(3.226.72.118) 您好!臺灣時間:2021/05/13 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俞諼
研究生(外文):Yu-Hsuan Chen
論文名稱:三核金屬離子簇化物(銅或錳)之光譜分析與催化研究
論文名稱(外文):Spectroscopic and Catalytic Study of Trinuclear Metal Clusters (Cu or Mn)
指導教授:陳炳宇陳炳宇引用關係
口試委員:陳長謙俞聖法陳繼添林柏亨
口試日期:2016-07-14
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:136
中文關鍵詞:三核金屬離子簇化物
外文關鍵詞:Trinuclear Metal Clusters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中主要可分為微粒體甲烷單氧化酵素之模型三核銅金屬簇化物Cu(I, I, I)與其氧化衍生物之電噴灑游離質譜研究以及三核錳金屬簇化物對烷類分子羥化之勻相及異相催化兩個部分。在第一部分中我們利用無氧條件的進樣方式以電噴灑游離質譜 (Electrospray Ionization Mass Spectrometry, ESI-MS) 技術分析三核銅簇離子化合物[CuICuICuI(7-Dipy)](X) (X = BF4, PF6, ClO4)以及[CuICuICuI(7-N3Et)](ClO4) 與氧氣反應的可能氧化態,這樣的技術成功克服[CuICuICuI(L)]+ (L = 7-Dipy, (R,R)- 7-N3Et, (R,S)- 7-N3Et, 7-N3Et)氧氣敏感(oxygen sensitive)的偵測限制,可清楚偵測到: [CuICuICuI(7-Dipy)]3+(X)2(X = BF4, PF6, ClO4) 以及, [CuICuICuI(L)]3+(ClO4)2(L = (R,R)-7-N3Et, (R,S)-7-N3Et, 7-N3Et)的訊號。在有限的氧氣下,會偵測到Cu(I, I, I)與氧氣反應的中間物,(CH3CN) m/z = 871、935 amu、(CH3CN/CH3OH) m/z = 830、929、1009、1073 amu,類似於先前Sunney I. Chan於文獻上報導Cu(I, I, I)與氧氣反應機制的反應中間物[CuIICuII(-O)2CuIII]+或[CuICuII(-O)CuII]+,當與更多氧氣反應時,這些訊號則會快速消失完全與氧氣反應,得到m/z = 1014 amu為{[CuIICuII(-O)CuII(7-Dipy)]2+(ClO4)2 + H+}。此外,在有氧條件下則可成功偵測到{[CuIICuII(-O)CuII(7-Dipy)]2+(X)2 + H+} (X = BF4, PF6, ClO4)以及{[CuIICuII(-O)CuII(7-N3Et)]2+(ClO4)2 + H+}等三核銅簇離子化合物與氧氣反應後的最終氧化訊號。
在第二部分,利用X-ray、EPR以及ESI-MS等分析方式觀測到三核錳簇離子化合物[MnII(OAc)2MnII(-OAc)MnII(7-Dipy)](OAc) (1) 經氧化劑(tert-Butylhydroperoxide, TBHP)氧化的多種氧化態像是Mn(III, III, IV)、Mn(III, IV, IV)以及Mn(IV, IV, IV)可以在X-ray、EPR以及ESI-MS被偵測到,其中Mn(IV, IV, IV)可以在低溫下(-50 oC)添加抗凍劑乙二醇的EPR實驗被證實,我們意外地發現當先添加20 % 的抗凍劑乙二醇至Mn(II, II, II)甲醇溶液後再以3當量的TBHP氧化或者是添加至Mn(III, III, IV)甲醇溶液後再以1當量的TBHP氧化,在垂直模式下會偵測到一組新的訊號位於g ~ 5且分裂數目為6 ~ 8左右,據文獻報導此為典型的Mn(IV)=O訊號37-38,同時在平行模式下會偵測到另一組新的訊號位於g ~ 2且分裂數目為11,據文獻報導40此為兩個等價且具有相同配位環境的Mn(IV)耦合產生的訊號,當進一步回溫至室溫(25 oC)一分鐘後,這兩組訊號會同時消失,此現象更進一步證明Mn(IV, IV, IV)是由Mn(II, II, II)或Mn(III, III, IV)推升而得。此外,添加 DMPO (5,5-Dimethyl-1-Pyrroline-N-Oxide)至Mn(IV, IV, IV)甲醇溶液中,在EPR及GC-MS可偵測到NO∙自由基分子的訊號,這顯示在勻相反應中DMPO與數個Mn(IV, IV, IV)進行至少4個電子的氧化開環。因此,為了瞭解Mn(IV, IV, IV)對受質進行氧化的機制,我們選擇常見的中孔洞材料Al-MCM-41與Mn(II, II, II)結合得到[MnII(OAc)2MnII(-OAc)MnII(7-Dipy)](OAc)@Al-MCM-41 (3) ,其氧化的表現大致與勻相相符,不同的是在添加DMPO的實驗中於EPR及GC-MS偵測到的是DMPOX,其進行至少2個電子的氧化,這顯示在異相反應中DMPO可避免與Mn(IV, IV, IV)過度氧化。在DMPO實驗中,一方面顯示勻相、異相兩者化學反應性的差異,另一方面說明勻相、異相催化劑之氧化態皆可被推升至具有高價態的金屬氧化物44-46,如: Co(IV)=O、Mn(IV)=O 以及 Fe(IV)=O。在催化方面,無論勻相或異相催化,三核錳簇離子化合物對飽和碳氫鍵都能進行氧化催化,如: 正癸烷、正己烷、環己烷、乙醇等,小至乙烷。異相催化確實可達到減低催化劑耗損、可重複使用以及保護受質(DMPO)不過度氧化的訴求。此外在沒有外加受質的條件下,發現氧化至高氧化態的三錳催化劑會分解氧化劑(TBHP)進而產生甲醇和丙酮等的現象,更說明了高氧化態的三錳催化劑的活性。值得一提的是此三錳催化劑經過氧化後仍然可成功地被再結晶且經X-ray證實為原本的結構[MnIII(OAc)2MnII(-OAc)MnII(7-Dipy)](BPh4)2 (2)。


