Aaron, D., Tsouris, C. (2005) Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 40: 321-348.
Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification
Combined Cycle Systems and Use of Metal Oxide Sorbents for
H2S Cleanup From Coal Gas”, Clean Products and
Processes, .2 (4), pp. 197-208, 2001.
Agency, U.S.E.P. (2005) Exhaust Emission Effects of Fuel Sulfur and Oxygen on Gasoline Nonroad Engines.
Alonso, L.E., Diamy, A., Legrand, J., Fraissard, J. (2004) Sorption of atile Organic Compounds on Zeolites with Microwave Irradiation. Studies in Surface Science and Catalysis 154: 1866-1871.
Bai, H., Wei, J.H. (1996) The CO2 Mitigation Options for the Electric Sector: A Case Study of Taiwan. Energy Policy 24: 221-228.
Bekkum, V.H., Flanigen, E.M., Jacobs, P.A., Jansen, J.C. (1991) Introduction to Zeolite Science and Practice. 2nd. Revised Edn., Elsevier, Amsterdam.
Bezerra, D.P.O., R. S.; Vieira, R. S.; Cavalcante, C. L.; Azevedo, D. C. S. (2011) Adsorption of CO2 on Nitrogen-Enriched Activated Carbon and Zeolite 13x. Adsorption 17: 235-246.
Breck, D.W. (1974) Zeolite Molecular Sieves: Structure, Chemistry and Use. London: John Wiley and Sons: 4.
Breck, D.W. (1984) Zeolite Molecular Sieves. Robert E. Krieger Pub. Co., Malabar.
Breck, D.W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L. (1956) Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A. J. Am. Chem. Soc. 78: 5963-5971.
Bredesen. R., J., K. and Bolland, O. (2004) High-Temperature Membranes in Power Generation with CO2 Capture. Chemical Engineering Processing 43: 1129-1158.
Chao Chen, Edward S. Rubin,”CO2 control technology effects on IGCC plant performance and cost,” Energy Policy, Science Direct (Elservier), . 37, Issue 3, 2009, pp.915-924.
Chang, A.C.C., Chuang, S. S. C., Gray, M., Soong, Y. (2003) In-Situ Infrared Study of CO2 Adsorption on Sba-15 Grafted with R-(Aminopropyl) Triethoxysilane. Energy Fuels 17.
Chuang, C.L., Chiang, P. C., Chang, E. E. (2003) Modeling Vocs Adsorption onto Activated Carbon. Chemosphere 53: 17-27.
De Coninck, H., Stephens, J. C., Metz, B. (2009) Global Learning on Carbon Capture and Storage: A Call for Strong International Cooperation on CCS Demonstration. Energy Policy 37: 2161-2165.
Dwivedi, P., Gaur, V., Sharma, A. and Verma, N. (2004) Comparetive Study of Removal of atile Orgamic Compounds by Cryogenic Condensation and Adsorption by Activated Carbon Fiber. Separation and Purification Technology 39: 23-3
Evangelos Tzimas, Calin-Cristian Cormos, Fred Starr, Carolina Garcia-Cortes,” The design of carbon capture IGCC-based plants with hydrogen co-production”, Energy Procedia, Science Direct(Elservier), 2009, .1,Issue 1, pp 591-598
Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D. (2008) Techno-Economic Study of CO2 Capture from Natural Gas Based Hydrogen Plants. International Journal of Greenhouse Gas Control 2: 9-20.
Gao, W., Butler, D., Tomasko, D. L. (2004) Hight-Pressure Adsorption of CO2 on Nay Zeolite and Model Prediction of Adsorption Isotherm. Langmuir 77: 8083-8089.
Garg, A., Shukla, P. R. (2009) Coal and Energy Security for India: Role of Carbon Dioxide (CO2) Capture and Storage (CCS). Energy 34: 1032-1041.
Global Ccs Institute, (2012) Technology Options for CO2 Capture.
Gottari, G., Sand, L. B., Mumpton, F. A. (1987) Mineralogy and Crystal Chemistry of Zeolite, in Natural Zeolites: Occurrence, Properties. Pergamon Press 45: 31-43.
Granite, E.J.a.B., T. O. (2005) Review of Novel Methods for Carbon Dioxide Separartion from Flue and Fuel Gases. Fuel Processing Technology 86: 1423-1434.
Gray, M.L.S., Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, R. W., Khatri, R., Chuang, S. S., Filburn, T. (2005) Improved Immobilized Carbon Dioxide Capture Sorbents. Fuel Processing Technology 86: 1423-1434.
Gupta, V. K., Srivastava, S. K., Tyagi, R. (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Research 34:1543-1550.
Haag, W.O., Lago, R. M., Weisz, P. B. (1984) The Active Site of Acidic Aluminosilicate Catalysts. Nature 309: 589-591.
Harlick, P.J.E., Tezel, F. H. (2004) An Experimental Adsorbent Screening Study for CO2 Removal from N2. Microporous Mesoporous Mater 76: 71-79.
Ho, M.T., Allinson, G. W., Wiley, D. E. (2008) Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology. Ind. Eng. Chem. Res. 47: 1562-1568.
