(18.204.227.34) 您好!臺灣時間:2021/05/14 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝婷如
研究生(外文):Ting-Ju Hsieh
論文名稱:鰲鼓濕地明智利用之減碳效益
論文名稱(外文):Carbon reduction benefits of Ao-gu wetland under wise utilization
指導教授:林昭遠林昭遠引用關係
口試委員:許中立林壯沛周良勳
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:82
中文關鍵詞:鰲鼓濕地明智利用地覆變遷碳存量SWOT分析
外文關鍵詞:Ao-gu WetlandWise utilizationLand cover changeCarbon storageSWOT analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
據IPCC報告指出,減緩氣候變遷造成之衝擊僅有減碳一途,而濕地與森林為重要之碳匯場所,自2015年濕地保育法公布實施,更彰顯濕地環境營造及保育之重要性,唯濕地法並無相關減碳效益之著墨。本研究以素有鳥類天堂之鰲鼓濕地為研究樣區,檢視其明智利用之現況後,量化減碳效益評估,凸顯濕地保育之重要性。
本研究以衛星影像進行監督式分類,將鰲鼓濕地之地覆分為林地、農地(含草生地)、水體(含濕地及魚塭)、裸地等四類,探討1995~2015年之地覆變遷以檢討濕地之明智利用,結果顯示,鰲鼓濕地區於1995至2015年間各地覆類別之面積百分比,水體由10.1%增加至12.5%、林地由10.5%增加至37.7%、農地由20.3%降為5.5%、裸地由59.1%下降至44.3%,整體之水環境及綠環境均有增加趨勢;以地景指數分析可見林地破碎度增加,但崁塊體面積變多,能提供鳥類良好棲息環境,而水體部分面積微幅成長有益水鳥類覓食,顯示鰲鼓濕地尚符合濕地保育法第五條之保育及明智利用原則。
在符合明智保育利用前提下進行減碳效益評估,結果顯示,總碳存量增加29.18%(48,582ton),另以全臺溫帶森林、溫帶草原、濕地及耕地四種土地利用之單位面積碳存量為基準進行比較,結果顯示自1995年(117.16 ton/ha)起鰲鼓濕地已達全臺1995年(111.31ton/ha)、2008年(116.91ton/ha)之單位面積碳存量水平,且自2010年起明顯優於基準值,故濕地保育及明智利用與減碳效益為正相關。為使濕地保育可永續經營,針對濕地環境進行SWOT分析,結果顯示濕地之水(部分魚塭受養豬廢水污染)、土(濕地西側土壤鹽化)、林(濕地西側邊際森林退化)問題仍須積極改善,應藉由整合相關單位投入資源,並取得社區居民共識後,依濕地保育法擬定「重要濕地保育利用計畫」進行復育、改善及維護管理。

According to the report of IPCC, the one way to mitigate the impact caused by climate change is carbon reduction only. Wetland and forest are the main place for carbon storage. After the Wetland Conservation Act promulgated in 2015, the construction and conservation of wetland environment becomes more important. However, the relative benefits of carbon storage do not lay down in the Act. The Ao-gu Wetland which is called bird heaven is selected as study area. After reviewing the recent status of wise utilization, the benefits evaluation of carbon reduction can be quantified, and the importance of wetland conservation can be highlighted.
In order to discuss the land cover change from 1995 to 2015 and review the wise utilization in the wetland, the four land covers such as forest land, farm land (include grass land), water body (include wetland and aquaculture) and bare land are delineated by supervised classification derived from satellite images. The results of land cover area percentage from 1995 to 2015 in the Ao-gu Wetland show that the area percentage of water body increases from 10.1% to 12.5%; forest land rises from 10.5% to 37.7%; farm land reduces from 20.3% to 5.5%; bare land decreases from 59.1% to 44.3%. The area of water and green environment trends to rise. The results of landscape index present that the fragmentation of forest land increases but the mean patch size of forest land enlarges. The area of water body increases slightly which is benefit for water birds foraging. The above results in the Ao-gu Wetland correspond to the conservative and wise utilization principle of the Wetland Conservation Act Article 5.
