跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂逸寧
研究生(外文):Yi-Ning Tu
論文名稱:催化型碳分子篩選膜反應器應用於IGCC發電技術之H2純化與CO2補獲之研究
論文名稱(外文):Catalytic carbon molecular sieve membrane reactor for H2 purification and CO2 capture in IGCC system
指導教授:魏銘彥
指導教授(外文):Ming-Yen Wey
口試委員:陳世雄梁振儒曾惠馨
口試日期:2016-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:140
中文關鍵詞:碳分子篩選薄膜薄膜反應器水氣轉移反應
外文關鍵詞:Carbon membraneMembrane reactorWater–gas shift reaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  整合式氣化複循環發電技術( Integrated Gasification Combined Cycle,IGCC )因其具有氣化材料之進料選擇多、低成本高效能,且接近零碳排的特點是現今國內外積極研究發展的項目之一。將催化型薄膜反應器應用於IGCC發電技術,被視為可有效降低發電成本之可行技術之一;催化型薄膜反應器為一項整合IGCC發電程序中水氣轉移催化反應與生成氣體H2、CO2分離之新穎技術,其目的為透過將反應生成之產物於過程中立即的移除,藉此破壞熱力學平衡以提升催化反應之效能。本研究將管柱式碳分子篩選薄膜結合Cu/Zn/SBA–16觸媒建構成催化型薄膜反應器,將其應用於模擬合成氣進行水氣轉移反應並對其效能進行評估。
管柱式碳分子篩選薄膜因具有高比表面積且易與觸媒整合之特點,同時碳膜材料本身具備高滲透分選及耐水熱和化學穩定性等優點,為一項適用於水氣轉移薄膜反應器之薄膜材料。本研究以真空輔助浸塗法製備管柱式碳分子篩選薄膜,探討之製備參數包含鑄膜液濃度、基材浸沒鑄膜液時間、以TiO2修飾層改質基材等,對碳分子篩選薄膜氣體分選效能之影響。研究結果顯示,薄膜厚度會隨著鑄膜液濃度、基材浸沒鑄膜液時間之提高而有增加之趨勢;透過TiO2修飾層改質基材不僅可有效地修飾基材內部之缺陷,降低鑄膜液過度滲入基材而造成低滲透率的情形,同時能夠提升對氣體之滲透選擇率;最佳條件為以1350 ℃鍛燒之塗覆四層TiO2修飾層作為基材、鑄膜液濃度為20 wt.%、基材浸沒鑄膜液時間20秒、塗覆2層,其H2/CO2選擇係數為3.59,H2滲透率為2,312 Barrer、CO2滲透率為768 Barrer。接著利用共沉澱法製備出Cu/Zn/SBA–16水氣轉移觸媒,將其應用於固定床催化反應中,結果顯示CO轉化率、H2生成率隨反應溫度提高、空間速度降低皆有增加之趨勢。最佳之催化效果出現於操作在反應溫度為300 ℃、空間速度2,500 h-1及水氣含量S/C (Steam /CO ratio) = 1時,CO轉化率為82.76%。最後以相同操作參數將Cu/Zn/SBA–16觸媒應用於薄膜反應器內,結果顯示CO轉化率相較於固定床反應器提升了4.19%,透過使用催化型薄膜反應器不僅能有效提升CO轉化率和H2生成率,同時能夠縮短反應達平衡的時間。

To develop clean electricity, Integrated Gasification Combined Cycle (IGCC) electricity generation technology has been considered as a key role in 21st century. In the IGCC process, the production of hydrogen (H2) with carbon dioxide (CO2) via water gas shift (WGS) reaction was applied after gasification system to enhance the H2 generation capacity. However, due to the thermodynamic limits of equilibrium, the WGS reaction should be occurred at low temperature and the CO conversion rate cannot be high. The increase of the CO conversion above the equilibrium values appears to be possible when product, i.e. H2 and CO2, is removed through the membrane. Therefore, in this study, the carbon molecular sieve (CMS) membrane will be integrated into the IGCC system to combine the WGS system into the catalytic membrane reactor (MR). The effect of feeding pure reagents on the MR efficiency was evaluated to determine the best conditions in terms of CO conversion. At this purpose, experimental tests were carried out in two different systems of reaction: (1) traditional fixed-bed reactor, and (2) MR with CMS membrane.