Harry Jaeger, “GTW 2009 IGCC Reference Guide,” Gas Tubine World, .39, NO.1, January-February 2009, pp.26-27 &44-45.
Inui, T.O., Y.; Yasuda, M. (1988) Relationship between Properties of Various Zeolites and Their CO2 Adsorption Behaviors in Pressure Swing Adsorption Operation Ind. Eng. Chem. Res. 27: 1103-1109.
Intergovernmental Panel on Climate Change (IPCC)(2005)Special Report on Carbon Dioxide Capture and Storage.
Integrated Gasification and Combined Cycle, (IGCC).
José, A.C.S., Kristin, S. C., Alírio, E. R. (2012) Sorption and Kinetics of CO2 and CH4 in Binderless Beads of 13x Zeolite. Microporous and Mesoporous Materials 158: 219-228.
Julianne M. Klara and John E. Plunkett, “The potential of advanced technologies to reduce carbon capture costs in future IGCC power plants,” International Journal of Greenhouse Gas Control, Science Direct, 2009, .4, Issue 2, pp.112-118
Kim, K.J., Ahn, H. G. (2012) The Effect of Pore Structure of Zeolite on the Adsorption of VOCs and Their Desorption Properties by Microwave Heating. Microporous and Mesoporous Materials 152: 78-83.
Kim, K.J., Kim, Y. H., Jeong. W. J., Park, N. C., Jeong, S. W., Ahn, H. G. (2007) Adsorption-Desorption Characteristics of atile Organic Compounds over Various Zeolites and Their Regeneration by Microwave Irradiation. Mesostructured Materials 165: 223-226.
Knowles, G.P., Delaney, S. W. and Chaffee, A. L. (2006) Diethylenetriamine-[Propyl(Silyl)]-Functionalized (Dt) Mesoporous Silicas as CO2 Adsorbents. Industrial & Engineering Chemistry Research 45: 2626-2633.
Lee, J.B.R., C. K.; Baek, J. I.; Lee, J. H.; Eom, T. H.; Kim, S. H. (2008) Sodium-Based Dry Regenerable Sorbent for Carbon Dioxide Capture from Power Plant Flue Gas. Ind. Eng. Chem. Res 47: 4465-4472.
Lee, Z.H., Lee, T. K., Bhatia, S., Mohamed, A. R. (2012) Post-Combustion Carbon Dioxide Capture: Eution Towards Utilization of Nanomaterials. Renewable and Sustainable Energy Reviews 16: 2599-2609.
Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J. and Femat-Flores, R.A. (2007) Kinetic Modeling of Pentachlorophenol Adsorption from Aqueous Solution on Activated Carbon Fibers. Carbon 45: 2280-2289.
Lu, C., Bai, H., Su, F., Chen, W., Hwang, J. F., Lee, H. H. (2010) Adsorption of Co2 Dioxide from Gas Streams Via Mesoporous Spherical-Silica Particles. Journal of the Air and Waste Management Association 60: 1047-3289.
Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H. (2009) Thermodynamics and Regeneration of CO2 Adsorption on Mesoporous Spherical-Silica Particles. Fuel Processing Technology 90: 1543-1549.
Nikolajsen, K., Kiwi-Minsker, L., Renken, A. (2006) Structured Fixed-Bed Adsorber Based on Zeolite-Sintered Metal Fibre for Low Concentration Voc Removal. Chemical Engineering Research and Design 84: 562-568.
Nation Energy Technology Laboratory (NETL) (2007), Carbon Sequestration Technology Roadmap and Program Plan.
Rao, A.B.a.R., E.S. (2002) A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 36: 4467-4475.
Romain, C., Georges, G., S, M., Cécile, V. (2013) Values of the Mass Transfer Coefficient of the Linear Driving Force Model for Voc Adsorption on Activated Carbons. Chemical Engineering Research and Design 91: 955-962.
Ruthven, D.M. (1984) Principles of Adsorption and Adsorption Processes. John Wiley and Sons, Inc, New York.
Ruthven, D.M., Shamsuzzaman, F. and Knaebel, K. S. (1994) Pressure Swing Adsorpion. John Wiley and Sons, Inc, New York.
Sanpasertparnich, T., Idem, R., Bolea, I., deMontigny, D., Tontiwachwuthikul, P. (2010) Integration of Post-Combustion Capture and Storage into a Pulverized Coal-fired Power Plant. International Journal of Greenhouse Gas Control 4: 499-510.
Sing, K.S.W., Everett, D. H., Haul,R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T. (1985) Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry 57: 603-619.
Skarstrom, C.W. (1960) Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption. assigned to Esso Research and Engineering Company, Patent 2, 994,627, U.S.
Su, F., Lu, C. (2012) CO2 Capture from Gas Stream by Zeolite 13x Using a Dual-Column Temperature/Vacuum Swing Adsorption. Energy & Environmental Science 5: 9021-9027.
Su, F., Lu, C., Chung, A. J., Liao, C. H. (2014) Co2 Capture with Amine-Loaded Carbon Nanotubes Via a Dual-Column Temperature/Vacuum Swing Adsorption. Applied Energy 113: 706-712.
