跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊任軒
研究生(外文):Ren-Xuan Yang
論文名稱:利用流體化觸媒床轉化塑膠廢棄物為奈米碳管及氫氫
論文名稱(外文):The conversion of waste plastics into carbon nanotubes and hydrogen using fluidized catalyst reactors
指導教授:魏銘彥
口試委員:莊桂鶴張淑閔張木彬梁振儒吳耿東
口試日期:2016-07-01
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:180
中文關鍵詞:塑膠廢棄物氣化觸媒產氫奈米碳管流體化觸媒床
外文關鍵詞:waste plastic gasificationcatalysthydrogen productioncarbon nanotubefluidized catalyst reactor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要為利用流體化觸媒床轉化塑膠廢棄物為奈米碳管及產氫,首先改變觸媒製備方法與擔體種類,開發高奈米碳管產率之觸媒並探討流體化床操作條件對觸媒催化產奈米碳管之影響,接著針對擔體材料進行改質,開發高機械強度、熱穩定性佳及高效率之產氫觸媒,最後以二階段流體化觸媒床裂解廢塑膠並同時催化產奈米碳管和產氫,並達到溫室氣體減量等目標。
在產奈米碳管觸媒的開發實驗結果得知,鎳負載型觸媒於不同鍛燒氣氛下,其鎳金屬物種的化學組態會影響塑膠廢棄物氣化產奈米碳管及產氫之活性,於氫氣還原氣氛下鍛燒而得的H-Ni/Al2O3觸媒,在塑膠廢棄物氣化程序中有良好的產奈米碳管及產氫活性,其主要原因是因為具有含金屬態且顆粒較小的鎳奈米顆粒。H-Ni/Al2O3觸媒在觸媒床溫度為680 oC時,能合成出較高品質的奈米碳管且產氫率可達325.4 mmol/h-g catalyst。
進一步改質觸媒之擔體,以兩步驟pH調整水熱法摻雜鋁至SBA-15之結構中,探討Si/Al莫爾比改變觸媒表面酸度對塑膠廢棄物氣化產奈米碳管之影響,結果顯示以多元醇法負載10 wt%的鎳於Si/Al莫爾比為10的Al-SBA-15上,由於具有中孔六角結構及強酸性位基,可增進廢塑膠脫氫及芳香族化反應,因此能得到品質良好且管徑均一的奈米碳管,其產碳率可達74.1%。
在產氫觸媒的開發測試結果得知,以改質多元醇法製備Ni-Cu/CaO-SiO2觸媒,當觸媒於氬氣環境且還原溫度為160 oC下製備而得的160-Ar觸媒,由於具有大孔洞體積及高中孔隙率,金屬顆粒進而能有效地分散在擔體上,因此有最佳的甲醇蒸汽重組產氫活性。
兩階段流體化觸媒床氣化塑膠廢棄物為奈米碳管及氫氣的實驗結果顯示,當一階流體化觸媒床的反應溫度為600 oC、二階流體化觸媒床的反應溫度為800 oC且空氣等值比為0.1時,能有效轉化塑膠廢棄物為奈米碳管及氫氣,其產氫率最高可達857.6 mmol/h-g catalyst。

In this study, the fluidized bed catalyst reactor is used to gasify/pyrolyse waste plastics, and then waste plastics are converted into carbon nanotubes (CNTs) and hydrogen. To begin with, catalysts which have high carbon production efficiency are synthesized by different preparation methods and supports. Then, the effect of fluidized bed operating conditions on the production of CNTs and hydrogen from waste plastics are investigated. After that, by modifying supporting materials, catalysts which have high mechanical strength, thermal stability and high hydrogen production efficiency will be developed. Finally, a novel two-stage fluidized bed catalyst reactor will be applied to convert waste plastics. The technique not only can convert waste plastics into CNTs and hydrogen, but also can reduce greenhouse gas emission.
For carbon production catalysts, the Ni/Al2O3 catalyst was prepared by an impregnation method using different calcination atmospheres to evaluate the effect of nickel species distribution for the co-production of CNTs and hydrogen. Ni/Al2O3 calcined under a reductive H2 atmosphere (H-Ni/Al2O3) gave smaller nickel nanoparticles containing metallic nickel species, which showed optimal performance for CNT and hydrogen co-production by waste plastics gasification.
The H-Ni/Al2O3 catalyst gave higher quality CNTs in a 24.3 % yield, along with a hydrogen production rate of 325.4 mmol/h-g catalyst at 680 °C.
Further modifying the support via a two-step “pH-adjusting” hydrothermal method to incorporate Al into the SBA-15 matrix. To investigate the effect of the surface acidity of Ni/Al-SBA-15 catalysts by altering the Si/Al molar ratio on carbon nanotube production during waste plastic gasification. The catalytic performance indicated that the catalyst loaded with 10 wt% Ni on Al-SBA-15 with a Si/Al molar ratio of 10 prepared by the polyol process (10Ni/Al-SBA-15(10)-P) demonstrated the production of higher quality CNTs with uniform diameter with a 74.1% yield. The mesoporous hexagonal structure and the more strongly acidic sites of the 10Ni/Al-SBA-15(10)-P enhanced the CNT quality and promoted the dehydrogenation and aromatization of the waste plastic.
For hydrogen production catalysts, the Ni-Cu/CaO-SiO2 catalyst was prepared by a modified polyol process with different preparation conditions. The results of the methanol steam reforming indicated that the highest catalytic activity was achieved when the Ni-Cu/CaO-SiO2 catalyst was prepared under Ar atmosphere at a reduction temperature of 160 °C (160-Ar). The 160-Ar catalyst synthesized by this method has a large pore volume and a high mesoporosity. These physical properties contribute to the effective dispersion of metal particles in the 160-Ar catalyst. Therefore, 160-Ar catalyst was effective in methanol steam reforming to produce hydrogen.
The experimental results of two-stage fluidized catalyst reactors for converting waste plastics into CNTs and hydrogen indicated that this system can efficiently co-produce CNTs and hydrogen. The results showed that the primary reactor operated at 600 oC and secondary reactor operated at 800 oC with an equivalence ratio of 0.1 exhibited highest hydrogen production rate of 857.6 mmol/h-g catalyst.