As being membrane material for membrane reactor, CMS has the advantages of high specific area and could be integrated with catalyst easily. Besides, carbon membrane also exhibits high selectivity and good chemical stabilization. In this study, the CMS membrane was prepared using polyethyleneimine as precursor and then coated on porous Al2O3 macroporous tubes to form tubular CMS membrane. Parameters including concentration of casting solution, immerse time of substrate and TiO2/Al2O3 substrate modified were evaluated in terms of gas permeaselectivity. The results indicated that the thickness of membrane become larger with the increasing concentration of casting solution and immerse time of substrate. With the modification of TiO2, not only the defects of substrate has been mitigated which leads to the prevention of exceeding access of casting solution into the substrate, but promotes the permeaselectivity. The best parameter in this work is Ti4_1350-20w-20s-2L, gas selectivity of H2/CO2 = 3.59, the permeability of H2 2,312 Barrer and CO2 768 Barrer.

總目錄
摘要 i
Abstract iii
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究緣起 1
1.3 研究目的 6
1.4 研究架構 6
第二章 文獻回顧 10
2.1碳捕獲CCS 10
2.2 整合式氣化複循環發電技術IGCC 13
2.2.1 氣化機制 14
2.2.2 薄膜反應器 18
2.3 水氣轉移反應 21
2.3.1 水氣轉移反應概述 21
2.3.2 影響水氣轉移反應之操作參數 23
2.4水氣轉移反應觸媒 29
2.4.1觸媒之催化特性 29
2.4.2 水氣轉移觸媒之催化反應 32
2.4.3 觸媒之種類與組成 33
2.4.4 觸媒擔體材料 34
2.4.5 觸媒的製備方法 36
2.5 薄膜技術 42
2.5.1氣體分離薄膜之種類 42
2.5.2 薄膜之氣體分離原理與傳輸機制 44
2.6 碳分子篩選薄膜簡介 53
2.6.1 碳分子篩選薄膜之製備 54
2.6.2 碳分子篩選薄膜改質技術 59
2.7 文獻總結 60
第三章 實驗設備與方法 62
3.1實驗藥品及氣體 62
3.2 實驗儀器及設備 63
3.3 薄膜製備流程 65
3.3.1 TiO2修飾層之製備 65
3.3.2 製備碳分子篩選薄膜 66
3.4 擔體與觸媒之製備 67
3.4.1 SBA-16擔體之製備流程 67
3.4.2 Cu/Zn/SBA-16觸媒之製備流程 67
3.5 材料特性分析儀器之簡介 69
3.6 薄膜氣體滲透測試 73
3.6.1 單一氣體滲透測試 73
3.6.2 混合氣體於固定床/薄膜反應器之催化分離測試 75
3.7實驗試程 77
第四章 結果與討論 79
4.1 薄膜特性分析 80
4.1.1 TiO2/Al2O3 基材微觀形態 80
4.1.2 TiO2/Al2O3 基材微觀形態 83
4.1.3 TiO2 / Al2O3 基材微觀形態 – AFM分析 85
4.1.4 Carbon/TiO2/Al2O3 機械互鎖能力評估 87
4.1.5 薄膜厚度 89
4.2管柱式碳分子篩選薄膜之氣體分選效能 92
4.2.1鑄膜液濃度與抽真空浸沒時間對C/Al2O3薄膜之影響 92
4.2.2鑄膜液濃度與抽真空浸沒時間對C/TiO2/Al2O3之影響 96
4.2.3 管柱式碳分子篩選薄膜之選擇效能 98
4.3觸媒特性分析 100
4.3.1 擔體與觸媒微觀形態–SEM、TEM分析 100
4.3.2 擔體與觸媒孔洞結構 – BET分析 102
4.3.3 擔體與觸媒孔洞結構 – XRD分析 103
4.4 試驗操作參數對Cu/Zn/SBA–16觸媒催化之影響 105
4.4.1 反應溫度對Cu/Zn/SBA–16觸媒催化反應之影響 105
4.4.2空間速度對Cu/Zn/SBA–16觸媒催化反應之影響 108
4.4.3水汽含量對Cu/Zn/SBA–16觸媒催化反應之影響 111
4.5催化型薄膜反應器對Cu/Zn/SBA–16觸媒催化反應之影響 114
第五章 結論與建議 117
5.1 結論 117
5.1.1管柱式碳分子篩選薄膜 117
5.1.2水氣轉移反應 118
5.1.3催化水氣轉移碳分子篩選薄膜反應器 118
5.2 未來研究與建議 119
參考文獻 120
附錄 135



[1]林恩賢,"熱烈解法製備Pt-Ir金屬觸媒及其特性分析並用於單一化可再生式燃料電池",南台科技大學能源工程研究所碩士論文,2012。
[2]Li, J.-R., Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, and H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011. 255(15–16): p. 1791-1823.