Under corresponding to the conservative and wise utilization, the evaluation results of carbon storage show that the total carbon storage increases 29.18% (48,582 ton). According to standard of unit area carbon storage of four land uses such as temperate forest, temperate grass, wetland and farm land in Taiwan, the comparison results present that the unit area carbon storage (117.16 ton/ha) in the Ao-gu Wetland already has reached to the standard of unit area carbon storage in Taiwan in 1995 (111.31ton/ha) and 2008 (116.91ton/ha) and has obviously been higher than the standard in Taiwan from 2010. Therefore, the conservative and wise utilization in the wetland is positive relation with the benefits of carbon storage. In order to sustainable management of wetland conservation, the SWOT analysis is applied on the wetland environment. The problem of water (water pollution of wasted-fish ponds due to the waste water of pig farm), soil (soil salinization at the western wetland) and forest (marginal forest land deterioration at the western wetland) should be improved actively. According to The Wetland Conservation Act, “the important wetland conservation utilization plan” was suggested to integrate the resource from relative authorities and get consensus of community residents to management of conservation, improvement and maintain.

摘要 i
Abstract ii
目 錄 iv
圖目錄 vii
表目錄 viii
第1章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 內容架構與研究流程 2
第2章 文獻回顧 4
2.1 濕地的重要性 4
2.2 濕地保育法 5
2.3 鰲鼓濕地環境改善 6
2.4 遙感探測與衛星影像基本原理 8
2.4.1 遙感探測 8
2.4.2 Landsat衛星 9
2.5 地景指數 13
2.6 碳循環 16
2.6.1 溫室氣體 16
2.6.2 碳存量 18
第3章 材料與方法 26
3.1 研究試區 26
3.1.1 鰲鼓濕地基本資料 26
3.2 研究材料 29
3.3 研究方法 30
3.3.1 監督式分類 30
3.3.2 地景指數 33
3.3.3 常態化差異植生指標(NDVI) 35
3.3.4 質性訪談 36
3.3.5 SWOT分析及策略矩陣 38
第4章 結果與討論 41
4.1 地覆分類及變遷分析結果 41
4.1.1 地覆分類結果 41
4.1.2 地覆類別變遷分析結果 43
4.1.3 現地訪查照片 45
4.2 地景指數分析結果 48
4.2.1 嵌塊體數目(Number Of Patches, NP): 48
4.2.2 嵌塊體平均大小(MPS): 48
4.2.3 邊緣密度(Edge Density, ED) 49
4.3 鰲鼓濕地明智利用檢討分析 51
4.3.1 NDVI變遷分析 51
4.3.2 濕地保育法檢討 53
4.4 碳存量分析 57
4.4.1 變遷分析 57
4.4.2 減碳效益 62
4.5 SWOT分析及策略矩陣分析結果 63
4.5.1 SWOT分析結果 63
4.5.2 SWOT矩陣分析結果 65
第5章 結論與建議 69
參考文獻 71

中文部分
1.中央大學太空及遙究中心網站,http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinVer/。
2.中華民國地區發展學會(2005),「鰲鼓濕地生態觀光發展規劃」,交通部觀光局雲嘉南濱海國家風景管理處,臺南市。
3.內政部國土測繪中心網站,http://www.nlsc.gov.tw/。