摘要 i
Abstract iii
總目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1-1研究緣起與目的 1
1-2 研究架構與內容 3
第二章 文獻回顧 5
2-1 能源分佈 5
2-1-1 替代能源 6
2-1-2 產氫原料來源 8
2-2 廢棄物處理 13
2-2-1 塑膠廢棄物之處理現況 15
2-2-2 熱轉化技術 16
2-2-2-1 裂解機制 17
2-2-2-2 氣化機制 21
2-3 流體化床技術 25
2-3-1 流體化現象 25
2-3-2 流體化床參數 26
2-3-2-1 最小流體化速度 26
2-3-2-2 床質的粒徑大小 28
2-3-3 流體化床處理塑膠廢棄物之相關研究 29
2-4 奈米碳管 31
2-4-1 奈米碳管之結構特性 31
2-4-2 奈米碳管之製備方法 33
2-4-3 奈米碳管之成長機制 36
2-5 觸媒特性 38
2-5-1 觸媒催化原理 38
2-5-2 觸媒之組成與製備 39
2-5-3 產奈米碳管觸媒 42
2-5-4 產氫觸媒 45
2-6 文獻總結 50
第三章 實驗設備與方法 52
3-1 實驗藥品與氣體 52
3-2 擔體與觸媒製備 53
3-2-1 擔體製備 53
3-2-2 觸媒製備 55
3-3 人工模擬塑膠廢棄物 59
3-4 活性測試 59
3-4-1 一階段流體化床氣化產奈米碳管系統 60
3-4-2 觸媒產氫系統 63
3-4-3 二階段流體化觸媒床氣化系統 64
3-5 分析儀器之簡介 66
3-5-1 比表面積分析 66
3-5-2 觸媒表面型態與微觀分析 67
3-5-3 X光粉末繞射儀 68
3-5-4 X射線光電子能譜儀 69
3-5-5 氨氣程式升溫脫附 70
3-5-6 熱重分析儀 70
3-5-7 拉曼光譜分析 71
第四章 高奈米碳管產率觸媒應用於流體化床氣化塑膠廢棄物 72
4-1 前言 72
4-2 實驗設備與方法 73
4-3 結果與討論 77
4-3-1 流體化床操作條件對塑膠廢棄物氣化之影響 77
4-3-1-1 反應溫度對塑膠廢棄物氣化之影響 77
4-3-1-2 空氣等值比對塑膠廢棄物氣化之影響 79
4-3-2 Ni/Al2O3觸媒催化塑膠廢棄物氣化合成奈米碳管 82
4-3-2-1 鍛燒氣氛對CH4-thermal CVD之影響 82
4-3-1-2 鍛燒氣氛對Ni/Al2O3觸媒應用於塑膠廢棄物氣化之影響 90
4-3-3 Ni/Al-SBA-15觸媒催化廢塑膠氣化產奈米碳管 102
4-3-3-1 Ni/Al-SBA-15觸媒之特性分析 102
4-3-3-2 Ni/Al-SBA-15觸媒催化廢塑膠產奈米碳管之影響 108
4-4 結論 118
第五章 高產氫率觸媒之開發 119
5-1 前言 119
5-2 實驗設備與方法 120
5-3 結果與討論 122
5-3-1 Ni-Cu/CaO-SiO2觸媒催化甲醇蒸汽重組產氫 122
5-3-1-1 還原溫度及氣氛對Ni-Cu/CaO-SiO2觸媒之特性分析 122
5-3-1-2 Ni-Cu/CaO-SiO2觸媒催化甲醇蒸汽重組產氫之活性 127
5-4 結論 133
第六章 流體化觸媒床轉化塑膠廢棄物為奈米碳管及氫氣 134
6-1 前言 134
6-2 實驗設備與方法 135
6-3 結果與討論 137
6-3-1 粉末態與顆粒態觸媒之特性分析 137
6-3-2 操作條件對流體化觸媒床產奈米碳管及產氫之影響 140
6-4 結論 151
第七章 結論與建議 152
7-1 結論 152
7-2 未來建議 154
參考文獻 155

Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., Antonakou, Ε. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), pp. 536-542. doi: http://dx.doi.org/10.1016/j.jhazmat.2007.06.076