[3]Yin, X., N. Chu, J. Yang, J. Wang, and Z. Li, Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. International Journal of Greenhouse Gas Control, 2013. 15(0): p. 55-64.
[4]Sim, Y.H., H. Wang, F.Y. Li, M.L. Chua, T.-S. Chung, M. Toriida, and S. Tamai, High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications. Carbon, 2013. 53(0): p. 101-111.
[5]Galuszka, J., T. Giddings, and G. Iaquaniello, Membrane assisted WGSR – Experimental study and reactor modeling. Chemical Engineering Journal, 2012. 213(0): p. 363-370.
[6]Shao, L., B.T. Low, T.-S. Chung, and A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009. 327(1–2): p. 18-31.
[7]Haruta, M., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, and B. Delmon, Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis, 1993. 144(1): p. 175-192.
[8]Breysse, M., P. Afanasiev, C. Geantet, and M. Vrinat, Overview of support effects in hydrotreating catalysts. Catalysis Today, 2003. 86(1–4): p. 5-16.
[9]Ramkumar, S. and L.S. Fan, Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides. 2011, Google Patents.
[10]Lu, G.Q., J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, and T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 2007. 314(2): p. 589-603.
[11]Ismail, A.F., Preparation of carbon membranes for gas separation, in Comprehensive Membrane Science and Engineering, E. Drioli and L. Giorno, Editors. 2010, Elsevier: Oxford. p. 275-290.
[12]Mahdyarfar, M., T. Mohammadi, and A. Mohajeri, Defect formation and prevention during the preparation of supported carbon membranes. New Carbon Materials, 2013. 28(5): p. 369-377.
[13]Rodrigues, S.C., R. Whitley, and A. Mendes, Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin. Journal of Membrane Science, 2014. 459: p. 207-216.
[14]Franz, J., P. Maas, and V. Scherer, Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes. Applied Energy, 2014. 130: p. 532-542.
[15]Briceño, K., A. Iulianelli, D. Montané, R. Garcia-Valls, and A. Basile, Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors. International Journal of Hydrogen Energy, 2012. 37(18): p. 13536-13544.
[16]Briceño, K., D. Montané, R. Garcia-Valls, A. Iulianelli, and A. Basile, Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation. Journal of Membrane Science, 2012. 415–416: p. 288-297.
[17]Briceño, K., R. Garcia-Valls, and D. Montané, State of the art of carbon molecular sieves supported on tubular ceramics for gas separation applications. Asia-Pacific Journal of Chemical Engineering, 2010. 5(1): p. 169-178.
[18]He, X. and M.-B. Hägg, Hollow fiber carbon membranes: Investigations for CO2 capture. Journal of Membrane Science, 2011. 378(1–2): p. 1-9.
[19]經濟部能源局,"我國燃料燃燒CO2排放統計",能源產業溫室氣體減量資訊網,2015。
[20]Ziębik, A. and P. Gładysz, Analysis of cumulative energy consumption in an oxy-fuel combustion power plant integrated with a CO2 processing unit. Energy Conversion and Management, 2014. 87(0): p. 1305-1314.
[21]Shao, P., M.M. Dal-Cin, M.D. Guiver, and A. Kumar, Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013. 427: p. 451-459.
[22]Hossein Sahraei, M., D. McCalden, R. Hughes, and L.A. Ricardez-Sandoval, A survey on current advanced IGCC power plant technologies, sensors and control systems. Fuel, 2014. 137(0): p. 245-259.
[23]Lima, F.V., P. Daoutidis, and M. Tsapatsis, Modeling, optimization, and cost analysis of an IGCC plant with a membrane reactor for carbon capture. American Institute of Chemical Engineers Journal, 2016. 62(5): p. 1568-1580.
[24]Koc, R., N.K. Kazantzis, W.J. Nuttall, and Y.H. Ma, Economic assessment of inherently safe membrane reactor technology options integrated into IGCC power plants. Process Safety and Environmental Protection, 2012. 90(5): p. 436-450.
[25]Chiesa, P., T.G. Kreutz, and G.G. Lozza, CO2 sequestration from IGCC power plants by means of metallic membranes. Journal of Engineering for Gas Turbines and Power, 2005. 129(1): p. 123-134.
[26]Arena, U. and F. Di Gregorio, Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor. Energy, 2014. 68: p. 735-743.
