(3.235.191.87) 您好!臺灣時間:2021/05/14 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宏昇
研究生(外文):Hong-Sheng Lin
論文名稱:以生物薄膜法對總氮去除之研究-碳氮比的影響
論文名稱(外文):The Study of Total Nitrogen Removal with a Membrane Bioreactor-The Effect of C/N Ratios
指導教授:盧至人
口試委員:胡慶祥洪俊雄
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:薄膜生物程序MBR總氮碳氮比廢水處理
外文關鍵詞:Membrane BioreactorMBRtotal nitrogenC/N ratiowastewater treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
薄膜生物程序(Membrane Bioreactor, MBR)是近年來具有發展潛力之生物處理程序之一,MBR具有可於節省空間(二級沉澱池)、高污泥濃度、減少污泥產量等降低營運成本優點,並且對於生物可分解之碳源及氮源有極佳的去除效率。
本研究乃是探討薄膜生物反應器(MBR)對於總氮的處理效率,藉由圓形平板超濾膜進行過濾,探討出流水總氮濃度的變化。本研究處理水量約200 L/day,採批次進流方式進行處理,水力停留時間為24小時,分析在不同C/N比的改變下,對出流水總氮濃度的影響。
本實驗的三個模組,理論總氮濃度皆控制在100 mg/L上下,均使用砂糖及奶粉作為碳源,採用曝氣12小時,停止曝氣8小時,再曝氣4小時的方式操作,模組A的初始C/N比為10,配置COD濃度為 1000 mg/L,總氮最佳去除效率為88%,平均總氮去除效率為83%,且測得三個模組中最低之硝酸鹽氮濃度為0.35 mg/L;模組B的初始C/N比為6.5,配置COD濃度為 500 mg/L,總氮最佳去除效率為88%,平均總氮去除效率為83 %,與模組A結果相似均發生於反應時間為16 hr時,推估總氮去除率88 %為此系統最大去除率上限;模組C的初始C/N比為5,配置COD濃度為500 mg/L,總氮最佳去除效率為83%,平均總氮去除效率為78%,發生於反應時間為20 hr時,相較前兩個模組延遲發生4小時。經三組模組操作後發現,雖然硝化作用皆表現良好(氨氮去除率皆大於90%),但實驗中發現在較高之C/N 比時有較高的總氮去除率,主要為有機碳源較為充足有利於異營菌之脫硝反應。


Membrane Bioreactor, MBR, is one of the emerging biological treatment processes in recent years. It has advantages of lower operating costs such as space-saving (The secondary sedimentation tank), high sludge concentration, and low sludge production. MBR has excellent removal efficiency for the biodegradable carbon and nitrogen in the wastewater system.
This study discussed the removal efficiency of total nitrogen. The treatment is coupled with the circular flat ultrafiltration membrane. MBR was employed to investigate the removal efficiencies of total nitrogen. In this study, the influent is about 200 L/day resulting in the hydraulic retention time of 24 hours, with various different C/N ratios to evaluate the C/N ratio on the impact of total nitrogen removal.
In this study, theoretical total nitrogen concentrations were controlled at about 100 mg/L. Sugar and milk powder were used as carbon sources, and aeration was carried out in a manner of aeration period for 12 hours, cease in aeration for 8 hours, and then re-aeration for 4 hours. The first operation module was under the conditions of C/N initial ratio of 10, and influent COD concentration was 1000 mg/L. The optimum removal efficiency of total nitrogen and the average total nitrogen removal efficiency were 88% and 83%, respectively. And the measured lowest of three modules in NO3--N concentration was 0.35 mg/L. The second operation module was under the conditions of C/N initial ratio of 6.5 and COD concentration of 500 mg/L. The optimum removal efficiency of total nitrogen and the average total nitrogen removal efficiency was 88% and 83%, respectively. A similar result as that in the first operation module occurred in operating time of 16 hr. It is estimated that the total nitrogen removal reached its maximum removal efficiency about 88%. The third operation module was under the conditions of C/N initial ratio of 5 and COD concentration of 500 mg/L. The optimum removal efficiency of total nitrogen and the average total nitrogen removal efficiency was 83% and 78%, respectively. And these results were achieved in operating time of 20 hr, which is 4 hours later than the previous two modules did. The result indicated that these three operation modules resulted in an acceptable N removal with the MBR system. The ammonia nitrogen removal efficiencies are all greater than 90%. However, the experiment results demonstrated that. The higher C/N rations resulted in a better total nitrogen removal, due to the presence of abundant organic carbon to supply the c-source for cell growth. Denitrification occurs when the C/N ratio is high. It indicates mainly more abundant organic carbon is in favor of heterotrophic bacteria to take the place of denitrification.