Acomb, J. C., Nahil, M. A., Williams, P. T. (2013). Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production. Journal of Analytical and Applied Pyrolysis, 103(0), pp. 320-327. doi: http://dx.doi.org/10.1016/j.jaap.2012.09.014

Acomb, J. C., Wu, C., Williams, P. T. (2014). Control of steam input to the pyrolysis-gasification of waste plastics for improved production of hydrogen or carbon nanotubes. Applied Catalysis B: Environmental, 147, pp. 571-584. doi: http://dx.doi.org/10.1016/j.apcatb.2013.09.018

Acomb, J. C., Wu, C., Williams, P. T. (2015). Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. Journal of Analytical and Applied Pyrolysis, 113, pp. 231-238. doi: http://dx.doi.org/10.1016/j.jaap.2015.01.012

Acomb, J. C., Wu, C., Williams, P. T. (2016). The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks. Applied Catalysis B: Environmental, 180, pp. 497-510. doi: http://dx.doi.org/10.1016/j.apcatb.2015.06.054

Adrados, A., de Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., Torres, A. (2012). Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management, 32(5), pp. 826-832. doi: http://dx.doi.org/10.1016/j.wasman.2011.06.016

Aksoylu, A. E., Faria, J. L., Pereira, M. F. R., Figueiredo, J. L., Serp, P., Hierso, J. C., Feurer, R., Kihn, Y., Kalck, P. (2003). Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts. Applied Catalysis A: General, 243(2), pp. 357-365. doi: http://dx.doi.org/10.1016/S0926-860X(02)00556-2

Al-Salem, S. M., Lettieri, P., Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), pp. 2625-2643. doi: http://dx.doi.org/10.1016/j.wasman.2009.06.004

Altalhi, T., Kumeria, T., Santos, A., Losic, D. (2013). Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: Towards nanotechnological recycling. Carbon, 63(0), pp. 423-433. doi: http://dx.doi.org/10.1016/j.carbon.2013.07.003

Andrade Sales, E., Benhamida, B., Caizergues, V., Lagier, J.-P., Fiévet, F., Bozon-Verduraz, F. (1998). Alumina-supported Pd, Ag and Pd–Ag catalysts: Preparation through the polyol process, characterization and reactivity in hexa-1,5-diene hydrogenation. Applied Catalysis A: General, 172(2), pp. 273-283. doi: http://dx.doi.org/10.1016/S0926-860X(98)00124-0

Arena, U., Mastellone, M. L., Camino, G., Boccaleri, E. (2006). An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polymer Degradation and Stability, 91(4), pp. 763-768. doi: http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.029

Arnaiz, N., Gomez-Rico, M. F., Martin Gullon, I., Font, R. (2013). Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Industrial & Engineering Chemistry Research, 52(42), pp. 14847-14854. doi: http://dx.doi.org/10.1021/ie401688n

Ashok, J., Naveen Kumar, S., Venugopal, A., Durga Kumari, V., Subrahmanyam, M. (2007). COX-free H2 production via catalytic decomposition of CH4 over Ni supported on zeolite catalysts. Journal of Power Sources, 164(2), pp. 809-814. doi: http://dx.doi.org/10.1016/j.jpowsour.2006.11.029

Ashok, J., Raju, G., Reddy, P. S., Subrahmanyam, M., Venugopal, A. (2008a). Catalytic decomposition of CH4 over NiO–Al2O3–SiO2 catalysts: Influence of catalyst preparation conditions on the production of H2. International Journal of Hydrogen Energy, 33(18), pp. 4809-4818. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.06.004

Ashok, J., Reddy, P. S., Raju, G., Subrahmanyam, M., Venugopal, A. (2008b). Catalytic Decomposition of Methane to Hydrogen and Carbon Nanofibers over Ni−Cu−SiO2 Catalysts. Energy & Fuels, 23(1), pp. 5-13. doi: 10.1021/ef8003976

Ashok, J., Subrahmanyam, M., Venugopal, A. (2008c). Hydrotalcite structure derived Ni–Cu–Al catalysts for the production of H2 by CH4 decomposition. International Journal of Hydrogen Energy, 33(11), pp. 2704-2713. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.03.028

Awadallah, A. E., Aboul-Enein, A. A., Aboul-Gheit, A. K. (2014). Effect of progressive Co loading on commercial Co–Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Conversion and Management, 77, pp. 143-151. doi: http://dx.doi.org/10.1016/j.enconman.2013.09.017

Bai, N., Chi, Y., Zou, Y., Pang, W. (2002). Influence of high pressure on structural property of mesoporous material MCM-41: study of mechanical stability. Materials Letters, 54(1), pp. 37-42. doi: http://dx.doi.org/10.1016/S0167-577X(01)00533-X

Baker, R. T. K. (1989). Catalytic growth of carbon filaments. Carbon, 27(3), pp. 315-323. doi: http://dx.doi.org/10.1016/0008-6223(89)90062-6

Balamurugan, J., Pandurangan, A., Thangamuthu, R., Senthilkumar, S. M. (2013). Effective synthesis of well-graphitized carbon nanotubes on bimetallic SBA-15 template for use as counter electrode in dye-sensitized solar cells. Industrial & Engineering Chemistry Research, 52(1), pp. 384-393. doi: 10.1021/ie3021973

Bang, Y., Han, S. J., Yoo, J., Choi, J. H., Kang, K. H., Song, J. H., Seo, J. G., Jung, J. C., Song, I. K. (2013). Hydrogen production by steam reforming of liquefied natural gas (LNG) over trimethylbenzene-assisted ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 38(21), pp. 8751-8758. doi: http://dx.doi.org/10.1016/j.ijhydene.2013.05.029

Basu, P. (2006). Combustion and gasification in fluidized beds. Taylor & Francis.

