跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李其霖
研究生(外文):Chi-Lin Lee
論文名稱:13X沸石填充變溫變壓雙床吸附塔模擬捕獲氣化複循環發電系統排放二氧化碳之研究
論文名稱(外文):CO2 capture from simulated IGCC with 13X zeolite by a daul-bed Temperature/Vacuum Swing Adsorption
指導教授:盧重興盧重興引用關係
口試委員:白曛綾林坤儀
口試日期:2016-06-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:沸石13XIGCCCCS雙床變溫/變壓吸脫附系統
外文關鍵詞:13X zeolitesCCSIGCCTVSA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用球狀13X沸石做為吸附劑,模擬IGCC電廠與傳統燃煤電廠在NOx等廢氣符合排放標準情況之下,針對兩者所排放不同濃度之二氧化碳,利用雙塔變溫變壓吸附系統對CO2進行吸脫附之參數求取以及循環吸脫附試驗,以了解IGCC與CCS所達成之環境效益,主要分為兩個部分:
第一部分為雙床變溫/變壓吸脫附之參數求取,吸附試驗部分以氣流溫度30°C、氣流含水率0 %之吸附條件下有最高之工作吸附量(qw)為157.2 mg/g。在脫附試驗中,以脫附溫度120°C、脫附時間為20 min之脫附條件之下具有最高之再生qw為130.2 mg/g,將以此吸脫附參數作為最佳吸脫附條件進行第二部分之循環吸脫附試驗。
第二部分模擬整合型氣化複循環發電廠(Integrated Gasification Combined Cycle, IGCC)以及傳統燃煤電廠之CO2濃度35及15%進行循環吸脫附之比較。實驗結果顯示,在35% CO2下,平均吸附時間為50 min,qw為115 mg/g,每日捕獲量為1.07 kg-CO2/day/kg- 13X;在15%條件下,平均吸附時間為80 min,qw為86.5 mg/g,每日捕獲量為0.79 kg-CO2/day/kg-13X。
綜合以上結果顯示,以雙床變溫/變壓吸脫附系統配合IGCC電廠所達到之碳效益比傳統燃煤發電廠具有較高之碳捕獲效益,展現出實廠化之可能性。

Commercially available spherical 13X zeolite was employed as sorbents for CO2 capture from synthetic gas of cylinder of integrated gasification combined cycle(IGCC) power plant and traditional power plant by a dual-bed temperature/vacuum swing adsorption system. The research included two parts as follows:
The first part was the selection of the conditions of adsorption and desorption. The adsorption process was conducted at 30°C, 0 % water content. The desorption process was conducted at 120°C desorption temperature, and the desorption time was 20 min. At this ad/desorption conditions, the results showed that the maximum adsorption working capacity (qw) was 157.2 mg/g. And the regenerative working capacity was 130.2 mg/g.
The second part was CO2 capture from synthetic gas of cylinder 35% and 15% as CO2 concentration of IGCC and traditional power plant. The condition of synthetic was controlled at 10 LPM (liter per minute) with 35/15% CO2. The results showed that the average working capacity was 115 mg/g and 86.5 mg/g, and the breakthrough time was 50 and 80 minute. The average daily capture rate of 15 and 35%CO2 are 0.79 kg-CO2/day/kg-13X and 1.07 kg-CO2/day/kg-13X, respectively.
According to foregoing results, it reveals that the 13X have better adsorption performance of CO2 under IGCC system as compared to traditional power plant.

摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
參數符號表 vii
符號簡寫說明 vii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 二氧化碳濃度變化與溫室效應 4
2-2 整合型氣化複循環發電技術(IGCC) 5
2-3 IGCC與CCS之結合 9
2-4 IGCC之發電效率與成本 11
2-5 二氧化碳捕獲途徑 13
2-6 二氧化碳捕獲與封存技術 16
2-7 二氧化碳吸附程序 19
2-8 吸附材介紹 22
第三章 實驗方法 25
3-1 研究架構 25
3-2 實驗材料與特性分析 27
3-2-1 吸附材料 27
3-2-2 實驗設備 27
3-3 特性分析 28
3-3-1 比表面積分析 28
3-3-2 熱重分析儀 29
3-3-3 吸脫附熱值分析 30
3-4 試驗設備及操作程序 31
3-4-1 雙床變溫/變壓吸脫附設備 31
3-4-2 吸附量之計算 34
3-4-3 去除率之計算 35
3-4-4 吸附指標之計算 36
第四章結果與討論 37
4-1 吸附試驗 37
4-1-1 氣流溫度之影響 37
4-1-2 氣流含水率影響 38
4-1-3 氣流濃度之影響 40
4-1-4 等溫吸附模式與模擬曲線 41
4-2 變溫/變壓脫附程序 43
4-2-1 脫附溫度之求取 43
4-2-2 脫附時間之求取 45
4-3 連續循環吸脫附試驗 47
4-3-1 IGCC電廠之CO2捕獲試驗 47
4-3-2 傳統燃煤發電廠之CO2捕獲試驗 49
4-3-3 連續循環吸脫附之CO2捕獲量 52
4-4 IGCC電廠與傳統燃煤發電廠之碳捕獲比較 55
4-5 吸附劑物化特性分析 57
4-5-1 13X再生熱值分析 57
4-5-2 循環吸脫附BET分析 59
4-5-3 循環吸脫附TGA分析 63
4-6 吸附劑成本分析 65
第五章 結論與建議 67
5–1 結論 67
5–2 建議 68
參考文獻 69

Aaron, D., Tsouris, C. (2005) Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 40: 321-348.

Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification
Combined Cycle Systems and Use of Metal Oxide Sorbents for
H2S Cleanup From Coal Gas”, Clean Products and
Processes, .2 (4), pp. 197-208, 2001.

Agency, U.S.E.P. (2005) Exhaust Emission Effects of Fuel Sulfur and Oxygen on Gasoline Nonroad Engines.

Alonso, L.E., Diamy, A., Legrand, J., Fraissard, J. (2004) Sorption of atile Organic Compounds on Zeolites with Microwave Irradiation. Studies in Surface Science and Catalysis 154: 1866-1871.

Bai, H., Wei, J.H. (1996) The CO2 Mitigation Options for the Electric Sector: A Case Study of Taiwan. Energy Policy 24: 221-228.

Bekkum, V.H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C. (1991) Introduction to Zeolite Science and Practice. 2nd. Revised Edn., Elsevier, Amsterdam.

Bezerra, D.P.O., R. S.; Vieira, R. S.; Cavalcante, C. L.; Azevedo, D. C. S. (2011) Adsorption of CO2 on Nitrogen-Enriched Activated Carbon and Zeolite 13x. Adsorption 17: 235-246.

Breck, D.W. (1974) Zeolite Molecular Sieves: Structure, Chemistry and Use. London: John Wiley and Sons: 4.

Breck, D.W. (1984) Zeolite Molecular Sieves. Robert E. Krieger Pub. Co., Malabar.

Breck, D.W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L. (1956) Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. J. Am. Chem. Soc. 78: 5963-5971.

Bredesen. R., J., K. and Bolland, O. (2004) High-Temperature Membranes in Power Generation with CO2 Capture. Chemical Engineering Processing 43: 1129-1158.

Chao Chen, Edward S. Rubin,”CO2 control technology effects on IGCC plant performance and cost,” Energy Policy, Science Direct (Elservier), . 37, Issue 3, 2009, pp.915-924.

Chang, A.C.C., Chuang, S. S. C., Gray, M., Soong, Y. (2003) In-Situ Infrared Study of CO2 Adsorption on Sba-15 Grafted with R-(Aminopropyl) Triethoxysilane. Energy Fuels 17.

Chuang, C.L., Chiang, P. C., Chang, E. E. (2003) Modeling Vocs Adsorption onto Activated Carbon. Chemosphere 53: 17-27.