U.S. DOE, “Record of Decision Issued for the FutureGen Project,” Washington, DC, July 2009, pp.5-7.
G. X. Wang ; Sch. of Eng., Univ. of Queensland, St. Lucia, QLD ; B. Feng ; J. C. Diniz da Costa ; V. Rudolph, “Recent Advance of Zero Emission Technologies for Coal-Based Power Generations Systems”, 2009 IEEE international Conference on Power and Energy Engineering (IEEE APPEEC 2009. Asia-Pacific), Wuhan,China, 27-31 March 2009, pp.1-4.
Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A. E. (2012) Experimental and Modeling Investigation on Post-Combustion Carbon Dioxide Capture Using Zeolite 13x-Apg by Hybrid Vtsa Process. Chemical Engineering Journal: 151-161.
World clean coal conferrence, 2014.
Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A.e., Wright,L. (2008) Progress in Carbon Dioxide Separation and Capture: A Review. Journal of Environmental Sciences 20: 14-27.
Yi, Z., Yanmei, S., Lu, B. (2012) Effect of Chemical Modification on Carbon Dioxide Adsorption Property of Mesoporous Silica. Journal of Colloid and Interface Science 379: 94-100.
Yokoyama, T. (2004) Japanese R&D on Large-Scale CO2 Capture. ECI Conference on Separation Technology,Australia.
Yoshida, K., Kuwaharab, T., Kurobib, T., Okubob, M. (2012) Diesel Nox Aftertreatment by Combined Process Using Temperature Swing Adsorption, NOx Reduction by Nonthermal Plasma, and NOx Recirculation: Improvement of the Recirculation Process. Journal of Hazardous Materials: 18-25.
Yue, M.B., Yuan, C., Yi, C., Xin, D. and Zhu, J.H. (2006) CO2 Capture by as Prepared SBA-15 with an Occluded Organic Template. Advanced Functional Materials 16: 1717-1722.
Zhang, J., Webley, P. (2008) Cycle Development and Design for Co2 Capture from Flue Gas by Vacuum Swing Adsorption Environ. Sci. Technol. 42: 563-569.
Zukal, A.M., J.; Kubu, M. (2010) Adsorption of Carbon Dioxide on High-Silica Zeolites with Different Framework Topology. Top. Catal. 53: 1361-1366.
呂理平、呂維明、陳成慶 (1992) 單元操作. 新文京開發出版有限公司。
李建佑 (2007) 利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中之二氧化碳與氫氣. 碩士論文,國立中央大學化學工程與材料研究所,桃園。林俊佑 (2010) 利用變壓吸附程序濃縮氣化合成氣之氫氣及捕獲二氧化碳之模擬. 碩士論文,國立中央大學化學工程與材料工程學系,桃園。陳君豪 (2001) 利用真空變壓吸附法濃縮及回收二氧化碳. 碩士論文,國立中央大學化學工程研究所,桃園。經濟部工業局工業污染防治技術手冊 (1994) 有機溶劑污染控制。
蔡政鴻, 陳惠芬 (2008) 沸石-礦物界的環保明星. 台灣博物館年刊: 74-77。
蘇峰生 (2011) 低溫二氧化碳吸附劑篩選之研究,博士論文,國立國立中興大學環境工程學系,台中。吳若瑜 (2014) 雙床變溫變壓吸附塔填充13X沸石捕獲汽油發電機尾氣二氧化碳之研究. 碩士論文,國立國立中興大學環境工程學系,台中。張烈青 (2010) 氣化複循環發電系統性能分析. 碩士論文,國立台北科技大學電機工程系,臺北。李建勳 (2015) 乾式噴注法捕獲後燃燒煙道氣二氧化碳之研究. 碩士論文,國立國立中興大學環境工程學系,台中。黃瀞瑩 (2007) 以Fe2O3/SiO2吸收劑高溫去除硫化氫與硫化羰之研究. 碩士論文,國立成功大學環境工程學系,臺南。洪文雅 (2007) 淺談溫室氣體減量實務技術. 永續產業發展雙月刊,經濟部工業局, 34:pp 21-27。中興工程季刊,第108期,2010年7月,p67-75。
盧重興、蘇峰生 (2010) 臺灣CO2捕獲與再利用技術的發展與展望,經濟前瞻,109-112。黃裕銘 (2003) 混和醇胺AMP/MDEA水溶液吸收二氧化碳之反應動力學數據量測研究,碩士論文,中原大學化學工程學系,桃園。楊家寶 (2004) 混和醇胺TEA+PZ水溶液吸收二氧化碳反應動力學數據量測研究,碩士論文,中原大學化學工程學系,桃園。陳朝鈺, 楊閎舜, 周正堂 (2003)變壓吸附程序之應用。
楊玫華 (2012) 商用沸石對二氧化碳/甲烷吸附分離之效能提升研究,碩士論文,國立交通大學環境工程研究所,新竹。能源科技研究發展白皮書,2007年,第參篇。
國外發電技術發展及我國引進技術之可行性分析,臺灣綜合研究院
臺灣能源及電力業之挑戰與機會專題報告,2013年,中技社。
經濟部能源局,2010年。