Bazargan, A., McKay, G. (2012). A review – Synthesis of carbon nanotubes from plastic wastes. Chemical Engineering Journal, 195–196(0), pp. 377-391. doi: http://dx.doi.org/10.1016/j.cej.2012.03.077

Bej, B., Pradhan, N. C., Neogi, S. (2013). Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today, 207, pp. 28-35. doi: http://dx.doi.org/10.1016/j.cattod.2012.04.011

Bethune, D. S., Klang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363(6430), pp. 605-607.

Bhosale, R. R., Shende, R. V., Puszynski, J. A. (2012). Thermochemical water-splitting for H2 generation using sol-gel derived Mn-ferrite in a packed bed reactor. International Journal of Hydrogen Energy, 37(3), pp. 2924-2934. doi: http://dx.doi.org/10.1016/j.ijhydene.2011.03.010

Bičáková, O., Straka, P. (2012). Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy, 37(16), pp. 11563-11578. doi: http://dx.doi.org/10.1016/j.ijhydene.2012.05.047

Blamey, J., Anthony, E. J., Wang, J., Fennell, P. S. (2010). The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 36(2), pp. 260-279. doi: http://dx.doi.org/10.1016/j.pecs.2009.10.001

Bobadilla, L. F., Palma, S., Ivanova, S., Domínguez, M. I., Romero-Sarria, F., Centeno, M. A., Odriozola, J. A. (2013). Steam reforming of methanol over supported Ni and Ni–Sn nanoparticles. International Journal of Hydrogen Energy, 38(16), pp. 6646-6656. doi: http://dx.doi.org/10.1016/j.ijhydene.2013.03.143

Bonet, F., Grugeon, S., Herrera Urbina, R., Tekaia-Elhsissen, K., Tarascon, J. M. (2002). In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences, 4(5), pp. 665-670. doi: http://dx.doi.org/10.1016/S1293-2558(02)01311-0

BP. (2015). BP Statistical Review of World Energy 2015. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html

Brunner, P. H., Rechberger, H. (2015). Waste to energy – key element for sustainable waste management. Waste Management, 37, pp. 3-12. doi: http://dx.doi.org/10.1016/j.wasman.2014.02.003

Buelna, G., Lin, Y. S. (2001). Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process. Microporous and Mesoporous Materials, 42(1), pp. 67-76. doi: http://dx.doi.org/10.1016/S1387-1811(00)00303-6

Bugat, A. (2006). Future means of hydrogen production. 17th WHEC, pp. 13-16.

Carotenuto, G. (2001). Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic Chemistry, 15(5), pp. 344-351. doi: 10.1002/aoc.165

Carrero, A., Calles, J. A., Vizcaíno, A. J. (2007). Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation. Applied Catalysis A: General, 327(1), pp. 82-94. doi: http://dx.doi.org/10.1016/j.apcata.2007.04.030

Chen, C.-M., Dai, Y.-M., Huang, J. G., Jehng, J.-M. (2006). Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon, 44(9), pp. 1808-1820. doi: http://dx.doi.org/10.1016/j.carbon.2005.12.043

Chen, C.-M., Jehng, J.-M. (2004). Amination application over nano-Mg–Ni hydrogen storage alloy catalysts. Applied Catalysis A: General, 267(1–2), pp. 103-110. doi: http://dx.doi.org/10.1016/j.apcata.2004.02.038

Chen, W.-K., Tseng, H.-H., Wei, M.-C., Su, E.-C., Chiu, I. C. (2014). Transesterification of canola oil as biodiesel over Na/Zr-SBA-15 catalysts: Effect of zirconium content. International Journal of Hydrogen Energy, 39(34), pp. 19555-19562. doi: http://dx.doi.org/10.1016/j.ijhydene.2014.08.154

Chen, X. W., Hang; He, Junhui (2012). Synthesis of carbon nanostructures from residual solids waste tires. Journal of Applied Polymer Science, 123(4), pp. 1960.