4.內政部營建署城鄉發展分署(2011),「國家重要濕地碳匯功能調查計畫」,內政部營建署城鄉發展分署,臺北市。
5.方彥凱(2003),「常態化植生指數標準差於土地利用分類之應用-以美濃中壇為例」,國立屏東科技大學土木工程系研究所碩士學位論文。
6.方偉達(2008),「國家重要濕地導覽手冊」,內政部營建署,臺北市。
7.臺灣產業服務基金會(2010),「SWOT分析法實際案例」,臺灣產業服務基金會,臺北市。
8.交通部觀光局雲嘉南國家濱海風景區管理處網址:http://www.swcoast-nsa.gov.tw/12_intro/intro.aspx。
9.全國法規資料庫網址:http://law.moj.gov.tw/。
10.行政院(2012),「整體性治山防災(中程)計畫102至105年度(第二期)(核定本)」,行政院,臺北市。
11.行政院公共工程委員會(2010),「結合綠色造林 營造鰲鼓生態教育園地」,2010.10.15新聞(http://eem.pcc.gov.tw/node/32315)。
12.行政院農業委員會水土保持局(2013),「嘉義縣東石鄉四股社區農村再生計畫」,行政院農業委員會水土保持局,南投縣。
13.行政院農業委員會(2012),「鼓濕地森林園區之規劃與推動成果」,行政院農業委員會,臺北市。
14.吳守從(2006),「應用SPOT衛星影像結合植生指標與地景指數」,觀光研究學報12(3):207-224。
15.吳逸崟(2010),「陸域生態系態存量評估之研究」,國立國立中興大學水土保持學系碩士學位論文。
16.李國忠、林俊成、陳麗琴(2000),「臺灣杉人工林碳吸存潛力其成本效益分析」,臺灣林業科學,15:115-123。
17.李瑞陽、林士強(2006),「利用空間技術與景觀生態指數分析墾丁國家公園土地覆蓋變遷影響之研究」,地理學報(46):31-48。
18.李建志(2010),「鰲鼓濕地植群調查與分析」,嘉大農林學報,8(1): 35-44。
19.李元喻(2013),「應用景觀指數評估地景變遷與其對水質及生態之衝擊-以臺北水源特定區為例」,臺北科技大學土木與防災研究所碩士學位論文。
20.內政部營建署(2008),「亞洲濕地臺北宣言」,國際濕地科學家學會第一屆亞洲濕地大會,臺北市。
21.尚淑婷(2000),「臺灣濕地公益信託管理模式之研究-以嘉義鰲鼓濕地為例」,國立中山大學海洋環境及工程學系碩士學位論文。
22.林金定、嚴嘉楓、陳美花(2005) ,「質性研究方法:訪談模式與實施步驟分析」,身心障礙研究,Vol.3,No.2。
23.林俊成、主培蓉、李俊志(2010),「臺灣地區造林減碳之需求面向及參與途徑分析」,林業研究季刊,32:49-58。
24.林玉紳(2010),「以生態系統管理觀念為基礎的濕地政策研究」,國立臺北大學自然資源與環境管理研究所碩士學位論文。
25.林昭遠(2012),「因應氣候變遷重點集水區保育策略之研究」,行政院農業委員會水土保持局,南投縣。
26.林政侑(2012),「應用環境指標劃定集水區地覆類別及熱點區位監測之研究」,國立國立中興大學水土保持學系碩士學位論文。
27.林瑩峰(2013),「濕地與全球暖化」,臺灣濕地雜誌,87:4-12。
28.凃邑靜(2007),「人工濕地生態淨化系統處理效能之探討-以彰化縣洋子厝溪為例」,國立國立中興大學環境工程學系在職專班碩士學位論文。
29.胡海青、郭福濤(2008),「大興安嶺森林火災中主要喬木樹種含碳氣體釋放總量的估算」,應用生態學報,19(9):1884-1890。
30.美國地質調查局官方網站,http://earthquake.usgs.gov/。
31.荊樹人(2003),「人工溼地技術在國內實際應用案例討論與分析」,2003年人工溼地水質淨化系統研討會論文集。
32.陳永明、陳亮全、林李耀(2011),「氣候變遷之災害衝擊與防災調適策略」,國家災害防救科技中心、國立臺灣大學建築與城鄉研究所,臺北市。
33.張凡、李長生、王政(2006),「耕作措施對陝西耕作土壤碳儲量的影響模擬」,第四紀研究,26(6):1021-1028。
34.張瑀芳、林世宗、蔡呈奇(2006),「臺灣東北部柳杉人工林土壤有機碳儲量的推估」,臺灣林業科學,21(4):383-93。
35.國立中山大學(2009),「鰲鼓濕地森林園區規劃-期中報告書」,行政院農業委員會林務局,臺北市。
36.國立中山大學(2011),「鰲鼓濕地森林園區環境調查項況報告」,行政院農業委員會林務局,臺北市。
37.國立成功大學都市計畫系暨研究所(1997),「鄉鎮市發展綱要計畫(三):新港鄉、六腳鄉、東石鄉,嘉義」,嘉義縣立文化中心,嘉義縣。
38.曹正(2004),「臺灣陸生圈最佳碳量評估、管理策略及監測計畫」,財團法人臺灣發展研究院。
39.許正一(2009),「臺灣地區不同土綱之農田與森林土壤有機碳儲存量」,屏東科技大學環境工程與科學系所碩士學位論文。
40.許義中(2000),「為什麼人們願意付錢從事濕地保育?-購買行為或是捐獻行為?」,戶外遊憩研究,13(3)。
41.陳力豪(2010),「鰲鼓保護區設立之可行性探討與分區劃界研析」,國立成功大學海洋科技與事務研究所碩士學位論文。
42.陳巧瑋、顏添明(2014),「遊客對平地森林價值及平地造林獎勵政策之看法-以鰲鼓濕地森林園區為例」,林業研究季刊 36(4),273-284。
43.陳奕昕、陳芷儀(2015),「東石鄉塭港村濱海空間規劃設計」,朝陽科技大學景觀及都市設計系畢業專題。
