(3.236.231.61) 您好!臺灣時間:2021/05/11 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張淳凱
研究生(外文):Chun-kai Chang
論文名稱:不同產業別固定污染源PM2.5組成成分分析研究
論文名稱(外文):Research and Analysis of PM2.5 Emission Components from Stationary Air Pollution Sources of Different Industrial Sectors
指導教授:謝永旭謝永旭引用關係
口試委員:吳志超張禛祐
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:細懸浮微粒管道細懸浮微粒採樣可過濾性細懸浮微粒
外文關鍵詞:PM2.5In-stack Particulate Matter SamplingFPM2.5
相關次數:
  • 被引用被引用:1
  • 點閱點閱:682
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究選定搭配不同污染防制設備之燃油、燃煤、燃氣、燃材鍋爐、垃圾焚化爐、鋼鐵業熔鐵爐、旋轉窯及食品業油炸排放等固定污染源共15根次,針對所排放之細懸浮微粒 (PM2.5) 中的可過濾細懸浮微粒 (Filterable Particulate Matter 2.5, FPM2.5) 分析其濃度與其中所含之重金屬、陰陽離子及總碳等化學成分,藉以探討其濃度與化學成分的差異性,確立不同產業別固定污染源搭配不同污染防制設備後排放管道FPM之物化特徵,以作為未來法規推動與政策擬定之參考。本研究採樣及分析皆依據主管機關公告方法 (NIEA A212.10B) 執行之,並分別以感應偶合電漿原子發射光譜儀 (inductively coupled plasma atomic emission spectroscopy; ICP-AES)、離子層析儀 (Ion Chromatography, I.C) 及碳元素分析儀 (elemental analyzer;EA) 分析FPM2.5中19項重金屬、陰陽離子及總碳。研究結果顯示,在所含重金屬方面,燃煤鍋爐之金屬元素特徵物種為鎂、鉀、鈣、鋁及鐵;燃油、然材鍋爐之金屬元素特徵物種為鉀、鈣、鋁及鐵;天然氣鍋爐排放之金屬元素與其作業原料有關。陰陽離子方面,燃煤鍋爐之陰陽離子以硫酸鹽、鈉離子、鉀離子、鎂離子及鈣離子為主;燃油鍋爐則以硫酸鹽為主要排放特徵。研究結果亦顯示,「使用袋式集塵設備」及「未使用袋式集塵設備」所測得FPM2.5濃度之95% 信賴區間分別為5.69 ± 3.71 mg/Nm3及33.48 ± 16.91 mg/Nm3,採用袋式集塵污染防治設備後,FPM2.5排放濃度下降達統計上顯著差異 (p<0.05),顯示該種污染防治設備可有效降低固定污染源之FPM2.5排放量,未來在政策研擬及固定污染源PM2.5減量上值得推廣。

This research analyzes the Filterable Particulate Matter 2.5 (FPM2.5) in Particulate matter 2.5 (PM2.5) emitted from 15 stationary air pollution sources from different pollution control equipment, including oil-fired boilers, coal-fired boilers, gas-fired boilers, wood-fired boilers, incineration plants, smelting furnaces, cement kilns, and frying emission in food industry. This research analyzes the FPM concentration and its chemical components, including the concentration levels of heavy metal, cation and anion, and total carbon. Through understanding the differences in concentration levels and chemical components, this research aims to clarify and distinguish the physicochemical characteristics of the FPM from different pollution control equipment emission sources and from different industrial sectors. Research findings can serve as useful reference for future policy making and implementation.