Chen, Y., Ciuparu, D., Lim, S., Yang, Y., Haller, G. L., Pfefferle, L. (2004). Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. Journal of Catalysis, 225(2), pp. 453-465. doi: http://dx.doi.org/10.1016/j.jcat.2004.04.022

Chiang, H.-L., Wu, T.-N., Ho, Y.-S., Zeng, L.-X. (2014). Carbon material formation on SBA-15 and Ni-SBA-15 and residue constituents during acetylene decomposition. Journal of Hazardous Materials, 276, pp. 43-51. doi: http://dx.doi.org/10.1016/j.jhazmat.2014.05.016

Cho, M.-H., Mun, T.-Y., Kim, J.-S. (2013). Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar. Energy, 53(0), pp. 299-305. doi: http://dx.doi.org/10.1016/j.energy.2013.02.041

Chuang, K.-H., Lu, C.-Y., Wey, M.-Y., Huang, Y.-N. (2011). NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Applied Catalysis A: General, 397(1–2), pp. 234-240. doi: http://dx.doi.org/10.1016/j.apcata.2011.03.003

Chung, Y.-H., Jou, S. (2005). Carbon nanotubes from catalytic pyrolysis of polypropylene. Materials Chemistry and Physics, 92(1), pp. 256-259. doi: http://dx.doi.org/10.1016/j.matchemphys.2005.01.023

Czekaj, I., Loviat, F., Raimondi, F., Wambach, J., Biollaz, S., Wokaun, A. (2007). Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Applied Catalysis A: General, 329(0), pp. 68-78. doi: http://dx.doi.org/10.1016/j.apcata.2007.06.027

Czernik, S., French, R. J. (2006). Production of hydrogen from plastics by pyrolysis and catalytic steam reform. Energy & Fuels, 20(2), pp. 754-758. doi: 10.1021/ef050354h

Danwittayakul, S., Dutta, J. (2013). Two step copper impregnated zinc oxide microball synthesis for the reduction of activation energy of methanol steam reformation. Chemical Engineering Journal, 223(0), pp. 304-308. doi: http://dx.doi.org/10.1016/j.cej.2013.03.029

Demirbas, A. (2004). Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72(1), pp. 97-102. doi: http://dx.doi.org/10.1016/j.jaap.2004.03.001

Deshmane, V. G., Abrokwah, R. Y., Kuila, D. (2015a). Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. International Journal of Hydrogen Energy, 40(33), pp. 10439-10452. doi: http://dx.doi.org/10.1016/j.ijhydene.2015.06.084

Deshmane, V. G., Owen, S. L., Abrokwah, R. Y., Kuila, D. (2015b). Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol. Journal of Molecular Catalysis A: Chemical, 408, pp. 202-213. doi: http://dx.doi.org/10.1016/j.molcata.2015.07.023

Gao, N., Li, A., Quan, C., Gao, F. (2008). Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. International Journal of Hydrogen Energy, 33(20), pp. 5430-5438. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.07.033

Geldart, D. (1973). Types of gas fluidization. Powder Technology, 7(5), pp. 285-292. doi: http://dx.doi.org/10.1016/0032-5910(73)80037-3

Geldart, D. (1986). Gas Fluidization Technology. New York: John Wiley & Son Inc.

Gong, J., Liu, J., Jiang, Z., Chen, X., Wen, X., Mijowska, E., Tang, T. (2014). Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. Applied Catalysis B: Environmental, 152–153, pp. 289-299. doi: http://dx.doi.org/10.1016/j.apcatb.2014.01.051

Gong, J., Liu, J., Jiang, Z., Wen, X., Chen, X., Mijowska, E., Wang, Y., Tang, T. (2013a). Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes. Chemical Engineering Journal, 225(0), pp. 798-808. doi: http://dx.doi.org/10.1016/j.cej.2013.03.112

Gong, J., Yao, K., Liu, J., Wen, X., Chen, X., Jiang, Z., Mijowska, E., Tang, T. (2013b). Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly(vinyl chloride). Chemical Engineering Journal, 215–216(0), pp. 339-347. doi: http://dx.doi.org/10.1016/j.cej.2012.11.037

Gonzalez, I., De Jesus, J. C., Cañizales, E., Delgado, B., Urbina, C. (2012). Comparison of the surface state of Ni nanoparticles used for methane catalytic decomposition. The Journal of Physical Chemistry C, 116(40), pp. 21577-21587. doi: 10.1021/jp302372r

Guo, X. J., Xiao, B., Zhang, X. L., Luo, S. Y., He, M. Y. (2009). Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresource Technology, 100(2), pp. 1003-1006. doi: http://dx.doi.org/10.1016/j.biortech.2008.07.007

Han, J., Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 12(2), pp. 397-416. doi: http://dx.doi.org/10.1016/j.rser.2006.07.015

Han, L., Wang, Q., Ma, Q., Yu, C., Luo, Z., Cen, K. (2010). Influence of CaO additives on wheat-straw pyrolysis as determined by TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 88(2), pp. 199-206. doi: http://dx.doi.org/10.1016/j.jaap.2010.04.007

Han, L., Wang, Q., Yang, Y., Yu, C., Fang, M., Luo, Z. (2011). Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. International Journal of Hydrogen Energy, 36(8), pp. 4820-4829. doi: http://dx.doi.org/10.1016/j.ijhydene.2010.12.086

Heidenreich, S., Foscolo, P. U. (2015). New concepts in biomass gasification. Progress in Energy and Combustion Science, 46, pp. 72-95. doi: http://dx.doi.org/10.1016/j.pecs.2014.06.002

Heracleous, E., Lee, A. F., Wilson, K., Lemonidou, A. A. (2005). Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. Journal of Catalysis, 231(1), pp. 159-171. doi: http://dx.doi.org/10.1016/j.jcat.2005.01.015