誌謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
1-1研究緣起 1
1-2研究目的 2
2-1事業廢水氨氮調查及管制趨勢 3
2-1-1高氨氮工業廢水主要來源 3
2-1-2高氨氮工業廢水之特性 4
2-1-3高含氮工業廢水管制標準與趨勢 6
2-2微生物除氮機制 8
2-2-1微生物中的氮循環 8
2-2-2微生物硝化作用 11
2-2-3微生物脫硝作用 12
2-2-4影響微生物硝化作用因子 13
2-2-5影響微生物脫硝作用因子 14
影響脫硝作用的因子,茲分下列幾點說明。 14
2-3薄膜生物反應槽簡介 16
2-3-1薄膜過濾機制 16
2-3-2薄膜種類及應用 16
2-3-3操作型式 18
2-3-4薄膜積垢 20
2-3-5薄膜過濾與傳統活性污泥法優缺點比較 21
3-1實驗研究架構 23
3-2 薄膜生物反應系統 24
3-2-1薄膜生物反應器建置 24
3-2-2污泥營養成份來源 26
3-2-3 C/N比對總氮去除速率的影響 27
3-2-4薄膜生物反應系統操作 27
3-2-5分析設備 29
4.1 MBR模廠之運作條件 30
4.1.1 pH及溫度的變化 30
4.1.2 DO 及MLSS的變化 31
4.1.3 SOUR污泥活性驗證 33
4.2 C/N對去除效率的影響 34
4.2.1 模組A (C/N 比10)-24小時連續監測 34
4.2.2 模組B (C/N 比6.5) -24小時連續監測 35
4.2.3 模組C (C/N 比5) -24小時連續監測 37
4.2.4 氧化還原電位與硝化及脫硝反應之變化 38
4.3綜合討論 39
4.3.1 C/N 比對硝化作用之影響 39
4.3.2 C/N比對脫硝反應的影響 39
4.3.3 C/N比對總氮反應的影響 40
5.1結論 41
5.2建議 42
參考文獻 43
附錄一 水質分析方法 46
附錄二 水質採樣保存方法 50


李信杰,「沉浸式生物薄膜反應器之積垢特性探討」,國立交通大學環境工程系所,碩士論文,新竹,2006。
李茂松,「受污染地下水之複合式生物脫硝系統開發」,國立交通大學環境工程系所,博士論文,新竹,2009。
李珮芸,「外加碳源對生物薄膜反應器 處理低碳氮比高科技業廢水之影響」,國立交通大學 環境工程研究所 ,碩士論文,新竹,2011。
林珮瑜,「以生物薄膜法模擬食品廢水-氮濃度變化的影響」,國立國立中興大學環境工程研究所,碩士論文,台中,2013。
莊清榮,游勝傑,2008,「流體中的最佳守門員- 微過濾與超過濾」,科學發展,429期,p.15-16。
范姜仁茂,莊連春,曾迪華,廖述良,游勝傑,梁德明, 2009,「薄膜生物反應器(MBR) 於廢水處理之技術評析」。工業污染防治,第109期,p.49-96。
張子龍,「MBR 系統於高氨氮廢水之研究」,國立臺北科技大學環境規劃與管理研究所,碩士論文,臺北,2006。
蔡若琳,「氨氧化細菌的特性及新式生物脫氮技術之探討」,國立中山大學生物科學系,碩士論文,高雄,2009。
游惠宋,「厭氧與兼氧微生物薄膜系統開發」,國立交通大學環境工程系所,博士論文,新竹,2006。
康美祝,「MBR 除氮系統特性之研究」,國立中央大學環境工程研究所,碩士論文,桃園,2002。
傅崇德,2013,「氨氮管制之現況及處理技術展望」,環保簡訊/第20期,p.1-2。
歐陽嶠暉,2000,「下水道工程學」,長松出版社。
行政院環境保護署(2011) 石油化學業放流水標準.URL
http://ivy5.epa.gov.tw/epalaw/index.aspx
行政院環境保護署(2012a)101年度事業廢水特性調查及污染管制措施研議計畫.URL
http://epr.epa.gov.tw/upload/openFull/101/1018151562/epa-G0-1018151562-06-15.pdf
行政院環境保護署(2012b)事業放流水標準法規宣導(石油化學業、石油化學專業區污水下水道系統、海洋放流管線及晶圓製造及半導體製造業).URL
http://www.ksepb.gov.tw/FileUpload/pdf/1020313water_pollution_2.pdf
南部科學工業園區管理局(2013),南部科學工業園區再生水廠先期規劃案. URL
http://bit.ly/29xE6RY
行政院環境保護署(2014)考察日本管制標準運作機制及廢水技術.URL
http://report.nat.gov.tw/ReportFront/report_download.jspx?sysId=C10300321&fileNo=001
行政院環境保護署(2016a) 石油化學專業區污水下水道系統放流水標準.URL
http://ivy5.epa.gov.tw/epalaw/index.aspx
行政院環境保護署(2016b) 科學工業園區污水下水道系統放流水標準.URL
http://ivy5.epa.gov.tw/epalaw/index.aspx
Adav, S. S., Lee, D. J., Show, K. Y., & Tay, J. H. (2008). Aerobic granular sludge: recent advances. Biotechnology advances, 26(5), 411-423.