The sampling method and analysis of this research strictly follow the NIEA A212.10B. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Ion Chromatography (I.C), and Elemental Analyzer (EA) are used to analyze the 19 heavy metal, cation and anion particles, and total carbon particles in the FPM2.5. Research shows that in terms of heavy metal particles, the FPM2.5 from coal-fired boilers are characterized by Mg, K, Ca, Al, and Fe, the FPM2.5 from wood-fired boilers are characterized by K, Ca, Al, and Fe, and the FPM2.5 from gas-fired boilers are associated with raw manufacturing materials. In terms of cation and anion particles, the FPM from coal-fired boilers mainly include SO42-, Na+, K+, Mg2+, and Ca2+, while the FPM from oil-fired boilers are mainly characterized by SO42-. As for the application of bag type dust collectors, the FPM concentration for facilities that use bag type dust collectors is 5.69 ± 3.71 mg/Nm3, and for those who do not use bag type dust collector, the FPM2.5 concentration level is 33.48 ± 16.91 mg/Nm3. This result is at a 95% confidence interval. This shows that once bag type dust collectors are used, the FPM emission level drops at a statistically significant level (p<0.05). Findings show that certain types of pollution control equipment, bag type dust collectors in this case, can help lower the FPM2.5 emission from stationary pollution sources, and should be promoted as an effective tool to cut down PM2.5 from stationary pollution sources.


摘要 i
ABSTRACT ii
謝誌 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 前言 1
1-1研究緣起 1
1-2研究目的 1
1-3研究範圍與架構 2
第二章 文獻回顧 3
2-1懸浮微粒性質與特性 3
2-1.1懸浮微粒之定義及種類 3
2-1.2懸浮微粒之成分與來源 3
2-1.3懸浮微粒之形成機制 4
2-1.4懸浮微粒對環境的影響 7
2-1.5懸浮微粒對健康的影響性 8
2-1.6懸浮微粒之水溶性離子成份特性 10
2-1.7懸浮微粒之重金屬成份特性 11
2-1.8懸浮微粒之碳成份特性 11
2-2固定污染源管制相關法規 13
2-2.1空氣污染防制法 13
2-2.2固定污染源設置與操作許可證管理辦法 13
2-2.3固定污染源空氣污染物排放標準 13
2-2.4固定污染源空氣污染物連續自動監測設施管理辦法 14
2-2.5廢棄物焚化爐空氣污染物排放標準 14
2-3固定污染源的化學組成與相關研究 14
2-4煙道採樣方法介紹 16
第三章 研究方法 18
3-1排放管道中可過濾細懸浮微粒(FPM2.5)採樣方法 18
3-2排放管道中可過濾細懸浮微粒(FPM2.5)採樣流程 19
3-3排放管道中可過濾細懸浮微粒(FPM2.5)濃度分析 22
3-4細懸浮微粒之化學成份分析方法 23
3-4.1水溶性離子成分分析 23
3-4.2重金屬元素成分分析 24
3-4.3碳成分分析 25