[27]呂錫民,"氣化技術",科學發展,2009。435:第62-66頁。
[28]朱敬平,鍾裕仁,盧昱彰,許國恩,陳誼勳,孫世勤,廖明村,"高效能生質氣化試驗設施建造評估規劃計畫",行政院環境保護署,2008。
[29]Kannan, P., A. Al Shoaibi, and C. Srinivasakannan, Energy recovery from co-gasification of waste polyethylene and polyethylene terephthalate blends. Computers & Fluids, 2013. 88: p. 38-42.
[30]Scholes, C.A., K.H. Smith, S.E. Kentish, and G.W. Stevens, CO2 capture from pre-combustion processes—Strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010. 4(5): p. 739-755.
[31]Dong, X., H. Wang, Z. Rui, and Y.S. Lin, Tubular dual-layer MFI zeolite membrane reactor for hydrogen production via the WGS reaction: Experimental and modeling studies. Chemical Engineering Journal, 2015. 268: p. 219-229.
[32]Brunetti, A., G. Barbieri, and E. Drioli, Upgrading of a syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor. Chemical Engineering Science, 2009. 64(15): p. 3448-3454.
[33]Abdollahi, M., J. Yu, P.K.T. Liu, R. Ciora, M. Sahimi, and T.T. Tsotsis, Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process. Journal of Membrane Science, 2010. 363(1–2): p. 160-169.
[34]Babita, K., S. Sridhar, and K.V. Raghavan, Membrane reactors for fuel cell quality hydrogen through WGSR – Review of their status, challenges and opportunities. International Journal of Hydrogen Energy, 2011. 36(11): p. 6671-6688.
[35]Basile, A., A. Criscuoli, F. Santella, and E. Drioli, Membrane reactor for water gas shift reaction. Gas Separation & Purification, 1996. 10(4): p. 243-254.
[36]陳欣宜,"觸媒氣化生質物產氫之研究",國立國立中興大學環境工程所碩士論文,2011。
[37]Chen, W.-H., M.-R. Lin, T.L. Jiang, and M.-H. Chen, Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 2008. 33(22): p. 6644-6656.
[38]Ouellette, R.J. and J.D. Rawn, Introduction to Organic Reaction Mechanisms, in Organic Chemistry. 2014, Elsevier: Boston. p. 75-110.
[39]Atkins, P.W. and L.L. Jones, Chemical Principle –The Quest for Insight. W. H. Freeman and Company, 2008. 4th ed.
[40]Jain, R. and R. Maric, Synthesis of nano-Pt onto ceria support as catalyst for water–gas shift reaction by reactive spray deposition technology. Applied Catalysis A: General, 2014. 475: p. 461-468.
[41]Zhao, S., T. Luo, and R.J. Gorte, Deactivation of the water–gas-shift activity of Pd/ceria by Mo. Journal of Catalysis, 2004. 221(2): p. 413-420.
[42]Ladebeck, J.R. and J.P. Wagner, Handbook of Fuel Cells-Fundamentals, Technology and Applications. Vol. Chichester. 2003: Wiley.
[43]Mendes, D., A. Mendes, L.M. Madeira, A. Iulianelli, J.M. Sousa, and A. Basile, The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors—a review. Asia-Pacific Journal of Chemical Engineering, 2010. 5(1): p. 111-137.
[44]Utaka, T., T. Okanishi, T. Takeguchi, R. Kikuchi, and K. Eguchi, Water gas shift reaction of reformed fuel over supported Ru catalysts. Applied Catalysis A: General, 2003. 245(2): p. 343-351.
[45]Basile, A., G. Chiappetta, S. Tosti, and V. Violante, Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Separation and Purification Technology, 2001. 25(1–3): p. 549-571.
[46]Androver, M.E., E. Lopez, D.O. Borio, and M.N. Pedernera, Theoretical study of a membrane reactor for the watergas shift reaction under non-isothermal conditions. American Institute of Chemical Engineers Journal, 2009. 55: p. 3206-3213.
[47]Moustafa, T.M. and S.S.E.H. Elnashaie, Simultaneous production of styrene and cyclohexane in an integrated membrane reactor. Journal of Membrane Science, 2000. 178(1–2): p. 171-184.
[48]Ma, D. and C.R.F. Lund, Assessing high-temperature water−gas shift membrane reactors. Industrial & Engineering Chemistry Research, 2003. 42(4): p. 711-717.