De Coninck, H., Stephens, J. C., Metz, B. (2009) Global Learning on Carbon Capture and Storage: A Call for Strong International Cooperation on CCS Demonstration. Energy Policy 37: 2161-2165.
Dwivedi, P., Gaur, V., Sharma, A. and Verma, N. (2004) Comparetive Study of Removal of atile Orgamic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber. Separation and Purification Technology 39: 23-3

Evangelos Tzimas, Calin-Cristian Cormos, Fred Starr, Carolina Garcia-Cortes,” The design of carbon capture IGCC-based plants with hydrogen co-production”, Energy Procedia, Science Direct(Elservier), 2009, .1,Issue 1, pp 591-598

Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D. (2008) Techno-Economic Study of CO2 Capture from Natural Gas Based Hydrogen Plants. International Journal of Greenhouse Gas Control 2: 9-20.

Gao, W., Butler, D., Tomasko, D. L. (2004) Hight-Pressure Adsorption of CO2 on Nay Zeolite and Model Prediction of Adsorption Isotherm. Langmuir 77: 8083-8089.

Garg, A., Shukla, P. R. (2009) Coal and Energy Security for India: Role of Carbon Dioxide (CO2) Capture and Storage (CCS). Energy 34: 1032-1041.

Global Ccs Institute, (2012) Technology Options for CO2 Capture.

Gottari, G., Sand, L. B., Mumpton, F. A. (1987) Mineralogy and Crystal Chemistry of Zeolite, in Natural Zeolites: Occurrence, Properties. Pergamon Press 45: 31-43.

Granite, E.J.a.B., T. O. (2005) Review of Novel Methods for Carbon Dioxide Separartion from Flue and Fuel Gases. Fuel Processing Technology 86: 1423-1434.

Gray, M.L.S., Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, R. W., Khatri, R., Chuang, S. S., Filburn, T. (2005) Improved Immobilized Carbon Dioxide Capture Sorbents. Fuel Processing Technology 86: 1423-1434.

Gupta, V. K., Srivastava, S. K., Tyagi, R. (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Research 34:1543-1550.

Haag, W.O., Lago, R. M., Weisz, P. B. (1984) The Active Site of Acidic Aluminosilicate Catalysts. Nature 309: 589-591.

Harlick, P.J.E., Tezel, F. H. (2004) An Experimental Adsorbent Screening Study for CO2 Removal from N2. Microporous Mesoporous Mater 76: 71-79.

Ho, M.T., Allinson, G. W., Wiley, D. E. (2008) Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology. Ind. Eng. Chem. Res. 47: 1562-1568.

Harry Jaeger, “GTW 2009 IGCC Reference Guide,” Gas Tubine World, .39, NO.1, January-February 2009, pp.26-27 &44-45.

Inui, T.O., Y.; Yasuda, M. (1988) Relationship between Properties of Various Zeolites and Their CO2 Adsorption Behaviors in Pressure Swing Adsorption Operation Ind. Eng. Chem. Res. 27: 1103-1109.

Intergovernmental Panel on Climate Change (IPCC)(2005)Special Report on Carbon Dioxide Capture and Storage.

Integrated Gasification and Combined Cycle, (IGCC).

José, A.C.S., Kristin, S. C., Alírio, E. R. (2012) Sorption and Kinetics of CO2 and CH4 in Binderless Beads of 13x Zeolite. Microporous and Mesoporous Materials 158: 219-228.

Julianne M. Klara and John E. Plunkett, “The potential of advanced technologies to reduce carbon capture costs in future IGCC power plants,” International Journal of Greenhouse Gas Control, Science Direct, 2009, .4, Issue 2, pp.112-118

Kim, K.J., Ahn, H. G. (2012) The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating. Microporous and Mesoporous Materials 152: 78-83.

Kim, K.J., Kim, Y. H., Jeong. W. J., Park, N. C., Jeong, S. W., Ahn, H. G. (2007) Adsorption-Desorption Characteristics of atile Organic Compounds over Various Zeolites and Their Regeneration by Microwave Irradiation. Mesostructured Materials 165: 223-226.

Knowles, G.P., Delaney, S. W. and Chaffee, A. L. (2006) Diethylenetriamine-[Propyl(Silyl)]-Functionalized (Dt) Mesoporous Silicas as CO2 Adsorbents. Industrial & Engineering Chemistry Research 45: 2626-2633.