3-5採樣與分析之品保與品管 25
第四章 研究結果 28
4-1 A廠—基本化學製造業 28
4-1.1 A廠排放管道受測污染源操作情形 28
4-1.2 A廠排放管道FPM2.5排放濃度與化學成分分析 30
4-2 B廠—有害廢棄物處理業 31
4-2.1 B廠排放管道受測污染源操作情形 31
4-2.2 B廠排放管道FPM2.5排放濃度與化學成分分析 33
4-3 C廠—玻璃纖維製造業 34
4-3.1 C廠排放管道受測污染源操作情形 34
4-3.2 C廠排放管道FPM2.5排放濃度與化學成分分析 35
4-4 D廠—印染整理業 36
4-4.1 D廠排放管道受測污染源操作情形 36
4-4.2 D廠排放管道FPM2.5排放濃度與化學成分分析 37
4-5 E廠—無害廢棄物處理業 38
4-5.1 E廠排放管道受測污染源操作情形 38
4-5.2 E廠排放管道FPM2.5排放濃度與化學成分分析 40
4-6 F廠—紙板製造業 41
4-6.1 F廠排放管道受測污染源操作情形 41
4-6.2 F廠排放管道FPM2.5排放濃度與化學成分分析 42
4-6 G廠—灰鐵鑄造業 43
4-7.1 G廠排放管道受測污染源操作情形 43
4-7.2 G廠排放管道FPM2.5排放濃度與化學成分分析 45
4-8 H廠—鋼鐵鑄造業 46
4-8.1 H廠排放管道受測污染源操作情形 46
4-8.2 H廠排放管道FPM2.5排放濃度與化學成分分析 47
4-9 I廠—紙板製造業 48
4-9.1 I廠排放管道受測污染源操作情形 48
4-9.2 I廠排放管道FPM2.5排放濃度與化學成分分析 49
4-10 J廠—印染整理業 50
4-10.1 J廠排放管道受測污染源操作情形 50
4-10.2 J廠排放管道FPM2.5排放濃度與化學成分分析 51
4-11 K廠—印染整理業 52
4-11.1 K廠排放管道受測污染源操作情形 52
4-11.2 K廠排放管道FPM2.5排放濃度與化學成分分析 53
4-12 L廠—食品製造業 54
4-12.1 L廠排放管道受測污染源操作情形 54
4-12.2 L廠排放管道FPM2.5排放濃度與化學成分分析 55
4-13 M廠—人造纖維梭織布業 56
4-13.1 M廠排放管道受測污染源操作情形 56
4-13.2 M廠排放管道FPM2.5排放濃度與化學成分分析 57
4-14 N廠—灰鐵鑄造業 58
4-14.1 N廠排放管道受測污染源操作情形 58
4-14.2 N廠排放管道FPM2.5排放濃度與化學成分分析 59
4-15 O廠—其它非金屬礦物製品製造業 60
4-15.1 O廠排放管道受測污染源操作情形 60
4-15.2 O廠排放管道FPM2.5排放濃度與化學成分分析 61
第五章 分析與討論 62
5-1可過濾細懸浮微粒 62
5-2可過濾細懸浮微粒中重金屬 66
5-3可過濾細懸浮微粒中陰陽離子 69
5-4可過濾細懸浮微粒中有機碳、無機碳及總碳 71
第六章 結論與建議 73
6-1結論 73
6-2建議 74
參考文獻 75
附圖 83

巫月春、程惠生,排放管道粒狀物 (PM2.5) 檢測方法研究,2015。
吳啟文,台灣中部都會區氣懸浮微粒粒徑分佈之污染物特性分析,碩士論文,國立中央大學環境工程研究所,1996。
李崇德、周崇光、莊銘棟、吳志環、李振鎰、朱宏勳、黃希爾、游育欣,空氣污染涵容量研究-子計畫二:PM2.5 氣膠碳成分之生成機制、監測技術及對於空氣品質之影響,91-EPA-Z-008-003,行政院環境保護署,2003。
吳義林,「細懸浮微粒(PM2.5)管制策略研擬及減量成效分析」,行政院環境保護署,2014。
林能暉、吳承翰、彭啟明,2000 年亞洲沙暴侵襲台灣,2000 年氣膠科技研討會,新竹,2000。
周崇光,細懸浮微粒:空氣品質管理的新重心,中央研究院環境變遷研究中心,中央研究院周報第1276期,4-6pp (2010)。
陳文德,「一貫作業煉鋼廠製程管道排放細懸浮微粒化學特徵分析」國立中山大學環境工程研究所碩士論文,2014。
陳志傑,「細懸浮微粒(PM2.5)調查技術開發」,行政院環保護署環境檢驗所委託計畫,2012。
陳怡伶、張翰青,「燃煤電廠細懸浮微粒排放」,台電工程月刊807期,2015。
陳昭忞,「重油鍋爐煙道排放之PM2.5及PM10微粒的特性及化學組成」國立國立中興大學環境工程學系碩士論文,2002。
張俊祥,「垃圾焚化廠煙道廢氣及廠內外空氣中戴奧辛/呋喃及重金屬之特徵」,國立成功大學環境工程學系碩士論文,2003。
張章堂,「各類型排放管道中粒狀污染物粒徑分析研究」,行政院環保署,2001~2003。
黃武章,「重金屬離子於焚化飛灰中的表面結構與擴散行為」國立屏東科技大學環境工程與科學系碩士論文,2003。
黃建達、林宗毅、林銳敏,不同空氣品質測站粗細微粒碳成分分佈分析,1999年氣膠科技國際研討會,1999。
黃冠穎,「燃煤鍋爐排放原生性微粒特徵研究」,國立高雄第一科技大學環境與安全衛生工程系碩士論文,2005。