[49]Basile, A., E. Drioli, F. Santell, V. Violante, G. Capannelli, and G. Vitulli, A study on catalytic membrane reactors for water gas shift reaction. Gas Separation & Purification, 1996. 10(1): p. 53-61.
[50]Kikuchi, E., S. Uemiya, N. Sato, H. Inoue, H. Ando, and T. Matsuda, Membrane reactor using microporous glass-supported thin film of palladium. Application to the water gas shift reaction. Chemistry Letters, 1989. 18(3): p. 489-492.
[51]Tosti, S., A. Basile, G. Chiappetta, C. Rizzello, and V. Violante, Pd–Ag membrane reactors for water gas shift reaction. Chemical Engineering Journal, 2003. 93(1): p. 23-30.
[52]Chiappetta, G., G. Clarizia, and E. Drioli, International congress on membranes and membrane processesanalysis of safety aspects in a membrane reactor. Desalination, 2006. 193(1): p. 267-279.
[53]Jiang, L., H. Zhu, R. Razzaq, M. Zhu, C. Li, and Z. Li, Effect of zirconium addition on the structure and properties of CuO/CeO2 catalysts for high-temperature water–gas shift in an IGCC system. International Journal of Hydrogen Energy, 2012. 37(21): p. 15914-15924.
[54]Hwang, K.-r., S.-k. Ihm, and J.-s. Park, Enhanced CeO2-supported Pt catalyst for water–gas shift reaction. Fuel Processing Technology, 2010. 91(7): p. 729-736.
[55]Bi, Y., H. Xu, W. Li, and A. Goldbach, Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst. International Journal of Hydrogen Energy, 2009. 34(7): p. 2965-2971.
[56]李定粵,"觸媒的原理與應用",國立編譯館,1991。
[57]胡興中,"觸媒原理與應用",高立圖書有限公司,1991。
[58]楊文毅,"鈀觸媒氧化焚化廢氣中之有機物之研究",國立國立中興大學環境工程所碩士論文,2000。
[59]張筑暄,"碳分子篩選薄膜於生質產氫氣氣體純化分離之應用",國立國立中興大學環境工程所碩士論文,2012。
[60]Fontes, E., Modeling approaches in heterogeneous catalysis. COMSOL Inc., 2015.
[61]Ammal, S.C. and A. Heyden, Origin of the unique activity of Pt/TiO2 catalysts for the water–gas shift reaction. Journal of Catalysis, 2013. 306: p. 78-90.
[62]Liu, P., Synergistic effect of metal/oxide catalysts in the water-gas shift reactions: A theory-guided rational design of better catalysts in New and Future Developments in Catalysis. 2013, Elsevier: Amsterdam. p. 213-241.
[63]Gonzalez Castaño, M., T.R. Reina, S. Ivanova, M.A. Centeno, and J.A. Odriozola, Pt vs. Au in water–gas shift reaction. Journal of Catalysis, 2014. 314: p. 1-9.
[64]Sagata, K., N. Imazu, and H. Yahiro, Study on factors controlling catalytic activity for low-temperature water–gas-shift reaction on Cu-based catalysts. Catalysis Today, 2013. 201: p. 145-150.
[65]Sagata, K., Y. Kaneda, H. Yamaura, S. Kobayashi, and H. Yahiro, Influence of coexisting Al2O3 on the activity of copper catalyst for water–gas-shift reaction. International Journal of Hydrogen Energy, 2014. 39(35): p. 20639-20645.
[66]Batista, M.S., E.M. Assaf, J.M. Assaf, and E.A. Ticianelli, Double bed reactor for the simultaneous steam reforming of ethanol and water gas shift reactions. International Journal of Hydrogen Energy, 2006. 31(9): p. 1204-1209.
[67]Chu, W. and H. Windawi, Control VOCs via catalytic oxidation. Chemical Engineering Progress, 1996. March: p. 37-42.
[68]Miachon, S. and J.-A. Dalmon, Catalysis in Membrane Reactors: What About the Catalyst? Topics in Catalysis, 2004. 29(1): p. 59-65.
[69]Smorygo, O., V. Mikutski, A. Marukovich, Y. Vialiuha, A. Ilyushchanka, N. Mezentseva, G. Alikina, Z. Vostrikov, Y. Fedorova, V. Pelipenko, R. Bunina, and V. Sadykov, Structured catalyst supports and catalysts for the methane indirect internal steam reforming in the intermediate temperature SOFC. International Journal of Hydrogen Energy, 2009. 34(23): p. 9505-9514.