There are two topics in this thesis, one is the study of ESI-MS spectra of the trinuclear copper cluster Cu(I, I, I) and Cu(I, I, I)-O2 derivatives for the models of the particulate methane monooxygenase (pMMO) and the other one is the study of alkane hydroxylation mediated by the trinuclear manganese cluster in homo- and heterogeneous catalysis.
In the first study, the 7-Dipy ligand was also adopted in the synthesis of trinuclear copper complex [CuICuICuI(7-Dipy)](X) (X = BF4, PF6, ClO4). According to previous literatures, the [CuICuICuI]+ complex is known too highly sensitive to O2 to be directly detected. Herein we report new findings regarding the ESI mass spectra of [CuICuICuI(L)]+ (L = 7-Dipy, (R,R)-7-N3Et, (R,S)-7-N3Et, 7-N3Et), which are the functional states of tricopper catalysts, as well as some corresponding O2 derivatives by the ESI mass spectrometry combing with anaerobic injection. This technique includes rinse of the sample loop with deoxygenated solvent (ACN or MeOH) and followed by the injection of Cu(I, I, I). Even if there is still limited extent of O2 contamination, the tricopper (I, I, I) species still can be well characterized by means of varying distinct counter anions (BF4, PF6, and ClO4) and the supporting ligands (7-Dipy and 7-N3Et). On the basis of direct observing the Cu(I, I, I) cluster, the other detected signals at the meantime, aside from the familiar [CuIICuII(-O)CuII(L)]2+ species, may refer to the intermediates generated by instant collisions between Cu(I, I, I) and O2, including m/z = 871, 935 amu in CH3CN or m/z = 830, 929, 1009, 1073 amu in mixing CH3CN/CH3OH solvent, which have been simulated to presumably correspond to Cu(I, I, II), Cu(I, II, II) or Cu(II, II, III), respectively. More importantly, these intermediates will all disappear and completely turns into the sole signal of {[CuIICuII(-O)CuII(7-Dipy)]2+(ClO4)2 + H+} with m/z = 1014 amu as long as the oxygen-containing solvent is input into the ESI-MS spectrometer succeeding the Cu(I, I, I) injection, confirming these genuine tricopper-O2 intermediates.
In the second study, the trimanganese complex [MnII(OAc)2MnII(-OAc)MnII(7-Dipy)](OAc) (1) and [MnIII(OAc)2MnII(-OAc)MnII(7-Dipy)](BPh4)2 (2) were first synthesized as precursors for the search of high-valent manganese species. The successive oxidations by treating two to three equivalents of TBHP (tert-Butylhydroperoxide) will give rise to various valence states, including Mn(III, III, IV), Mn(III, IV, IV) or Mn(IV, IV, IV), which were investigated by the X-ray, EPR and ESI-MS spectrometry, respectively. The highest-valent Mn(IV, IV, IV) species with high oxo-transfer reactivity is rationally proposed based on dual-mode EPR spectroscopy in the experiments of addition with ethylene glycol and rapid DMPO oxidation. With addition of 20 % ethylene glycol, originally for improvement of a glass in frozen solution, into the methanol solution containing one equiv.
ofMn(II, II, II) and three equiv. of TBHP or one equiv. of Mn(III, III, IV) and one equiv. of TBHP at -50 ℃, a new ⊥ EPR signal with 6~8 distinct splitting lines at g~5 will appear immediately, which is similar to the typical monomanganese(IV)-oxo complex37-38, and meanwhile, a new 11-lines signal at g~2 observed in the parallel mode EPR spectroscopy, referring to a coupling between two equivalent Mn(IV) ions. The simultaneous disappearance of these two signals in one minute when temperature returns to 25 ℃ indicates their interdependence to support the formation of high-valent Mn(IV, IV, IV) initiated either from Mn(II, II, II) or Mn(III, III, IV). Besides, with addition of DMPO into the methanol solution of Mn(IV, IV, IV), the NO∙ radical type signal was detected by EPR and GC-MS spectrometries, meaning that DMPO undergoes ring-opening oxygenation by several Mn(IV, IV, IV) clusters via at least four-electron oxidation in solution.
Thus, to understand the mechanistic aspects of oxo-transfer mediated by Mn(IV, IV, IV) cluster, we have embedded Mn(II, II, II) catalyst into Al-MCM41 mesoporous material to obtain [MnII(OAc)2MnII(-OAc)MnII(7-Dipy)](OAc)@Al-MCM41 (3), which
have been verified with similar spectroscopic characteristics to those before and after TBHP oxidation in solution. In contrast, in the same DMPO
oxidation experiment, the DMPOX, two-electron oxidation intermediate, was detected instead of NO∙ type signal by EPR and GC-MS spectrometries. These results indicate that no matter in homogeneous and heterogeneous conditions, the oxidized residues of DMPO strongly sustain the formation of high valent manganese cluster as same as some reported44-46 Mn(IV)=O, Co(IV)=O, and Fe(IV)=O species in the reaction of oxo-transfer into DMPO rather than oxygen-centered radicals (as produced in Fenton-type chemistry). While these trimanganese catalysts have also been successfully achieved the C-H bond oxygenation of small alkane, including cyclohexane, n-hexane and ethane, the catalytic efficiency in homogeneous condition is higher than that obtained in heterogeneous condition. In addition, under absence of any consumable substrate, we have found that the TBHP will be catalytically decomposed into methanol and acetone by the high-valent trimanganese cluster instead of the interconversion of biradicals through the direct O-O bond cleavage of TBHP.
It is worth noting that this trimanganese complex is very robust to reuse in the distinct catalysis or to recrystallize in the form of [MnIII(OAc)2MnII(-OAc)MnII(7-Dipy)](BPh4)2 (2) evidenced by X-ray data.