44.陳珍瑩(2006),「概說濕地-濕地之定義與分類」。臺灣濕地,58,臺北市。
45.黃國楨、王韻皓、焦國模(1996),「植生指標於SPOT衛星影像之研究」,臺灣林業,22(1):45-52。
46.曾仁鍵(2004),「衛星影像於大肚台地地區光譜植被變遷之監測」,國立臺灣大學森林環境暨資源學研究所碩士學位論文。
47.湯京平(2006),「全球保育運動與地方派系:鰲鼓濕地開發案的政治經濟分析」,政治學報,42:1-35。
48.童莉婷(2013),「高美濕地土壤碳存量時空變化」,國立國立中興大學生命科學系所碩士學位論文。
49.葉洸雄(2016),「大肚台地保安林及碳存量變遷之研究」,水土保持學報 48(1):1651-1664。
50.嘉義縣政府(2005),「鰲鼓濕地環境現況調查分析報告」,嘉義縣政府,嘉義縣。
51.劉棠瑞、蘇鴻傑(1983),「森林植物生態學」,臺灣商務印書館,臺北,臺灣,18-33頁。
52.劉靜靜(1995),「臺灣海岸濕地保護策略與法治之研究」,國立中山大學海洋環境學系碩士學位論文。
53.蔡智賢(2009),「嚴重地層下陷區濕地生態相容產業發展先驅試驗研究計畫 (三)」,行政院農業委員會林務局,臺北市。
54.鄧枝安(2011),「嘉義縣鰲鼓濕地環境保育與休閒產業開發方案評估之研究」,水保技術,6(1):31-44。
55.鄭蕙燕、闕雅文(1997),「鰲鼓海岸濕地遊憩經濟價值評估」,戶外遊憩研究,10(4)。
56.薛美莉(2016),「臺灣濕地生態補償之執行與推動」,濕地學刊,4(1):22-30。
57.闕雅文(1995),「海岸濕地保育與開發之決策分析-以鰲鼓濕地為例」,國立國立中興大學農業經濟研究所碩士學位論文。
58.魏逸葳(2014),「埤塘地景與鳥類生態之空間分析研究-以臺南新化為例」,國立臺北科技大學土木與防災研究所碩士學位論文。

英文部分
1.Almendros, G.F., Gonzalez-Vila, J. and Martin, F. (1990), “Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances”, Soil Sci, 149, 158-68.
2.Benemann, J.R. (1992), “The use of iron and other trace element fertilizers in mitigating global warming”, J. Plant Nutr,15, 2277-2313.
3.Bonde, T., Christensen, B.T. and Cerri, C.C. (1992), “Dynamics of organic matter as reflected by natural 13C abundance in the particle size fractions of forested and cultivated Oxisols”, Soil Biol. Biochem, 24, 275-277.
4.Black, T.A. and Harden, J.W. (1995), “Effect of timber harvest on soil carbon storage at Blodgett Experimental Forest”, California. Can. J. For. Res., 25, 1385-1396.
5.Batjes, N.L.(1996), “Total carbon and nitrogen in the soils of the world”, European Journal of Soil Science, 47, 151-163.
6.Barnes, B.V., Zak, D.R., Denton, S.R. and Spurr, S.H. (1998), “Forest Ecology”, 4th ed., John Wiley & Sons Inc, New York.
7.Bouillon, S, Borges, A.V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Lee, S.Y., Marchand, C., Middelburg, J.J. (2008), “Mangrove production and carbon sinks: A revision of global budget estimates”, Global Biogeochem, Cycles, 22, GB2013, doi:10.1029/2007GB003052.
8.Brady, N.C. and Weil, R.R. (2008), “Soil organic matter. In: The Nature and Properties of Soils”, 14th ed., Pearson Education, Inc., NJ., 495-541.
9.Congalton, R.G.(1991), “A review of assessing the accuracy of classifications of remotely sensed data”, Remote Sensing of Environment, 37, 35-46.