[70]Da Costa-Serra, J.F., R. Guil-López, and A. Chica, Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases. International Journal of Hydrogen Energy, 2010. 35(13): p. 6709-6716.
[71]Kung, H.H. and E.I. Ko, Preparation of oxide catalysts and catalyst supports — a review of recent advances. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996. 64(2): p. 203-214.
[72]章育豪,"SBA-15沸石擔體觸媒對揮發性有機污染物氧化去除之研究",國立國立中興大學環境工程所碩士論文,1998。
[73]Sakamoto, Y., M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G. Stucky, H.J. Shin, and R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000. 408(6811): p. 449-453.
[74]Bian, Z., X. Meng, M. Tao, Y. Lv, and Z. Xin, Effect of MoO3 on catalytic performance and stability of the SBA-16 supported Ni-catalyst for CO methanation. Fuel, 2016. 179: p. 193-201.
[75]Ballem, M.A., E.M. Johansson, J.M. Córdoba, and M. Odén, Synthesis of hollow silica spheres SBA-16 with large-pore diameter. Materials Letters, 2011. 65(7): p. 1066-1068.
[76]Airoldi, C. and V.V. Oliveira, Hydrophobic contribution to amoxicillin release associated with organofunctionalized mesoporous SBA-16 carriers. Materials Research Bulletin, 2014. 59: p. 214-222.
[77]莊皓惟,"SBA-15/PPO混合基材薄膜於氫氣純化及二氧化碳捕獲之研究:SBA-15添加材及碳基材效應",國立國立中興大學環境工程所碩士論文,2014。
[78]Tabakova, T., V. Idakiev, G. Avgouropoulos, J. Papavasiliou, M. Manzoli, F. Boccuzzi, and T. Ioannides, Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 2013. 451: p. 184-191.
[79]Kowalik, P., M. Konkol, K. Antoniak, W. Próchniak, and P. Wiercioch, The effect of the precursor ageing on properties of the Cu/ZnO/Al2O3 catalyst for low temperature water–gas shift (LT-WGS). Journal of Molecular Catalysis A: Chemical, 2014. 392: p. 127-133.
[80]Behrens, M., D. Brennecke, F. Girgsdies, S. Kißner, A. Trunschke, N. Nasrudin, S. Zakaria, N.F. Idris, S.B.A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, and R. Schlögl, Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Applied Catalysis A: General, 2011. 392(1–2): p. 93-102.
[81]Hutchings, G.J., A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, and S.H. Taylor, Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 1998. 166(1): p. 143-152.
[82]Shishido, T., M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, and K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Applied Catalysis A: General, 2006. 303(1): p. 62-71.
[83]Luengnaruemitchai, A., S. Osuwan, and E. Gulari, Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts. Catalysis Communications, 2003. 4(5): p. 215-221.
[84]Budiman, A., M. Ridwan, S.M. Kim, J.-W. Choi, C.W. Yoon, J.-M. Ha, D.J. Suh, and Y.-W. Suh, Design and preparation of high-surface-area Cu/ZnO/Al2O3 catalysts using a modified co-precipitation method for the water-gas shift reaction. Applied Catalysis A: General, 2013. 462–463: p. 220-226.
[85]Jeong, D.-W., W.-J. Jang, J.-O. Shim, W.-B. Han, H.-S. Roh, U.H. Jung, and W.L. Yoon, Low-temperature water–gas shift reaction over supported Cu catalysts. Renewable Energy, 2014. 65: p. 102-107.
[86]Inagaki, M., F. Kang, M. Toyoda, and H. Konno, Nanoporous carbon membranes and webs, in Advanced Materials Science and Engineering of Carbon, M.I.K.T. Konno, Editor. 2014, Butterworth-Heinemann: Boston. p. 215-236.
[87]Fu, S., E.S. Sanders, S.S. Kulkarni, G.B. Wenz, and W.J. Koros, Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon, 2015. 95: p. 995-1006.
[88]Li, P., Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, and S. Wang, Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015. 495: p. 130-168.
[89]Iulianelli, A., A. Basile, H. Li, and R.W. Van den Brink, Inorganic membranes for pre-combustion carbon dioxide (CO2) capture, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications. 2011, Woodhead Publishing. p. 184-213.
[90]Li, H., K. Haas-Santo, U. Schygulla, and R. Dittmeyer, Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress. Chemical Engineering Science, 2015. 127: p. 401-417.
[91]Shi, Y., Y.T. Lee, and A.S. Kim, Knudsen diffusion through cylindrical tubes of varying radii: Theory and monte carlo simulations. Transport in Porous Media, 2012. 93(3): p. 517-541.