目次
中文摘要 i
英文摘要 iv
三核錳金屬簇離子化合物結構之縮寫 viii
圖目次 xiv
表目次 xxiii

第一章、微粒體甲烷單氧化酵素之模型三核銅金屬簇化物Cu(I, I, I)與其氧化衍生物之電噴灑游離質譜之研究
一、 前言 1
二、 藥品 17
三、 三核銅金屬簇化物[CuICuICuI(7-Dipy)](X) (X = BF4, PF6, ClO4)的合成 18
(一) Cu(I)(CH3CN)4BF4 (1) (M.W. = 314.56) 18
(二) Cu(I)(CH3CN)4ClO4 (2) (M.W. = 327.2) 18
(三) [CuICuICuI(7-Dipy)](X) (X = BF4, PF6, ClO4) 18
四、 三核銅金屬簇離子化合物[CuICuICuI(7-Dipy)](X) (X = BF4, PF6, ClO4)經O2 (g) 氧化之ESI-MS光譜 19
(一) [CuICuICuI(7-Dipy)](BF4)經O2 (g) 氧化之ESI-MS光譜 19
(二) [CuICuICuI(7-Dipy)](PF6)經O2 (g) 氧化之ESI-MS光譜 19
(三) [CuICuICuI(7-Dipy)](ClO4)經O2 (g) 氧化之ESI-MS光譜 23
五、 三核銅金屬簇離子化合物[CuICuICuI(7-N3Et)](ClO4)經O2 (g) 氧化之ESI-MS光譜 30
(一) [CuICuICuI(7-N3Et)](ClO4)經O2 (g) 氧化之ESI-MS光譜 30
六、 結論 34
七、 參考文獻 35
第二章、三核錳金屬簇化物對烷類分子羥化之勻相及異相催化之研究
一、 前言 38
二、 儀器設備 49
(一) 1H NMR使用Varian Mercury-400光譜儀測定 49
(二) UV-Vis光譜使用Varian Cary-50E 49
(三) EPR光譜使用Bruker EMX-10/12光譜儀測定 49
(四) 晶體X-ray繞射數據收集使用Bruker Enraf-Nonius Kappa CCD (師大貴儀) 或Bruker AXS Smart-1000或Bruker D8 Discover 49
(五) 微波反應使用CEM Discover Benchmate 49
(六) HRXRD量測使用BRUKER D8 SSS 49
(七) FE-TEM拍攝使用JEOL JEM-2100F 49
(八) FE-TEM-EDS量測使用Oxford X-Max 49
(九) FE-SEM拍攝使用JEOL JSM-6700F 49
(十) BET量測使用Micromeritics ASAP 2020 Sorptometer 49
(十一) ESI量測使用LTQ Orbitrap XL (Thermo Fisher Scientific) 49
(十二) GC-MS量測使用Agilent GC(6890N)-MS(5973N) 49
(十三) CV偵測使用CHI/611A 49
三、 藥品 50
四、 三核錳金屬簇化物的合成 51
(一) 3,3’-(1,4-diazepane-1,4-diyl)bis(1-chloropropan-2-ol), 7-Cl(M.W. = 285.2 g/mol) 51
(二) 3,3’-(1,4-diazepane-1,4-diyl)bis(1-(bis(pyridine-2-ylmethyl)amino)propan-2-ol ), 7-Dipy (M.W. = 610.8 g/mol) 52
(三) [MnII(OAc)2MnII(m-OAc)MnII(7-Dipy)](OAc) (1) (M.W. = 1009.8) 52
(四) [MnIII(OAc)2MnII(m-OAc)MnII(7-Dipy)](BPh4)2 (2) (M.W. = 1589.2) 53
(五) [MnIIMnIIMnII(7-Dipy)](Cl)4 (3) (M.W. = 915.4) 55
(六) [MnIIMnIIMnII(7-Dipy)](ClO4)4 (4) (M.W. = 1171.4) 55
五、 三核錳金屬簇化物Complex 1以及Complex 2與環己烷的催化反應及產物鑑定 56
(一) Complex 1與環己烷的催化反應及產物鑑定 56