詹長權、蘇大成、莊凱任,微粒空氣污染特性、毒性和健康風險之研究/計畫一:微粒空氣污染物人體心血管毒性研究,NSC 95-EPA-Z-002-010,47pp,行政院環境保護署,1997。
鄭尊仁、李崇德、趙馨、蘇大成、郭育良,微粒空氣污染特性、毒性和健康風險之研究,NSC 96-EPA-Z-002-002,145pp,行政院環境保護署,1998。
台中市政府環境保護局,103年臺中市細懸浮微粒(PM2.5)排放清冊建置暨減量措施推動計畫,2014。
台中市政府環境保護局,102年臺中市PM2.5來源分析及管制計畫,2013。
行政院環境保護署,台灣細懸浮微粒(PM2.5)成因分析與管制策略研擬,2013。
彰化縣政府環境保護局,103年度環境監測暨維護管理計畫,2014。
新竹縣政府環境保護局,103年度固定污染源PM2.5成分分析與調查計畫,2014。
行政院環境保護署,http://air.epa.gov.tw/Public/suspended_particles.aspx細懸浮微粒生成的機制。
行政院環境保護署環境檢驗所,排放管道中細懸浮微粒(PM2.5)檢測方法 (A212.10B) (2013)
A.J. Cohen, H. Ross Anderson, B. Ostro, K.D. Pandey, M. Krzyzanowski, N. Künzli, K. Gutschmidt, A. Pope, I. Romieu, J.M. Samet, K. Smith., The global burden of disease due to outdoor air pollution, J. Toxicol. Environ. Health. Part A, 68, pp. 1301–1307 (2005).
A.K. Cho, C. Sioutas, A.H. Miguel, Y. Kumagai, D.A. Schmitz, M. Singh, A. Eiguren-Fernandez, J.R., Froines. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin, Environ. Res., 99, pp. 40–47 (2005).
Andersen ZJ, Raaschou-Nielsen O, Ketzel M, Jensen SS, Hvidberg M, Loft S, Tj?nneland A, Overvad K, S?rensen M. Diabetes incidence and long-term exposure to air pollution: a cohort study. Diabetes Care. Jan; 35(1):92-8 (2012).
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., Analysis of carbonaceous material in southern California atmospheric aerosols, Environmental Science and Technology, 13, pp.98-104, (1979).
Brunekreef B, Holgate ST. Air pollution and health. Lancet 360(9341):1233–1242 (2002).
B. Brunekreef, B. Forsberg., Epidemiological evidence of effects of coarse airborne particles on health, Eur. Respir. J., 26, pp. 309–318 (2005).
Bing Peia, Xiaoliang Wang, Yihua Zhang, Ming Hu, Yanjing Sun, Ji Deng, Li Dong, Qingyan Fu, Naiqiang Yan, Emissions and source profiles of PM2.5 for coal-fired boilers in the Shanghai megacity, China. Atmospheric Pollution Research xxx pp. 1-8 (2016).
Cao, J.J., Shen, Z.X., Chow, J.C., Winter and summer PM2.5 chemical compositions in 14 chinese cities, J. Air Waste Manag. Assoc. 62, pp. 1214-1226 (2012).
Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol 25: pp. 802–812 (2013).