Chang, I. S., Lee, C. H., & Ahn, K. H. (1999). Membrane filtration characteristics in membrane-coupled activated sludge system: The effect of floc structure on membrane fouling. Separation Science and Technology, 34(9), 1743-1758.
Chang, I. S., Choo, K. H., Lee, C. H., Pek, U. H., Koh, U. C., Kim, S. W., & Koh, J. H. (1994). Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes. Journal of Membrane Science, 90(1), 131-139.
Çiçek, N., Franco, J. P., Suidan, M. T., Urbain, V., & Manem, J. (1999). Characterization and comparison of a membrane bioreactor and a conventional activated-sludge system in the treatment of wastewater containing high-molecular-weight compounds. Water Environment Research, 71(1), 64-70.
Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Board of Canada, 32(12), 2379-2383.
Gander, M., Jefferson, B., & Judd, S. (2000). Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 18(2), 119-130.
Gerardi, Michael H. (2002). Nitrification and denitrification in the activated sludge process. John Wiley & Sons., Inc., New Jersey.
Her, J. J., & Huang, J. S. (1995). Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresource Technology, 54(1), 45-51.
Lee, N. M., & Welander, T. (1996). The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. Journal of Fermentation and Bioengineering, 82(3), 277-285.
Lee, J. K., Choi, C. K., Lee, K. H., & Yim, S. B. (2008). Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system. Bioresource Technology, 99(16), 7788-7796.
Moo-Young, M., Anderson, W. A., & Chakrabarty, A. M. (Eds.) . (2013). Environmental Biotechnology: Principles and Applications. Springer Science & Business Media., Berlin.
Metcalf & Eddy, Inc., (1991). Wastewater Engineering: Treatment, Disposal, Reuse, 3rd Ed., McGraw-Hill., Inc., New York.
Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37(6), 1371-1377.
Stephenson, T. (2000). Membrane bioreactors for wastewater treatment. IWA publishing.
Ueda, T., & Horan, N. J. (2000). Fate of indigenous bacteriophage in a membrane bioreactor. Water Research, 34(7), 2151-2159.
Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., & Lee, C. H. (2000). Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169(2), 269-276.
Yamamoto, K., Hiasa, M., Mahmood, T., & Matsuo, T. (1989). Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science and Technology, 21(4-5), 43-54.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top