(二) Complex 1於含乙二醇溶劑與環己烷的催化反應及產物鑑定 56
(三) Complex 2與環己烷的催化反應及產物鑑定 56
(四) Complex 1與環己烷的催化反應之反應時間追蹤實驗 57
六、 Complex 1吸附於中孔洞分子篩Al-MCM-41的製備與應用 59
(一) 中孔洞分子篩Al-MCM-41的製備方法 59
(二) Complex 3的製備 60
(三) 中孔洞分子篩Al-MCM-41之HRXRD量測 62
(四) 中孔洞分子篩Al-MCM-41與Complex 3之BET量測 62
(五) 中孔洞分子篩Al-MCM-41與Complex 3之FE-SEM量測 64
(六) 中孔洞分子篩Al-MCM-41與Complex 3之FE-TEM-EDS量測 66
(七) Complex 3與環己烷的催化反應與產物鑑定 67
(八) Complex 3於二氯甲烷與環己烷的催化反應與產物鑑定 67
(九) Complex 3於乙腈與環己烷的催化反應與產物鑑定 68
(十) Complex 3與Complex 1對環己烷的催化反應之比較 68
七、 三核錳金屬簇化物的氧化反應 69
(一) 三核錳金屬簇化物Complex 2經 TBHP 氧化的低溫UV-Vis實驗 69
(二) Complex 2於0 oC下經TBHP氧化之 ESI-MS 光譜 70
(三) EPR自旋漢彌爾頓(Hamiltonian operator)算符 74
(四) Complex 1於25 oC下經TBHP氧化的實驗 76
(五) [MnIIMnIIMnII(7-Dipy)](Cl)4 (3)於25 oC下經TBHP氧化的實驗 78
(六) [MnIIMnIIMnII(7-Dipy)](ClO4)4 (4)於25 oC下經TBHP氧化的實驗 79
(七) Complex 1及[MnIIMnIIMnII(7-Dipy)](ClO4)4 (4) 於-50 oC下經TBHP氧化的實驗 80
(八) Complex 1於-50 oC下經TBHP及 PhIO氧化的實驗 83
(九) Complex 1於-50 oC下經TBHP及 m-CPBA氧化的實驗 84
(十) 抗凍劑乙二醇對Complex 1於25 oC下經TBHP氧化之EPR光譜的影響 85
(十一) 抗凍劑乙二醇對Complex 1於-50 oC下經TBHP氧化之EPR光譜的影響 90
(十二) Complex 1於-50 oC下經TBHP氧化的Dual-mode EPR實驗 95
(十三) Complex 1經TBHP氧化與DMPO的實驗 98
(十四) Complex 3經TBHP氧化與DMPO的實驗 102
(十五) 三核錳金屬簇化物的氧化EPR光譜之分析 106
八、 三核錳金屬簇化物Complex 3與Complex 1對正己烷、乙醇、乙烷的催化反應之比較及產物鑑定 111
(一) Complex 3與正己烷的催化反應及產物鑑定 111
(二) Complex 1以及Complex 3對乙烷的催化反應及產物鑑定 112
(三) Complex 1以及Complex 3對乙醇的催化反應及產物鑑定 113
九、 三核錳金屬簇化物Complex 3分解TBHP的催化反應及產物鑑定 114
(一) Al-MCM-41、Mn(OAc)2·4H2O以及Mn2+@Al-MCM-41分解TBHP的催化反應及產物鑑定之空白實驗 114
(二) Complex 3分解TBHP的催化反應及產物鑑定 115
十、 三核錳金屬簇化物的晶體 121
(一) Complex 2晶體結構鑑定 121
(二) Complex 2於-20 oC下經TBHP氧化後養晶 121
(三) Complex 2於-20 oC下經TBHP及硝酸鈰銨氧化後養晶 121
(四) Complex 2於25 oC下經TBHP氧化後養晶 121
(五) 1 當量 Mn(OAc)2.4H2O混2當量MnCl2.4H2O 與7-Dipy及NaBPh4反應養晶 122
(六) 1 當量 Mn(OAc)2.4H2O混2當量Mn(ClO4)2.xH2O 與7-Dipy及 NaBPh4反應養晶 122
十一、 三核錳金屬簇化物氧化催化動力學與其機制之探討 127
十二、 未來計畫 129
十三、 結論 130
十四、 參考文獻 131