Hernadi, K., Fonseca, A., Nagy, J. B., Bemaerts, D., Fudala, A., Lucas, A. A. (1996a). Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites, 17(5–6), pp. 416-423. doi: http://dx.doi.org/10.1016/S0144-2449(96)00088-7

Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Riga, J., Lucas, A. (1996b). Catalytic synthesis and purification of carbon nanotubes. Synthetic Metals, 77(1–3), pp. 31-34. doi: http://dx.doi.org/10.1016/0379-6779(96)80051-8

Hirai, H. (1979). Formation and catalytic functionality of synthetic polymer-noble metal colloid. Journal of Macromolecular Science: Part A - Chemistry, 13(5), pp. 633-649. doi: 10.1080/00222337908056678

Hofmann, S., Blume, R., Wirth, C. T., Cantoro, M., Sharma, R., Ducati, C., Hävecker, M., Zafeiratos, S., Schnoerch, P., Oestereich, A., Teschner, D., Albrecht, M., Knop-Gericke, A., Schlögl, R., Robertson, J. (2009). State of transition metal catalysts during carbon nanotube growth. The Journal of Physical Chemistry C, 113(5), pp. 1648-1656. doi: 10.1021/jp808560p

Holladay, J. D., Hu, J., King, D. L., Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), pp. 244-260. doi: http://dx.doi.org/10.1016/j.cattod.2008.08.039

Hsieh, C.-T., Lin, Y.-T., Lin, J.-Y., Wei, J.-L. (2009). Synthesis of carbon nanotubes over Ni- and Co-supported CaCO3 catalysts using catalytic chemical vapor deposition. Materials Chemistry and Physics, 114(2–3), pp. 702-708. doi: http://dx.doi.org/10.1016/j.matchemphys.2008.10.034

Huang, B.-S., Chen, H.-Y., Chuang, K.-H., Yang, R.-X., Wey, M.-Y. (2012a). Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst. International Journal of Hydrogen Energy, 37(8), pp. 6511-6518. doi: http://dx.doi.org/10.1016/j.ijhydene.2012.01.071

Huang, B.-S., Chen, H.-Y., Kuo, J.-H., Chang, C.-H., Wey, M.-Y. (2012b). Catalytic upgrading of syngas from fluidized bed air gasification of sawdust. Bioresource Technology, 110(0), pp. 670-675. doi: http://dx.doi.org/10.1016/j.biortech.2012.01.098

IEA. (2015). Key world energy statistics. http://www.iea.org/publications/freepublications/publication/key-world-energy-statistics-2015.html

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), pp. 56-58.

Iijima, S., Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), pp. 603-605.

Islam, A., Taufiq-Yap, Y. H., Ravindra, P., Teo, S. H., Sivasangar, S., Chan, E.-S. (2015). Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst. Energy, 89, pp. 965-973. doi: http://dx.doi.org/10.1016/j.energy.2015.06.036

Jiang, Z., Song, R., Bi, W., Lu, J., Tang, T. (2007). Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion. Carbon, 45(2), pp. 449-458. doi: http://dx.doi.org/10.1016/j.carbon.2006.08.012

Journet, C., Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A, 67(1), pp. 1-9. doi: 10.1007/s003390050731

Kaminsky, W., Schlesselmann, B., Simon, C. M. (1996). Thermal degradation of mixed plastic waste to aromatics and gas. Polymer Degradation and Stability, 53(2), pp. 189-197. doi: http://dx.doi.org/10.1016/0141-3910(96)00087-0

Kannan, P., Al Shoaibi, A., Srinivasakannan, C. (2013). Energy recovery from co-gasification of waste polyethylene and polyethylene terephthalate blends. Computers & Fluids, 88, pp. 38-42. doi: http://dx.doi.org/10.1016/j.compfluid.2013.09.004

Kaosol, T. (2009). Sustainable solutions for municipal solid waste management in Thailand. World Acad. Sci. Eng. Technol., 60, pp. 665-670.

Kartel, M. T., Sych, N.V., Tsyba, M.M., Strelko, V.V. (2006). Preparation of porous carbons by chemical activation of polyethyleneterephthalate. Carbon, 44, pp. 1013-1024.

Keane, M. A. (2007). Catalytic conversion of waste plastics: focus on waste PVC. Journal of Chemical Technology & Biotechnology, 82(9), pp. 787-795. doi: 10.1002/jctb.1757

Khzouz, M., Wood, J., Pollet, B., Bujalski, W. (2013). Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. International Journal of Hydrogen Energy, 38(3), pp. 1664-1675. doi: http://dx.doi.org/10.1016/j.ijhydene.2012.07.026

Kim, H.-W., Kang, K.-M., Kwak, H.-Y., Kim, J. H. (2011). Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane. Chemical Engineering Journal, 168(2), pp. 775-783. doi: http://dx.doi.org/10.1016/j.cej.2010.11.045

Kim, Y., Bae, J., Park, J., Suh, J., Lee, S., Park, H., Choi, H. (2014). Removal of 12 selected pharmaceuticals by granular mesoporous silica SBA-15 in aqueous phase. Chemical Engineering Journal, 256, pp. 475-485. doi: http://dx.doi.org/10.1016/j.cej.2014.06.100