[92]Nwogu, N.C., M. Kajama, and E. Gobina, A study of gas diffusion characteristics on a micro porous composite silica ceramic membrane. Composite Structures, 2015. 134: p. 1044-1050.
[93]Chen, Y., B. Wang, L. Zhao, P. Dutta, and W.S. Winston Ho, New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015. 495: p. 415-423.
[94]Dahi, A., K. Fatyeyeva, D. Langevin, C. Chappey, S.P. Rogalsky, O.P. Tarasyuk, A. Benamor, and S. Marais, Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties. Journal of Membrane Science, 2014. 458: p. 164-178.
[95]Mulder, M., Basic principles of membrane technology. 1996: Kluwer Academic Publishers.
[96]Khalilpour, R., K. Mumford, H. Zhai, A. Abbas, G. Stevens, and E.S. Rubin, Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 2015. 103: p. 286-300.
[97]Stein, W.D. and T. Litman, Carrier-mediated transport: Facilitated diffusion, in Channels, Carriers, and Pumps (Second Edition). 2015, Elsevier: London. p. 131-178.
[98]Rutherford, S.W. and D.D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes. Adsorption, 1997. 3(4): p. 283-312.
[99]Teixeira, M., M.C. Campo, D.A. Pacheco Tanaka, M.A. Llosa Tanco, C. Magen, and A. Mendes, Composite phenolic resin-based carbon molecular sieve membranes for gas separation. Carbon, 2011. 49(13): p. 4348-4358.
[100]Ash, R., R.M. Barrer, and R.T. Lowson, Transport of single gases and of binary gas-mixtures in a microporous carbon membrane. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1973. 69: p. 2166-2178.
[101]Robeson, L.M., Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991. 62(2): p. 165-185.
[102]Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1–2): p. 390-400.
[103]Llosa Tanco, M.A., D.A. Pacheco Tanaka, S.C. Rodrigues, M. Texeira, and A. Mendes, Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 2015. 40(16): p. 5653-5663.
[104]Koresh, J.E. and A. Soffer, The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Separation Science and Technology, 1987. 22(2-3): p. 973-982.
[105]Kiyono, M., P.J. Williams, and W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. Journal of Membrane Science, 2010. 359(1–2): p. 2-10.
[106]Lagorsse, S., F.D. Magalhães, and A. Mendes, Carbon molecular sieve membranes: Sorption, kinetic and structural characterization. Journal of Membrane Science, 2004. 241(2): p. 275-287.
[107]Teixeira, M., S.C. Rodrigues, M. Campo, D.A. Pacheco Tanaka, M.A. Llosa Tanco, L.M. Madeira, J.M. Sousa, and A. Mendes, Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies. Chemical Engineering Research and Design, 2014. 92(11): p. 2668-2680.
[108]Saufi, S.M. and A.F. Ismail, Fabrication of carbon membranes for gas separation––a review. Carbon, 2004. 42(2): p. 241-259.
[109]Ismail, A.F. and L.I.B. David, A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 2001. 193(1): p. 1-18.
[110]Yang, H., Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, and I. Wright, Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 2008. 20(1): p. 14-27.
[111]Campo, M.C., F.D. Magalhães, and A. Mendes, Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 2010. 350(1–2): p. 180-188.
[112]Acharya, M. and H.C. Foley, Spray-coating of nanoporous carbon membranes for air separation. Journal of Membrane Science, 1999. 161(1–2): p. 1-5.
[113]鄭博育,"以真空輔助浸塗法製備管柱式碳分子篩選薄膜之結構特徵與氣體分選效能之探討",國立國立中興大學環境工程所碩士論文,2015。
[114]Grosso, D., How to exploit the full potential of the dip-coating process to better control film formation. Journal of Materials Chemistry, 2011. 21(43): p. 17033-17038.
[115]Kusuki, Y., H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997. 134(2): p. 245-253.
[116]Schindler, E. and F. Maier, Manufacture of porous carbon membranes. 1990, Google Patents.
[117]Mahdyarfar, M., T. Mohammadi, and A. Mohajeri, Gas separation performance of carbon materials produced from phenolic resin: Effects of carbonization temperature and ozone post treatment. New Carbon Materials, 2013. 28(1): p. 39-46.
[118]Damle, A.S., Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation—experimental studies. Journal of Power Sources, 2009. 186(1): p. 167-177.
[119]Lee, P.-S., D. Kim, S.-E. Nam, and R.R. Bhave, Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations. Microporous and Mesoporous Materials, 2016. 224: p. 332-338.