(1)Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R. J Mol Catal a-Chem 2004, 220, 7-25.

(2)Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E. Science 2009, 326, 716-718.

(3)Hanson, R. S.; Hanson, T. E. Microbiological Reviews 1996, 60, 439-+.

(4)Feig, A. L.; Lippard, S. J. Chem. Rev. 1994, 94, 759-805.

(5)Lipscomb, J. D. Annual Review of Microbiology 1994, 48, 371-399.

(6)Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J. Biochemistry 2004, 43, 4421-4430.

(7)Semrau, J. D.; Chistoserdov, A.; Lebron, J.; Costello, A.; Davagnino, J.; Kenna, E.; Holmes, A. J.; Finch, R.; Murrell, J. C.; Lidstrom, M. E. J Bacteriol 1995, 177, 3071-3079.

(8)Stolyar, S.; Costello, A. M.; Peeples, T. L.; Lidstrom, M. E. Microbiology-Uk 1999, 145, 1235-1244.

(9)Lieberman, R. L.; Rosenzweig, A. C. Nature 2005, 434, 177-182.

(10)Chan, S. I.; Wang, V. C. C.; Lai, J. C. H.; Yu, S. S. F.; Chen, P. P. Y.; Chen, K. H. C.; Chen, C.-L.; Chan, M. K. Angew. Chem. Int. Edit. 2007, 46, 1992-1994.

