( 您好!臺灣時間:2021/05/16 20:55
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Ming-Chang Wu
論文名稱(外文):Study on the Variation of Groundwater Level under Time-varying Rainfall Events
指導教授(外文):Ping-Cheng Hsieh
口試委員(外文):Qian-Deng ZhanZhu-Hui Chen
外文關鍵詞:groundwater leveldischargetime variant rainfallsloping aquifer
  • 被引用被引用:1
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本文考量非拘限含水層具不透水底床傾角以及降雨量隨著時間的變化,引用Child (1971)以Darcy’s Law為基礎提出的Boussinesq方程式為控制方程式,並就線性化後之方程式利用廣義積分轉換法(General Integral Transforms Technique),進行地下水位變動之解析。
文中分別探討均勻降雨下地下水水位與流量達到平衡的過程以及時變性降雨造成非拘限傾斜含水層的地下水位變動,其中均勻降雨部分分別與Verhoest & Troch (2000)及Bansal & Das (2010)做比較驗證;經與前人研究的解析解進行比較後,獲得相當不錯的結果,並搭配現地土壤與水文的資料作為參數引入,冀能得到更準確的現地地下水資訊。

The slopes of the suburbs come to important areas by focusing on the work of soil and water conservation in recent years. The water table inside the aquifer is affected by rainfall, geology and topography, which will result in the change of groundwater discharge and water level. Currently, the way to obtain water table information is to set up the observation wells; however, owing to that the cost of equipment and the wells excavated is too expensive, we use the governing equation and boundary conditions to develop a model and then solve the problem, which might help us to understand the groundwater level variation.
In this study, we will consider an unconfined aquifer with impermeable bottom under the time variant rainfall. Referring to Child (1971), we employ the Boussinesq equation as the governing equation, and apply the General Integral Transforms Technique to analyzing the groundwater level after linearizing the Boussinesq equation.
We discuss the response of groundwater level of an unconfined aquifer under uniform rainfall or time variant rainfall events. After comparing the solution with Verhoest & Troch (2000) and Bansal & Das (2010), we get satisfactory results, and then with the input of local field and hydrological data, we hope to obtain more accurate information of local groundwater.

摘 要 i
Abstract ii
第一章 前言 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究內容 3
1-4 章節介紹 3
第二章 文獻回顧 5
第三章 研究方法 6
3-1均勻降雨影響地下水位變動(case 1)6
3-2均勻降雨影響地下水位變動(case 2)14
第四章 結果與討論 22
4-1與Verhoest & Troch (2000) 驗證22
4-2與Bansal & Das (2010) 驗證29
第五章 結論與建議 76
5-1 結論 76
5-2 建議 78
參考文獻 79

6.洪維恩(2001) ,「數學魔法師maple 6」,碁峰資訊圖書,台北。
7.黃靖倫(2015) ,「海岸地區潮汐與降雨和土壤差異對非拘限含水層的地下水位變化」,碩士論文,國立中興大學水土保持研究所,台中。
8.Asadi-Aghbolaghi M., Chuang M.H., Yeh H.D. (2012), “Groundwater response to tidal fluctuation in a sloping leaky aquifer system,” Applied Mathematical Modelling 36, 4750–4759.
9.Boussinesq, J. Essai sur la théorie des eauxcourates. (1877), Mem. Acad. Sci. Inst. Fra. 23(1): 252–260.
10.Brutsaert W. (1994), “The unit response of groundwater outflow from a hillslope,” Water Resources Research 30(10), 2759-2763.
11.Bansal R.K. and Das S.K. (2010), “Response of an unconfined sloping squifer to constant recharge and seepage from the stream of varying water level,” Water Resour Manage 25, 893–911.
12.Chapman T.G. (1980), “Modeling groundwater flow over sloping beds,” Water Resources Research 16(6), 1114-1118.
13.Childs, E. C. (1971), “Drainage of groundwater resting on a sloping bed,” Water Resources Research. 7(5): 1256–1263.
14.Dagan G. (1967), “Second order theory of shallow free surface flow in porous media,” Quarterly Jnl of Mechanics & Applied Math, 20(4): 517-526.
15.Dupuit J. (1863), “Etudes Th’eoretiques et Pratiques sur le Mouvement des Eaux,” 2nd ed., Dunod, Paris.
16.Kazezyılmaz-Alhan C. M. (2012), “An improved solution for diffusion waves to overland flow” Applied Mathematical Modelling, 36: 1465-4172
17.Li H., Jiao J.J. (2002), Tidal groundwater level fluctuations in L-shaped leaky coastal”, Journal of Hydrology 268, 234–243.
18.Nielsen P. (1990), “Tidal dynamics of the water table in beaches,” Water Resource Research, 26:2127–34.
19.Özisik, M. N. (1968), Boundary value problems of heat conduction, Dover Publications, INC., New York.
20.Parlange J.Y., Stagnitti F., Starr J.L., Braddock R.D. (1984), “Free-surface flow in porous media and periodic solution of the shallow-flow approximation,” Journal of Hydrology 70, 251-263.
21.Polubarinova-Kochina P.Y. (1962), “Theory of Ground Water Movement”, pp.404-430, Princeton University, New Jersey, USA.
22.Rossman N.R. (2014), “Vadose zone lag time and potential 21st century climate change effects on spatially distributed groundwater recharge in the semi-arid Nebraska Sand Hills, ”Journal of Hydrology, 519: 656–669.
23.Sousa M.R. (2013), “A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor,” Journal of Contaminant Hydrology, 144: 138–151.
24.Teo H.T. (2003), “Tidal dynamics in coastal aquifers,” Master thesis, Gold Coast Campus, Griffith University, Australia.
25.Verhoest, E. C. (2000), and Troch A., “Some analytical solution of the linearized Boussinesq equation with recharge for a sloping aquifer,” Water Resources Research, 36(3): 793–800.
26.William J. Palm 3 (2004) “Introduction to Matlab 7 for Engineers”
27.Wooding R.A. and Chapman T.G. (1996), “Groundwater flow over a sloping impermeable layer,” Journal of Geophysical Research 71(12):2895-2902.
28.Zissis T.S., Teloglou I.S., Terzidis G.A. (2000), “Response of a sloping aquifer to constant replenishment and to stream varying water level, ” Journal of Hydrology 243: 180-191.

第一頁 上一頁 下一頁 最後一頁 top