Chan, C.C., Chuang, K.J., Su, T.C., Lin, L.Y., Association between nitrogen dioxide and heart rate variability in susceptible population, Eur J Cardiovasc Prev Rehabil 12:580-6 (2005).
Chen, S.J., Liao, S.H., Jian, W.J. and Chiu, S.C., Characteristics of Organic and Elemental Carbon in The Ambient Air of Traffic-Intersection, 1996 International Conference on Aerosol Science and Technology, Taipei (1996).
Chuang, K.J., Chan, C.C., Shiao, G.M., Su, T.C., Associations between submicrometer particles exposures and blood pressure and heart rate in patients with lung function impairments, J Occup Environ Med 47:1093-8 (2005a).
Chuang, K.J., Chan, C.C., Chen, N.T., Su, T.C., Lin, L.Y., Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients, Environ Health Perspect 113:1693-7 (2005b).
Chuang, K.J., Chan, C.C., Su, T.C., Lee, C.T., Tang, C.S., Urban air pollution, inflammation, oxidative stress, coagulation and autonomic dysfunction in young adults, Am J Respir Crit Care Med 176:370-6 (2007).
Dasch J. M., Cadle S. E., Kennedy K. G., and Mulawa P.A., Comparison of annular denuders and filter packs for atmospheric sampling, Atmos. Environ., 23, pp. 2775-2782 (1989).
Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E., An association between air pollution and mortality in six US cities, The New England Journal of Medicine 329 (24), pp. 1753-1759 (1993).
EEA, Air Quality in Europe — 2013 Report, EEA report, Copenhagen (2013)
E.N. Liberda, L.C. Chen, An evaluation of the toxicological aspects and potential doses from the inhalation of coal combustion products, J. Air Waste Manage. Assoc., 63, pp. 671–680 (2013).
Erkki J. Lamminen, Simultaneous PM10 and PM2.5 Measurement From Stacks According to New ISO 23210 Standard (2010).
Fajersztajn, L., Veras, M., Barrozo, L.V., Saldiva, P., Air pollution: a potentially modifiable risk factor for lung cancer. Nat. Rev. Cancer 13, pp. 674–678 (2013).
F. Laden, L.M. Neas, D.W. Dockery, J. Schwartz, Association of fine particulate matter from different sources with daily mortality in six U.S. cities Environ, Health Perspect., 108, pp. 941–947 (2000).
F.R. Cassee, M.-E. Héroux, M.E. Gerlofs-Nijland, F.J. Kelly, Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission, Inhal. Toxicol., 25, pp. 802–812 (2013).
For Frequently Asked Questions(FAQs) about the revised Method 201A (December 2010 revisions), January, 2013.
Glenn C. England, Barbara Zielinska, Karl Loos, Irving Crane, Karin Ritter, Characterizing PM2.5 emission profiles for stationary sources: comparison of traditional and dilution sampling techniques, Fuel Processing Technology 65–66, pp. 177–188 (2000).
Gray, H. A., G. R. Cass, J. J. Huntzicker, E. K. Heyerdahl, J. A. Rau, Characteristics of atmospheric organic and elemental carbonparticle concentrations in Los Angeles, Environment Science and Technology, pp. 580-589 (1986).
Harrison, R. M.; Deacon, A. R.; Jones, M.R., Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.) Atmos. Environ, 31, 24, pp. 4103-4117 (1997).
He, K.B., Yang, F., Ma, Y., The characteristics of PM2.5 in Beijing, China. Atmos. Environ. 35, pp. 4959-4970 (2001).
Hildemann, L. M., R. G. Markowski, and G. R. Cass, Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol, Environmental Science and Technology, pp. 744-759 (1991).
Ho, K.F., Lee, S.C., Cao, J.J., Seasonal variations and mass closure analysis of particulate matter in Hong Kong, Sci. Total Environ. 355, pp. 276-287 (2006).