(11)Nguyen, H. H. T.; Elliott, S. J.; Yip, J. H. K.; Chan, S. I. J. Biol. Chem. 1998, 273, 7957-7966.

(12)Yu, S. S. F.; Chen, K. H. C.; Tseng, M. Y. H.; Wang, Y. S.; Tseng, C. F.; Chen, Y. J.; Huang, D. S.; Chan, S. I. J Bacteriol 2003, 185, 5915-5924.

(13)Nguyen, H. H. T.; Nakagawa, K. H.; Hedman, B.; Elliott, S. J.; Lidstrom, M. E.; Hodgson, K. O.; Chan, S. I. J. Am. Chem. Soc. 1996, 118, 12766-12776.
(14)Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G. J. Am. Chem. Soc. 1996, 118, 921-922.

(15)Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J. J. Am. Chem. Soc. 1997, 119, 1818-1827.

(16)Yoshizawa, K. J. Inorg. Biochem. 2000, 78, 23-34.

(17)Yoshizawa, K.; Suzuki, A.; Shiota, Y.; Yamabe, T. B. Chem. Soc. Jpn. 2000, 73, 815-827.

(18)Valentine, A. M.; LeTadic-Biadatti, M. H.; Toy, P. H.; Newcomb, M.; Lippard, S. J. J. Biol. Chem. 1999, 274, 10771-10776.

(19)Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I. J. Am. Chem. Soc. 1997, 119, 9949-9955.

(20)Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I. Chembiochem 2002, 3, 760-765.

(21)Yu, S. S. F.; Wu, L. Y.; Chen, K. H. C.; Luo, W. I.; Huang, D. S.; Chan, S. I. J. Biol. Chem. 2003, 278, 40658-40669.

(22)Baik, M. H.; Gherman, B. F.; Friesner, R. A.; Lippard, S. J. J. Am. Chem. Soc. 2002, 124, 14608-14615.

(23)Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Chem. Rev. 2003, 103, 2385-2419.

(24)Chen, P. P. Y.; Chan, S. I. J. Inorg. Biochem. 2006, 100, 801-809.

(25)Chen, K. H. C.; Chen, C. L.; Tseng, C. F.; Yu, S. S. F.; Ke, S. C.; Lee, J. F.; Nguyen, H. T.; Elliott, S. J.; Alben, J. O.; Chan, S. I. Journal of the Chinese Chemical Society 2004, 51, 1081-1098.


(26)Root, D. E.; Henson, M. J.; Machonkin, T.; Mukherjee, P.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 4982-4990.

(27)Machonkin, T. E.; Mukherjee, P.; Henson, M. J.; Stack, T. D. P.; Solomon, E. I. Inorg Chim Acta 2002, 341, 39-44.

(28)Chen, P. P. Y.; Yang, R. B. G.; Lee, J. C. M.; Chan, S. I. P. Natl. Acad. Sci. USA 2007, 104, 14570-14575.

(29)Chan, S. I.; Lu, Y.-J.; Nagababu, P.; Maji, S.; Hung, M.-C.; Lee, M. M.; Hsu, I. J.; Pham Dinh, M.; Lai, J. C. H.; Ng, K. Y.; Ramalingam, S.; Yu, S. S. F.; Chan, M. K. Angew. Chem. Int. Edit. 2013, 52, 3731-3735.

(30)Liu, C.-C.; Mou, C.-Y.; Yu, S. S. F.; Chan, S. I. Energy & Environmental Science 2016, 9, 1361-1374.

(31)Chan, S. I.; Chien, C. Y. C.; Yu, C. S. C.; Nagababu, P.; Maji, S.; Chen, P. P. Y. Journal of Catalysis 2012, 293, 186-194.

(1) Barber, J.; Ferreira, K.; Maghlaoui, K.; Iwata, S. Phys Chem Chem Phys 2004, 6, 4737-4742.

(2) Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. Science 2004, 303, 1831-1838.

(3) Lohmiller, T.; Krewald, V.; Navarro, M. P.; Retegan, M.; Rapatskiy, L.; Nowaczyk, M. M.; Boussac, A.; Neese, F.; Lubitz, W.; Pantazis, D. A.; Cox, N. Phys Chem Chem Phys 2014, 16, 11901-11910.