10.Chen, Z.S. and Hseu, Z.Y. (1997), “Total organic carbon pool in soils of Taiwan”, Proc Natl Sci Council ROC Part B Life Sci, 21:120-7.
11.Criquet, S (2002), “Measurement and characterization of cellulase activity in sclerophyllous forest litter”, J. Microbiol. Methods, 50, 165-173.
12.DeFries, R.S., Houghton, R.A., Hansen, M.C., Field, C.B., Skole, D. and Townsend, J. (2002), “Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s”, PNAS, 99, 14256–14261.
13.Eswaran, H., van den Berg, E. and Reich, P. (1993), “Organic carbon in soils of the world”, Soil Sci. Soc. Am. J, 57, 192-194.
14.Forman, R.T.T. and Godron, M. (1986), “Landscape ecology”, John Wiley and Sons, New York, 8.
15.Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F.T., Moore, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W. (2000), “The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System”, Science, 290, 291-296.
16.Ferronato, C., Falsone, G., Natale, M., Zannoni, D., Buscaroli, A., Vianello, G. and Antisari, L.V. (2016), “Chemical and pedological features of subaqueous and hydromorphic soils along a hydrosequence within a coastal system (San Vitale Park, Northern Italy)”, Geoderma, 265, 141-151.
17.Ford, H., Garbutt, A., Ladd, C., Malarkey J. and Skov, M.W. (2016), “Soil stabilization linked to plant diversity and environmental context in coastal wetlands”, Journal of Vegetation Science, 27, 259-268.
18.Gorham, E., (1991), “Northern peatlands: role in the carbon cycle and probable responses to climatic warming”, Ecological Applica-tions, 1, 182-195.
19.Grace, J., (2001), “Carbon Cycle”, Encyclopedia of Biodiversity, 1, 609-629.
20.Huang, M.C. (2013), ”Mudskippers in Tainan: The ecology and lifestyle of mudskipper Periophthalmus modestus in Tainan coastal wetland”, International Journal of Science and Engineering Vol.3, No.4 (2013), 37-43.
21.Huang, W.C., Lee, Y.Y. (2016),” Strategic Planning for Land Use under Extreme Climate Changes: A Case Study in Taiwan”, Sustainability, 8(1), 53.
22.Grossmann M. and Dietrich O. (2012), “Integrated Economic-Hydrologic Assessment of Water Management Options for Regulated Wetlands Under Conditions of Climate Change: A Case Study from the Spreewald (Germany)”, Water Resour Manage, 26, 2081-2108.
23.Intergovernmental Panel on Climate Change (IPCC), (2000), “Special Report on Land Use Land-Use Change and Forestry”, Cambridge University Press, Cambridge, UK.
24.Intergovernmental Panel on Climate Change (IPCC), (2001), “Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change”, Cambridge University Press, Cambridge, UK.
25.Intergovernmental Panel on Climate Change (IPCC), 2007, “Climate Change 2007: The PhysicalScience Basis. Published for the Intergovernmental Panel on Climate Change(IPCC)”, Cambridge University Press, UK.
26.Steffan-Dewenter, I., Westphal, C. (2008), “The interplay of pollinator diversity, pollination services and landscape change”, Journal of Applied Ecology, 45(3), 737-741.
27.Intergovernmental Panel on Climate Change (IPCC), (2013), “ Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ”, [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
28.Janssen, L. F., and Vanderwel, J.M., (1994), “Accuracy assessment of satellite derived land-cover data: A review. Photogrammetric Engineering and Remote Sensing”, 60(4), 419-426.
29.Julius, T., Rimantas, P., Rasa, S. (2013), “Prediction of change in wetland habitats by groundwater: case study in Northeast Lithuania.” Estonian Journal of Earth Sciences, 62, 2, 57-72
30.Kimble, J.M., Lal, R., Birdsey, R., Heath, L.S. (2003), “The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect”, Forest Science, 49(4), 644-645.
31.Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., (2010), ”Carbon Storage and Fluxes within Freshwater” Wetlands, 30, 111-124.
32.Lal, R., (2004), “Soil carbon sequestration to mitigate climate change”, Geoderma, 123, 1-22.
33.Levy, P.E., Friend, A.D., White, A. and Cannell, M.G.R. (2004), “The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems”, Climatic Change, 67, 185-209.
34.Liebig, M.A., Morgan, J.A., Reeder, J.D., Ellert, B.H., Gollany, H.T. and Schuman, G.E. (2005), “Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada”, Soil & Tillage Research, 83, 25-52.