Holgate ST, Sandstrom T, Frew AJ, Stenfors N, Nördenhall C, Salvi S, Blomberg A, Helleday R & Söderberg M, Health Effects of Acute Exposure to Air Pollution. Part I: Healthy and Asthmatic Subjects Exposed to Diesel Exhaust. Research Report 112. Health Effects Institute, Cambridge MA, USA (2003)
Huang,W., Cao, J.J., Tao, Y.B., Seasonal variation of chemical species associated with short-term morality effects of PM2.5 in Xi''an, a central city in China. Am. J. Epidemiol. 175, pp. 556-566 (2012).
J.D. McDonald, I. Eide, J. Seagrave, B. Zielinska, K. Whitney, D.R. Lawson, J.L. Mauderly, Relationship between composition and toxicity of motor vehicle emission samples, Environ. Health Perspect., 112, pp. 1527–1538 (2004).
J.K.W. Chan, J.G. Charrier, S.D. Kodani, C.F. Vogel, S.Y. Kado, D.S. Anderson, C. Anastasio, L.S., Van Winkle Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult lungs Part, Fibre Toxicol., 10, pp. 34 (2013).
J.O. Anderson, J.G. Thundiyil, A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health, J. Med. Toxicol., 8, pp. 166–175 (2012).
Julio Paiva, Romualdo Salcedoa, Paulo Araujo, Impact of particle agglomeration in cyclones, Chemical Engineering Journal 162, pp. 861–876 (2010).
Krämer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, Rathmann W. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect. Sep;118(9):1273-9 (2010).
Lee, C.T., Hsu, W.C. and Lin, N.H., The Chemical Contents and Source Apportionment of Taichung Aerosols, 1995 International Conference on Aerosol Science and Technology, Taipei (1995).
L. Fajersztajn, M. Veras, L.V. Barrozo, P. Saldiva, Air pollution: a potentially modifiable risk factor for lung cancer, Nat. Rev. Cancer, 13, pp. 674–678 (2013).
Lin, C.H., Chang, L.F. W., Tsai, J.H., Huang, L.J., Evaluation of Emission factors for Light-duty Vehicles in Taiwan, Journal of the Chinese Institute of Environmental Engineering, 12, pp. 55-64 (2002).
Mangelson, N., Lewis, F. L., Joseph J.M., Cui W., Machir J., Williams N. W., Eatough D.J., Rees L.B., Wilkerson T. and Jensen D.T., The Contribution of Sulfate and Nitrate to Atmospheric Fine Particles During Winter Inversion Fogs in Cache Valley, Uath, Journal of the Air and Waste Manage, Association, 47, pp. 167-175 (1997).
Michael D. B., Derek P. W., Preliminary Field Evaluation of EPA Method CTM-039, PM2.5 Stack Sampling Method, (2007).
Muhlbaier, J. L., and Williams, R. L., In Particulate Carbon, Atmospheric, Life Cycle (G. T. Wolff and R. L. Klimisch, eds.).Plenum Press, New York, pp. 185-198 (1982).
N. Li, C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, A. Nel, Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ. Health Perspect., 111, pp. 455–460 (2003).
O. Raaschou-Nielsen, M. S?rensen, M. Ketzel, O. Hertel, S. Loft, A. Tj?nneland, K. Overvad, Z.J., Andersen Long-term exposure to traffic-related air pollution and diabetes-associated mortality: a cohort study, Diabetologia, 56 (1), pp. 36–462 (2013).
P. Penttinen, K. L. T., P. Tiittanen, Ultrafine particles in urban air and respiratory health among adult asthmatics, European Respiratory Journal 17: pp. 428-435 (2001).
Raaschou-Nielsen O, S?rensen M, Ketzel M, Hertel O, Loft S, Tj?nneland A, et al. Long-term exposure to traffic-related air pollution and diabetes-associated mortality: A cohort study. Diabetologia. 56(1):36–46 (2013).