Kiran, N., Ekinci, E., Snape, C. E. (2000). Recyling of plastic wastes via pyrolysis. Resources, Conservation and Recycling, 29(4), pp. 273-283. doi: http://dx.doi.org/10.1016/S0921-3449(00)00052-5

Kobayashi, K., Kitaura, R., Nishimura, F., Yoshikawa, H., Awaga, K., Shinohara, H. (2011). Growth of large-diameter (∼4 nm) single-wall carbon nanotubes in the nanospace of mesoporous material SBA-15. Carbon, 49(15), pp. 5173-5179. doi: http://dx.doi.org/10.1016/j.carbon.2011.07.033

Kumar, M., Ando, Y. (2010). Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. Journal of Nanoscience and Nanotechnology, 10(6), pp. 3739-3758. doi: 10.1166/jnn.2010.2939

Kunii, D., Levenspiel, O. (1991). Fluidization engineering. Butterworth-Heinemann.

Kurihara, L. K., Chow, G. M., Schoen, P. E. (1995). Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials, 5(6), pp. 607-613. doi: http://dx.doi.org/10.1016/0965-9773(95)00275-J

Lee, C. J., Park, J. H., Park, J. (2000). Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters, 323(5–6), pp. 560-565. doi: http://dx.doi.org/10.1016/S0009-2614(00)00548-0

Lertwittayanon, K., Atong, D., Aungkavattana, P., Wasanapiarnpong, T., Wada, S., Sricharoenchaikul, V. (2010). Effect of CaO–ZrO2 addition to Ni supported on γ-Al2O3 by sequential impregnation in steam methane reforming. International Journal of Hydrogen Energy, 35(22), pp. 12277-12285. doi: http://dx.doi.org/10.1016/j.ijhydene.2010.08.098

Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), pp. 4140-4143.

Li, H., He, D., Li, T., Genestoux, M., Bai, J. (2010). Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene mixture for improved carbon nanotube production. Carbon, 48(15), pp. 4330-4342. doi: http://dx.doi.org/10.1016/j.carbon.2010.07.046

Li, J., Liang, Y., Dou, B., Ma, C., Lu, R., Hao, Z., Xie, Q., Luan, Z., Li, K. (2013). Nanocasting synthesis of graphitized ordered mesoporous carbon using Fe-coated SBA-15 template. Materials Chemistry and Physics, 138(2–3), pp. 484-489. doi: http://dx.doi.org/10.1016/j.matchemphys.2012.12.003

Li, Y., Pan, D., Yu, C., Fan, Y., Bao, X. (2012). Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminum-content, highly ordered, and hydrothermally stable Al-SBA-15. Journal of Catalysis, 286(0), pp. 124-136. doi: http://dx.doi.org/10.1016/j.jcat.2011.10.023

Liang, C., Wei, M.-C., Tseng, H.-H., Shu, E.-C. (2013). Synthesis and characterization of the acidic properties and pore texture of Al-SBA-15 supports for the canola oil transesterification. Chemical Engineering Journal, 223, pp. 785-794. doi: http://dx.doi.org/10.1016/j.cej.2013.03.065

Lin, C.-L., Wey, M.-Y., You, S.-D. (2002). The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technology, 126(3), pp. 297-301. doi: http://dx.doi.org/10.1016/S0032-5910(02)00074-8

Lin, J.-H., Zeng, Z.-Y., Lai, Y.-T., Chen, C.-S. (2013). Low-temperature growth of bamboo-like multi-walled carbon nanotubes over an atomic layer epitaxy-Cu/SiO2 catalyst via metal-support interaction. RSC Advances, 3(6), pp. 1808-1817. doi: 10.1039/C2RA22591C

Liu, J., Jiang, Z., Yu, H., Tang, T. (2011). Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process. Polymer Degradation and Stability, 96(10), pp. 1711-1719. doi: http://dx.doi.org/10.1016/j.polymdegradstab.2011.08.008

Liu, W.-W., Hu, C.-W., Yang, Y., Tong, D.-M., Zhu, L.-F., Zhang, R.-N., Zhao, B.-H. (2013). Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE. Applied Catalysis B: Environmental, 129(0), pp. 202-213. doi: http://dx.doi.org/10.1016/j.apcatb.2012.09.002

Liu, Z.-S., Lin, C.-L., Chang, T.-J., Weng, W.-C. (2016). Waste-gasification efficiency of a two-stage fluidized-bed gasification system. Waste Management, 48, pp. 250-256. doi: http://dx.doi.org/10.1016/j.wasman.2015.12.001

Lu, C.-Y., Chang, W.-C., Wey, M.-Y. (2013). CuO/CeO2 catalysts prepared with different cerium supports for CO oxidation at low temperature. Materials Chemistry and Physics, 141(1), pp. 512-518. doi: http://dx.doi.org/10.1016/j.matchemphys.2013.05.052

Lv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y., Zhu, J. X. (2004). An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology, 95(1), pp. 95-101. doi: http://dx.doi.org/10.1016/j.biortech.2004.02.003
Ma, Y., Guan, G., Phanthong, P., Hao, X., Huang, W., Tsutsumi, A., Kusakabe, K., Abudula, A. (2014a). Catalytic activity and stability of nickel-modified Mo carbide catalysts for steam reforming of methanol. The Journal of Physical Chemistry C, 118(18), pp. 9485-9496. doi: 10.1021/jp501021t