Lee, J.B.R., C. K.; Baek, J. I.; Lee, J. H.; Eom, T. H.; Kim, S. H. (2008) Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas. Ind. Eng. Chem. Res 47: 4465-4472.

Lee, Z.H., Lee, T. K., Bhatia, S., Mohamed, A. R. (2012) Post-Combustion Carbon Dioxide Capture: Eution Towards Utilization of Nanomaterials. Renewable and Sustainable Energy Reviews 16: 2599-2609.

Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J. and Femat-Flores, R.A. (2007) Kinetic Modeling of Pentachlorophenol Adsorption from Aqueous Solution on Activated Carbon Fibers. Carbon 45: 2280-2289.

Lu, C., Bai, H., Su, F., Chen, W., Hwang, J. F., Lee, H. H. (2010) Adsorption of Co2 Dioxide from Gas Streams Via Mesoporous Spherical-Silica Particles. Journal of the Air and Waste Management Association 60: 1047-3289.

Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H. (2009) Thermodynamics and Regeneration of CO2 Adsorption on Mesoporous Spherical-Silica Particles. Fuel Processing Technology 90: 1543-1549.

Nikolajsen, K., Kiwi-Minsker, L., Renken, A. (2006) Structured Fixed-Bed Adsorber Based on Zeolite-Sintered Metal Fibre for Low Concentration Voc Removal. Chemical Engineering Research and Design 84: 562-568.

Nation Energy Technology Laboratory (NETL) (2007), Carbon Sequestration Technology Roadmap and Program Plan.

Rao, A.B.a.R., E.S. (2002) A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 36: 4467-4475.

Romain, C., Georges, G., S, M., Cécile, V. (2013) Values of the Mass Transfer Coefficient of the Linear Driving Force Model for Voc Adsorption on Activated Carbons. Chemical Engineering Research and Design 91: 955-962.

Ruthven, D.M. (1984) Principles of Adsorption and Adsorption Processes. John Wiley and Sons, Inc, New York.

Ruthven, D.M., Shamsuzzaman, F. and Knaebel, K. S. (1994) Pressure Swing Adsorpion. John Wiley and Sons, Inc, New York.

Sanpasertparnich, T., Idem, R., Bolea, I., deMontigny, D., Tontiwachwuthikul, P. (2010) Integration of Post-Combustion Capture and Storage into a Pulverized Coal-fired Power Plant. International Journal of Greenhouse Gas Control 4: 499-510.

Sing, K.S.W., Everett, D. H., Haul,R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry 57: 603-619.

Skarstrom, C.W. (1960) Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption. assigned to Esso Research and Engineering Company, Patent 2, 994,627, U.S.

Su, F., Lu, C. (2012) CO2 Capture from Gas Stream by Zeolite 13x Using a Dual-Column Temperature/Vacuum Swing Adsorption. Energy & Environmental Science 5: 9021-9027.

Su, F., Lu, C., Chung, A. J., Liao, C. H. (2014) Co2 Capture with Amine-Loaded Carbon Nanotubes Via a Dual-Column Temperature/Vacuum Swing Adsorption. Applied Energy 113: 706-712.

U.S. DOE, “Record of Decision Issued for the FutureGen Project,” Washington, DC, July 2009, pp.5-7.

G. X. Wang ; Sch. of Eng., Univ. of Queensland, St. Lucia, QLD ; B. Feng ; J. C. Diniz da Costa ; V. Rudolph, “Recent Advance of Zero Emission Technologies for Coal-Based Power Generations Systems”, 2009 IEEE international Conference on Power and Energy Engineering (IEEE APPEEC 2009. Asia-Pacific), Wuhan,China, 27-31 March 2009, pp.1-4.

Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A. E. (2012) Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide Capture Using Zeolite 13x-Apg by Hybrid Vtsa Process. Chemical Engineering Journal: 151-161.

World clean coal conferrence, 2014.

Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A.e., Wright,L. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences 20: 14-27.

Yi, Z., Yanmei, S., Lu, B. (2012) Effect of Chemical Modification on Carbon Dioxide Adsorption Property of Mesoporous Silica. Journal of Colloid and Interface Science 379: 94-100.