(4) Cox, N.; Retegan, M.; Neese, F.; Pantazis, D. A.; Boussac, A.; Lubitz, W. Science 2014, 345, 804-808.
(5) Kok, B.; Forbush, B.; McGloin, M. Photochemistry and Photobiology 1970, 11, 457.

(6) Yano, J.; Kern, J.; Sauer, K.; Latimer, M. J.; Pushkar, Y.; Biesiadka, J.; Loll, B.; Saenger, W.; Messinger, J.; Zouni, A.; Yachandra, V. K. Science 2006, 314, 821-825.

(7) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Nature 2011, 473, 55-U65.

(8) Suga, M.; Akita, F.; Hirata, K.; Ueno, G.; Murakami, H.; Nakajima, Y.; Shimizu, T.; Yamashita, K.; Yamamoto, M.; Ago, H.; Shen, J.-R. Nature 2015, 517, 99-U265.


(9) Sproviero, E. M.; Gascon, J. A.; McEvoy, J. P.; Brudvig, G. W.; Batista, V. S. J. Am. Chem. Soc. 2008, 130, 6728.

(10) Hoganson, C. W.; Babcock, G. T. Science 1997, 277, 1953-1956.

(11) Limburg, J.; Szalai, V. A.; Brudvig, G. W. J. Chem. Soc. Dalton Trans. 1999, 1353-1361.

(12) Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.; Crabtree, R. H.; Brudvig, G. W. Science 1999, 283, 1524-1527.

(13) Watanabe, Y.; Fujii, H. Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations 2000, 97, 61-89.

(14) Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B. H.; Tani, F.; Naruta, Y. Angew. Chem. Int. Edit. 2004, 43, 98-100.

(15) Poulsen, A. K.; Rompel, A.; McKenzie, C. J. Angew. Chem. Int. Edit. 2005, 44, 6916-6920.

(16) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science 2006, 312, 1941-1943.

(17) McEvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455-4483.

(18) Kanady, J. S.; Tsui, E. Y.; Day, M. W.; Agapie, T. Science 2011, 333, 733-736.

(19) Al-Oweini, R.; Sartorel, A.; Bassil, B. S.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Angew. Chem. Int. Edit. 2014, 53, 11182-11185.

(20) Zhang, C.; Chen, C.; Dong, H.; Shen, J.-R.; Dau, H.; Zhao, J. Science 2015, 348, 690-693.
(21) Doro, F. G.; Smith, J. R. L.; Ferreira, A. G.; Assis, M. D. J Mol Catal a-Chem 2000, 164, 97-108.

(22) do Nascimento, E.; Silva, G. D.; Caetano, F. A.; Fernandez, M. A. M.; da Silva, D. C.; de Carvalho, M.; Pernaut, J. M.; Reboucas, J. S.; Idemori, Y. M. J. Inorg. Biochem. 2005, 99, 1193-1204.

(23) Rose, E.; Andrioletti, B.; Zrig, S.; Quelquejeu-Ehteve, M. Chem Soc Rev 2005, 34, 573-583.

(24) Smith, J. R. L.; Iamamoto, Y.; Vinhado, F. S. J Mol Catal a-Chem 2006, 252, 23-30.

(25) Cavallo, L.; Jacobsen, H. Angew. Chem. Int. Edit. 2000, 39, 589.

(26) Dismukes, G. C. Chem. Rev. 1996, 96, 2909-2926.

(27) He, J.; Hertweck, C. Chem Biol 2003, 10, 1225-1232.

(28) Wessel, J.; Crabtree, R. H. J Mol Catal a-Chem 1996, 113, 13-22.
(29) Fish, R. H.; Fong, R. H.; Oberhausen, K. J.; Konings, M. S.; Vega, M. C.; Christou, G.; Vincent, J. B.; Buchanan, R. M. New J Chem 1992, 16, 727-733.

(30) Barman, P.; Vardhaman, A. K.; Martin, B.; Woerner, S. J.; Sastri, C. V.; Comba, P. Angew. Chem. Int. Edit. 2015, 54, 2095-2099.

(31) Aratani, Y.; Yamada, Y.; Fukuzumi, S. Chem. Commun. 2015, 51, 4662-4665.

(32) Vaschetto, E. G.; Monti, G. A.; Herrero, E. R.; Casuscelli, S. G.; Eimer, G. A. Applied Catalysis a-General 2013, 453, 391-402.

