.Cai, Y.; Jiang, G.; Liu, J.; Zhou, Q., Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Analytical chemistry 2003, 75 (10), 2517-2521.
64.Björk, J.; Hanke, F.; Palma, C.-A.; Samori, P.; Cecchini, M.; Persson, M., Adsorption of aromatic and anti-aromatic systems on graphene through π− π stacking. The Journal of Physical Chemistry Letters 2010, 1 (23), 3407-3412.
65.Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
66.Li, D.; Kaner, R. B., Graphene-based materials. Nat Nanotechnol 2008, 3, 101.
67.Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved synthesis of graphene oxide. Acs Nano 2010, 4 (8), 4806-4814.
68.Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature nanotechnology 2008, 4 (1), 25-29.
69.He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical Physics Letters 1998, 287 (1), 53-56.
70.Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857.
71.Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. Journal of Materials Chemistry 2010, 20 (12), 2277-2289.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