[120]Sá, S., J.M. Sousa, and A. Mendes, Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part II: A carbon membrane reactor. Chemical Engineering Science, 2011. 66(22): p. 5523-5530.
[121]Yoshimune, M. and K. Haraya, Flexible carbon hollow fiber membranes derived from sulfonated poly(phenylene oxide). Separation and Purification Technology, 2010. 75(2): p. 193-197.
[122]Nik, O.G., X.Y. Chen, and S. Kaliaguine, Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2011. 379(1–2): p. 468-478.
[123]Ebadi Amooghin, A., M. Omidkhah, and A. Kargari, The effects of aminosilane grafting on NaY zeolite–Matrimid®5218 mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2015. 490: p. 364-379.
[124]Kumar, P., J. Ida, S. Kim, V.V. Guliants, and J.Y.S. Lin, Ordered mesoporous membranes: Effects of support and surfactant removal conditions on membrane quality. Journal of Membrane Science, 2006. 279(1–2): p. 539-547.
[125]Huang, Y. and R. Dittmeyer, Preparation of thin palladium membranes on a porous support with rough surface. Journal of Membrane Science, 2007. 302(1–2): p. 160-170.
[126]Tseng, H.-H., P.-T. Shiu, and Y.-S. Lin, Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. International Journal of Hydrogen Energy, 2011. 36(23): p. 15352-15363.
[127]Tseng, H.-H., C.-T. Wang, G.-L. Zhuang, P. Uchytil, J. Reznickova, and K. Setnickova, Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion. Journal of Membrane Science, 2016. 510: p. 391-404.
[128]Qi, H., Y. Fan, W. Xing, and L. Winnubst, Effect of TiO2 doping on the characteristics of macroporous Al2O3/TiO2 membrane supports. Journal of the European Ceramic Society, 2010. 30(6): p. 1317-1325.
[129]Hono, T., N. Inoue, M. Morimoto, and Y. Suzuki, Reactive sintering and microstructure of uniform, openly porous Al2TiO5. Journal of Asian Ceramic Societies, 2013. 1(2): p. 178-183.
[130]Chang, Q., Y. Wang, S. Cerneaux, J.-e. Zhou, X. Zhang, X. Wang, and Y. Dong, Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials. Journal of the European Ceramic Society, 2014. 34(16): p. 4355-4361.
[131]王敬婷,"利用二氧化鈦中間層改善碳分子篩選薄膜黏附特性與增加氣體分離性能之研究",中山醫學大學職業安全衛生學系碩士論文,2014。
[132]Strobel, C., A. Kadow-Romacker, T. Witascheck, G. Schmidmaier, and B. Wildemann, Evaluation of process parameter of an automated dip-coating. Materials Letters, 2011. 65(23–24): p. 3621-3624.
[133]Xiaobin, F.Y.D. and X. Nanping, Modeling and control of cermic membrane thickness during dip coating process. Chemical Industry and Engineering (China), 2006. 57(4): p. 1003-1008.
[134]Ma, Z., H. Yang, Y. Qin, Y. Hao, and G. Li, Palladium nanoparticles confined in the nanocages of SBA-16: Enhanced recyclability for the aerobic oxidation of alcohols in water. Journal of Molecular Catalysis A: Chemical, 2010. 331(1–2): p. 78-85.
[135]Jourshabani, M., A. Badiei, N. Lashgari, and G.M. Ziarani, Highly selective production of phenol from benzene over mesoporous silica-supported chromium catalyst: Role of response surface methodology in optimization of operating variables. Chinese Journal of Catalysis, 2015. 36(11): p. 2020-2029.
[136]Fujita, S.-i., Y. Kanamori, A.M. Satriyo, and N. Takezawa, Methanol synthesis from CO2 over Cu/ZnO catalysts prepared from various coprecipitated precursors. Catalysis Today, 1998. 45(1–4): p. 241-244.
[137]Frost, R.L., A.J. Locke, M.C. Hales, and W.N. Martens, Thermal stability of synthetic aurichalcite implications for making mixed metal oxides for use as catalysts. Journal of Thermal Analysis and Calorimetry, 2008. 94(1): p. 203-208.
[138]Hallac, B.B., J.C. Brown, L.L. Baxter, and M.D. Argyle, A kinetic study on the structural and functional roles of lanthana in iron-based high temperature water–gas shift catalysts. International Journal of Hydrogen Energy, 2014. 39(14): p. 7306-7317.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