(33) Sing, K. S. W. International Union of Pure and Applied Chemistry 1994, 66, 1739-1758.

(34) Teutloff, C.; Schafer, K. O.; Sinnecker, S.; Barynin, V.; Bittl, R.; Wieghardt, K.; Lendzian, F.; Lubitz, W. Magn Reson Chem 2005, 43, S51-S64.

(35) Cooper, S. R.; Dismukes, G. C.; Klein, M. P.; Calvin, M. J. Am. Chem. Soc. 1978, 100, 7248-7252.

(36) Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623-6630.

(37) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.; Yano, J.; Hendrich, M. P.; Borovik, A. S. P. Natl. Acad. Sci. USA 2015, 112, 5319-5324.

(38) Parsell, T. H.; Behan, R. K.; Green, M. T.; Hendrich, M. P.; Borovik, S. J. Am. Chem. Soc. 2006, 128, 8728-8729.

(39) Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J. Biochemistry 2004, 43, 4421-4430.


(40) Azamat, D. V.; Dejneka, A.; Lancok, J.; Trepakov, V. A.; Jastrabik, L.; Badalyan, A. G. J Appl Phys 2012, 111.

(41) Bilski, P.; Reszka, K.; Bilska, M.; Chignell, C. F. J. Am. Chem. Soc. 1996, 118, 1330-1338.

(42) Locigno, E. J.; Zweier, J. L.; Villamena, F. A. Organic & Biomolecular Chemistry 2005, 3, 3220-3227.

(43) Ge, J.-Y.; Wang, J.-C.; Cheng, J.-Y.; Wang, P.; Ma, J.-P.; Liu, Q.-K.; Dong, Y.-B. Chem. Commun. 2014, 50, 4434-4437.

(44) Lawrence, A.; Jones, C. M.; Wardman, P.; Burkitt, M. J. J. Biol. Chem. 2003, 278, 29410-29419.

(45) Yim, M. B.; Berlett, B. S.; Chock, P. B.; Stadtman, E. R. P. Natl. Acad. Sci. USA 1990, 87, 394-398.

(46) Hill, H. A. O.; Thornalley, P. J. Inorganica Chimica Acta-Bioinorganic Chemistry 1982, 67, L35-L36.

(47) VanderZee, J.; Barr, D. P.; Mason, R. P. Free Radical Biology and Medicine 1996, 20, 199-206.

(48) Wang, Y. W.; Duh, Y. S.; Shu, C. M. Process Safety Progress 2007, 26, 299-303.

(49) Hiatt, R. C., J.; Visser, T. Canadian Journal of Chemistry 1964, 42, 2754-2757.

(50) Turra, N.; Neuenschwander, U.; Baiker, A.; Peeters, J.; Hermans, I. Chem. Eur. J. 2010, 16, 13226-13235.

(51) Zhu, B.-Z.; Zhao, H.-T.; Kalyanaraman, B.; Liu, J.; Shan, G.-Q.; Du, Y.-G.; Frei, B. P. Natl. Acad. Sci. USA 2007, 104, 3698-3702.

(52) Rabion, A.; Chen, S.; Wang, J. P.; Buchanan, R. M.; Seris, J. L.; Fish, R. H. J. Am. Chem. Soc. 1995, 117, 12356-12357.

(53) Baerends, E. J.; Ros, P. Int. J. Quantum Chem. 1978, 12, 169-190.

(54) Chan, S. I.; Chien, C. Y. C.; Yu, C. S. C.; Nagababu, P.; Maji, S.; Chen, P. P. Y. Journal of Catalysis 2012, 293, 186-194.

(55) Chan, S. I.; Lu, Y.-J.; Nagababu, P.; Maji, S.; Hung, M.-C.; Lee, M. M.; Hsu, I. J.; Pham Dinh, M.; Lai, J. C. H.; Ng, K. Y.; Ramalingam, S.; Yu, S. S. F.; Chan, M. K. Angew. Chem. Int. Edit. 2013, 52, 3731-3735.

(56) Nguyen, H. H. T.; Nakagawa, K. H.; Hedman, B.; Elliott, S. J.; Lidstrom, M. E.; Hodgson, K. O.; Chan, S. I. J. Am. Chem. Soc. 1996, 118, 12766.

(57) Schultz, B. E.; Ye, B. H.; Li, X. Y.; Chan, S. I. Inorg. Chem. 1997, 36, 2617.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