R.A. Silva, J.J. West, Y.Q. Zhang, S.C. Anenberg, J.F. Lamarque, D.T. Schindell, W.J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, L.W. Horowitz, T. Nagashima, V. Naik, S. Rumbold, R. Skeie, K. Sudo, T. Takemura, D. Bergmann, P. Cameron-Smith, I. Cionni, R.M. Doherty, V. Eyring, B. Josse, I.A. MacKenzie, D. Plummer, M. Righi, D.S. Stevenson, S. Strode, S. Szopa, G. Zeng, Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change, Environ. Res. Lett., 8 (2013).
R. Rückerl, A. Schneider, S. Breitner, J. Cyrys, A. Peters, Health effects of particulate air pollution: a review of epidemiological evidence Inhal, Toxicol., 23 (10) pp. 555–59 (2011).
Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L., Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994, The New England journal of medicine 343(24): pp. 1742-1749 (2000).
Schwartz, J., Dockery, D.W., Neas, L.M., Is Daily Mortaility Associated Specifically with Fine Particles? Air & Waste Management Association, 46, pp. 927-939 (1996).
Schwartz, J. and L. M. Neas, Fine Particles Are More Strongly Associated than Coarse Particles with Acute Respiratory Health Effects in Schoolchildren, Epidemiology 11(1): pp. 6-10 (2000).
Shen, Z.X., Cao, J.J., Arimoto, R., Chemical characteristics of fine particles (PM1) from Xi''an, China. Aerosol Sci. Technol. 44, pp. 461-472 (2010).
S. Hu, A. Polidori, M. Arhami, M.M. Shafer, J.J. Schauer, A. Cho, C. Sioutas, Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles–Long Beach harbor, Atmos. Chem. Phys., 8, pp. 6439–6451 (2008).
S.T. Holgate, D.E. Davies, S. Puddicombe, A. Richter, P. Lackie, J. Lordan, P. Howarth, Mechanisms of airway epithelial damage: epithelial-mesenchymal interactions in the pathogenesis of asthma, Eur. Respir. J., 44, pp. 24–29 (2003).
Sun, Y.L., Zhuang, G.S., Ying,W., The air-borne particulate pollution in Beijingconcentration, composition, distribution and sources, Atmos. Environ. 38, pp. 5991-6004 (2004).
Su, T.C., Chan, C.C., Liau, C.S., Lin, L.Y., Chuang, K.J., Kao, H.L., Urban air pollution increases plasma activator inhibitor-1 and fibrinogen levels in susceptible patients, Eur J Cardiovasc Prev Rehabil 13:849-52 (2006).
S. Win Lee, I. He, B. Young, Important aspects in source PM2.5 emissions measurement and characterization from stationary combustion systems, Fuel Processing Technology 85, pp. 687–699 (2004).
Tsai, Y.I. and Cheng, M.T., Relationship Between Visibility, Meteorological Factors, and Aerosol Composition in the Taichung Near-shore Area, Proceedings of the 1997 International Conference on Aerosol Technology, Environmental Measurement and Control, pp. 76-84 (1997).
Tsai, Y.I. and Cheng, M.T., Visual Degradation and Aerosol Characteristics of Ambient High-Polluted Events in Taichung Metropolitan Basin, Taiwan (1998).
Turpin, B.J. and Huntzicker, J.J., Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR, Atmospheric Environment, 29, pp. 3527-3544 (1995).
U. Krämer, C. Herder, D. Sugiri, K. Strassburger, T. Schikowski, U. Ranft, W. Rathmann, Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study Environ, Health Perspect., 118 (9), pp. 1273–1279 (2010).
U.S. EPA, Receptor Model Source Composition Library, Environmental Protection Agency Research Triangle Park, NC, U.S. Department of Commerce National Technical Information Service(NTIS), EPA-450/4-85-002 (1984).