Yokoyama, T. (2004) Japanese R&D on Large-Scale CO2 Capture. ECI Conference on Separation Technology,Australia.

Yoshida, K., Kuwaharab, T., Kurobib, T., Okubob, M. (2012) Diesel Nox Aftertreatment by Combined Process Using Temperature Swing Adsorption, NOx Reduction by Nonthermal Plasma, and NOx Recirculation: Improvement of the Recirculation Process. Journal of Hazardous Materials: 18-25.

Yue, M.B., Yuan, C., Yi, C., Xin, D. and Zhu, J.H. (2006) CO2 Capture by as Prepared SBA-15 with an Occluded Organic Template. Advanced Functional Materials 16: 1717-1722.

Zhang, J., Webley, P. (2008) Cycle Development and Design for Co2 Capture from Flue Gas by Vacuum Swing Adsorption Environ. Sci. Technol. 42: 563-569.

Zukal, A.M., J.; Kubu, M. (2010) Adsorption of Carbon Dioxide on High-Silica Zeolites with Different Framework Topology. Top. Catal. 53: 1361-1366.

呂理平、呂維明、陳成慶 (1992) 單元操作. 新文京開發出版有限公司。

李建佑 (2007) 利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中之二氧化碳與氫氣. 碩士論文,國立中央大學化學工程與材料研究所,桃園。

林俊佑 (2010) 利用變壓吸附程序濃縮氣化合成氣之氫氣及捕獲二氧化碳之模擬. 碩士論文,國立中央大學化學工程與材料工程學系,桃園。

陳君豪 (2001) 利用真空變壓吸附法濃縮及回收二氧化碳. 碩士論文,國立中央大學化學工程研究所,桃園。

經濟部工業局工業污染防治技術手冊 (1994) 有機溶劑污染控制。

蔡政鴻, 陳惠芬 (2008) 沸石-礦物界的環保明星. 台灣博物館年刊: 74-77。

蘇峰生 (2011) 低溫二氧化碳吸附劑篩選之研究,博士論文,國立國立中興大學環境工程學系,台中。

吳若瑜 (2014) 雙床變溫變壓吸附塔填充13X沸石捕獲汽油發電機尾氣二氧化碳之研究. 碩士論文,國立國立中興大學環境工程學系,台中。

張烈青 (2010) 氣化複循環發電系統性能分析. 碩士論文,國立台北科技大學電機工程系,臺北。

李建勳 (2015) 乾式噴注法捕獲後燃燒煙道氣二氧化碳之研究. 碩士論文,國立國立中興大學環境工程學系,台中。

黃瀞瑩 (2007) 以Fe2O3/SiO2吸收劑高溫去除硫化氫與硫化羰之研究. 碩士論文,國立成功大學環境工程學系,臺南。

洪文雅 (2007) 淺談溫室氣體減量實務技術. 永續產業發展雙月刊,經濟部工業局, 34:pp 21-27。

中興工程季刊,第108期,2010年7月,p67-75。

盧重興、蘇峰生 (2010) 臺灣CO2捕獲與再利用技術的發展與展望,經濟前瞻,109-112。

黃裕銘 (2003) 混和醇胺AMP/MDEA水溶液吸收二氧化碳之反應動力學數據量測研究,碩士論文,中原大學化學工程學系,桃園。

楊家寶 (2004) 混和醇胺TEA+PZ水溶液吸收二氧化碳反應動力學數據量測研究,碩士論文,中原大學化學工程學系,桃園。

陳朝鈺, 楊閎舜, 周正堂 (2003)變壓吸附程序之應用。

楊玫華 (2012) 商用沸石對二氧化碳/甲烷吸附分離之效能提升研究,碩士論文,國立交通大學環境工程研究所,新竹。

能源科技研究發展白皮書,2007年,第參篇。

國外發電技術發展及我國引進技術之可行性分析,臺灣綜合研究院

臺灣能源及電力業之挑戰與機會專題報告,2013年,中技社。

經濟部能源局,2010年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top