35.Lal, R., Delgado, J.A., Groffman, P.M., Millar, N., Dell, C. and Rotz, A. (2011), "Management to mitigate and adapt to climate change." Journal of Soil and Water Conservation 66(4), 276-285.
36.Laakso, J., Uusitalo, R., and Yli-Halla, M., (2016), “Phosphorus speciation in agricultural catchment soils and in fresh and dried sediments of five constructed wetlands”, Geoderma, 271, 18-26.
37.Minichiello, V., Aroni, R., Timewell, E. & Alexander, L., (1995), In-depth Interviewing, Second Edition. South Melbourne: Longman.
38.Ma, K., Liu, J.G., Balkovič, J., Skalský, R., Azevedo, L.B., and Kraxner, F., (2016), “Changes in soil organic carbon stocks of wetlands on China’s Zoigeplateau from 1980 to 2010”, Ecological Modelling, 327, 18-28.
39.McGarigal, K. and Marks, B.J., (1995), “FRAGSTATS: spatial pattern analysis program for quantifying landscape structure”, General Technical Report PNW-GTR-351, 122.
40.Mitsch, W.J., Gosselink, J.G., (2000), Wetlands, 3nd ed., Jone Wiley & Sons, Inc., 171-186,722.
41.Mitsch, W.J., Gosselink, J.G., (2007) Wetlands, 4th ed., Wiley, New York.
42.Naveh, Z. and Lieberman, A.S., (1993), “Landscape Ecology: Theory and Application”, New York: Springer-Verlag.
43.Olson, J.S., (1981), “Carbon balance in relation to fire regimes”, Proceedings of the Conference Fire Regimes and Ecosystem Properties, Honolulu, Hawaii, 327-378
44.Post, W.M., Emanuel, W.R., Zinke, P.J. and Stangenberger, A.G. (1982), “Soil carbon pools and world life zones”, Nature, 298 (8), 156-159.
45.Prichard, S.J., Peterson, D.L. and Hammer, R.D. (2000), “Carbon Distribution in Subalpine Forests and Meadows”, Soil Sci. Soc. Am. J., 64, 1834-1845.
46.Prasad, V.K., Kant, Y. and Badarinath, K.V.S. (2002), “Land use changes and modeling carbon fluxes from satellite data”, Advances in Space Research, 30(11), 2511-2516.
47.Seiler, W. and Crutzen, P.J. (1980), “Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning”, Climate Change, 2, 207-248.
48.Scott, N. A., Cole, C. V., Elliott, E. T. and Huffman, S. A. (1996), “Soil textural control on decomposition and soil organic matter dynamics”, Soil Sci. Soc. Am. J, 60, 1102-1109.
49.Schimel, D., House, J., Hibbard, K., Bousquet, P. and Peylinmm, P. (2001), “Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems”, Nature, 414, 169–17.
50.Trumbore, S. E. and Torn, M. S.(1997), “Soils and the global carbon cycle”. In: Holland, E. A. (ed.), Soils and Global Change. NATO Advanced Study Institute, in press, 1-34.
51.Upadhyay, T. P., Sankhayan, P.L. and Solberg, B. (2005), “A review of carbon sequestration dynamics in the Himalayan region as a function of land-use change and forest/soil degradation with special reference to Nepal”, Agri. Ecosys. Environ, 105, 449-465.
52.Xu, J., Lo, S.L. and Xu, L., (2016), “Removal of pollutants during storm and non-storm events by two wetlands”, Desalination and Water Treatment, 57(22), 10391-10402.
53.Zhaohua, Y.U.A.N., Ming, J.I.A.N.G., Ge, S.O.N.G. and Jia, Z.H.O.U. (2007),”Study on cumulative effects of different cultivation pattems on wetland soil environment”, Journal of Northbeast Agricultural University, Vol.14, No.3, 229-234
54.Zhang, C., Yuan, Y.J., Zeng, G.M., Liang, J., Guo, S.L., Huang, L., Hua, S.S., Wu H.P., Zhu, Y., An, H., and Zhang, L.H., (2016). “Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation”, Ecological Engineering, 90, 473-481.
55.Zhang, G.L., Bai J.H, Xi, M., Zhao, Q.Q., Lu, Q.Q., and Jia, J., (2016). “Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set”, Ecological Indicators, 66, 458-466.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