U.S. EPA, Preferred and Alternative Methods for Estimating Air Emission from Boilers. Volume II (2001).
U.S.EPA, Determination of PM10 and PM2.5 emissions from stationary sources constant sampling rate procedure. Method 201A (2010).
V. Verma, P. Pakbin, K.L. Cheung, A.K. Cho, J.J. Schauer, M.M. Shafer, M.T. Kleinman, C. Sioutas, Physicochemical and toxicological characteristics of semi-volatile components of atmospheric aerosols in an urban environment, AGU Fall Meet. Abstr. 1, 01 (2010).
Wang, X.H., Bi, X.H., Sheng, G.Y., Chemical composition and sources of PM10 and PM2.5 in Guangzhou, China. Environ. Monit. Assess. 119, pp. 425-439 (2006).
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R. and Robbins, R., Differences in the carbon composition of source profiles for diesel- and gasolinepowered vehicles, Atmos. Environ. 28(15): pp. 2493-2505 (1994).
Wei, C.C., Chen, W.C., Li, C.S. and Wang, C.S., Application of Chemical Mass Balances to the Mailiao Aerosols, 1993 International Conference on Aerosol Science and Technology, Taichung (1993).
WHO, Frequently Asked Questions: Ambient and Household Air Pollution and Health, (accessed 12.6.14) (2014).
Hu, W. Downward, G.S. Reiss, B. Xu, J. Bassig, B.A. Hosgood III, H.D. Zhang, L. Seow, W.J. Wu, G. R. Chapman, S. Tian, L. Wei, F. Vermeulen, R. Lan, Q. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer Environ, Sci. Technol., 48, pp. 8456–84 (2014).
Wu, Y., Hao, J.M., Fu, L.X., Chemical characteristics of airborne particulate matter near major roads and at back-ground location in Macao, China. Sci. Total Environ. 317, pp. 159-172 (2003).
Wu, W. R. Muller, K. Berhane, S. Fruin, F. Liu, I. Jaspers, D. Diaz-Sanchez, D.B. Peden, R. McConnell, Inflammatory response of monocytes to ambient particles varies by highway proximity, Am. J. Respir. Cell Mol. Biol., 51, pp. 802–809 (2014).
Xu, L.L., Chen, X.Q., Chen, J.S., Seasonal variations and chemical composition of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos. Res. 104, pp. 264-272 (2012).
Ye, B.M., Ji, X.L., Yang, H.Z., Concentration and chemical composition of PM2.5 in shanghai for a 1-year period. Atmos. Environ. 37, pp. 499-510 (2003).
Jie, Y. H. Houjin, M. Xun, L. Kebin, Y. Xuesong, X. Jie, Relationship between pulmonary function and indoor air pollution from coal combustion among adult residents in an inner-city area of Southwest China Br. J. Med. Biol. Res., 47, pp. 982–98964 (2014).
Yorifuji, T. K., S ; Doi, H., Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan, SCIENCE OF THE TOTAL ENVIRONMENT 542, Part A, pp. 354–359 (15 January 2016)
Zhang, Z.Q., Friendlander, S.K., A comparative study of chemical databases for fine particle Chinese aerosols. Environ. Sci. Technol. 24, pp. 4678-4694 (2000).
Zhang, X.Y., Wang, Y.Q., Niu, T., Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols, Atmos. Chem. Phys. 12, pp. 779-799 (2012).
Zheng, M., Zhang, Y.J., Yan, C.Q., Establishing PM2.5 industrial source profiles in Shanghai. China Environ. Sci. 33, pp. 1354-1359 (2013).
Andersen, Z.J. Raaschou-Nielsen, O. Ketzel, M. Jensen, S.S. Hvidber, M. Loft, S. Tjonneland, A. Overvad, K. Sorensen, M. Diabetes incidence and long-term exposure to air pollution: a cohort study Diabetes Care, 35 (1), pp. 92–98 (2012).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