Ma, Y., Guan, G., Shi, C., Zhu, A., Hao, X., Wang, Z., Kusakabe, K., Abudula, A. (2014b). Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. International Journal of Hydrogen Energy, 39(1), pp. 258-266. doi: http://dx.doi.org/10.1016/j.ijhydene.2013.09.150

Mandal, M., Manchanda, A. S., Liu, C., Fei, Y., Landskron, K. (2016). A high-pressure synthesis of hydrothermally stable periodic mesoporous crystalline aluminosilica materials. RSC Advances, 6(9), pp. 7396-7402. doi: 10.1039/C5RA15515K

Manikandan, D., Mangalaraja, R. V., Avila, R. E., Siddheswaran, R., Anathakumar, S. (2013). Montmorillonite–carbon nanotube nanofillers by acetylene decomposition using catalytic CVD. Applied Clay Science, 71(0), pp. 37-41. doi: http://dx.doi.org/10.1016/j.clay.2012.10.001

Mastellone, M. L., Arena, U. (2008). Olivine as a tar removal catalyst during fluidized bed gasification of plastic waste. AIChE Journal, 54(6), pp. 1656-1667. doi: 10.1002/aic.11497

Medrano, J. A., Oliva, M., Ruiz, J., García, L., Arauzo, J. (2011). Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed. Energy, 36(4), pp. 2215-2224. doi: http://dx.doi.org/10.1016/j.energy.2010.03.059

Miyazaki, A., Balint, I., Aika, K.-i., Nakano, Y. (2001). Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis. Journal of Catalysis, 204(2), pp. 364-371. doi: http://dx.doi.org/10.1006/jcat.2001.3418

Moliner, R., Echegoyen, Y., Suelves, I., Lázaro, M. J., Palacios, J. M. (2008). Ni–Mg and Ni–Cu–Mg catalysts for simultaneous production of hydrogen and carbon nanofibers: The effect of calcination temperature. International Journal of Hydrogen Energy, 33(6), pp. 1719-1728. doi: http://dx.doi.org/10.1016/j.ijhydene.2008.01.005

Mubarak, N. M., Yusof, F., Alkhatib, M. F. (2011). The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chemical Engineering Journal, 168(1), pp. 461-469. doi: http://dx.doi.org/10.1016/j.cej.2011.01.045

Naeem, M. A., Al-Fatesh, A. S., Abasaeed, A. E., Fakeeha, A. H. (2014). Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 122, pp. 141-152. doi: http://dx.doi.org/10.1016/j.fuproc.2014.01.035

Nguyen, T. P. B., Lee, J.-W., Shim, W. G., Moon, H. (2008). Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA. Microporous and Mesoporous Materials, 110(2–3), pp. 560-569. doi: http://dx.doi.org/10.1016/j.micromeso.2007.06.054

Noda, L. K., Gonçalves, N. S., Valentini, A., Probst, L. F. D., Almeida, R. M. (2006). Effect of Ni loading and reaction temperature on the formation of carbon nanotubes from methane catalytic decomposition over Ni/SiO2. Journal of Materials Science, 42(3), pp. 914-922. doi: 10.1007/s10853-006-0009-8

Nordgreen, T., Liliedahl, T., Sjöström, K. (2006). Elemental iron as a tar breakdown catalyst in conjunction with atmospheric fluidized bed gasification of biomass: A thermodynamic study. Energy & Fuels, 20(3), pp. 890-895. doi: 10.1021/ef0502195

Oliveira, M. C., do Rego, A. M. B. (2006). The effect of the hypophosphite ion oxidation on the Ni surface electrode—an XPS study. Journal of Alloys and Compounds, 425(1–2), pp. 64-68. doi: http://dx.doi.org/10.1016/j.jallcom.2005.11.092

Pérez-Hernández, R., Gutiérrez-Martínez, A., Palacios, J., Vega-Hernández, M., Rodríguez-Lugo, V. (2011). Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2–ZrO2 catalysts. International Journal of Hydrogen Energy, 36(11), pp. 6601-6608. doi: http://dx.doi.org/10.1016/j.ijhydene.2011.02.064

Palacio, R., Gallego, J., Gabelica, Z., Batiot-Dupeyrat, C., Barrault, J., Valange, S. (2015). Decomposition of ethanol into H2-rich gas and carbon nanotubes over Ni, Co and Fe supported on SBA-15 and Aerosil. Applied Catalysis A: General, 504, pp. 642-653. doi: http://dx.doi.org/10.1016/j.apcata.2015.03.041

Park, C., Keane, M. A. (2004). Catalyst support effects in the growth of structured carbon from the decomposition of ethylene over nickel. Journal of Catalysis, 221(2), pp. 386-399. doi: http://dx.doi.org/10.1016/j.jcat.2003.08.014

Pinto, F., Franco, C., André, R. N., Tavares, C., Dias, M., Gulyurtlu, I., Cabrita, I. (2003). Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 82(15–17), pp. 1967-1976. doi: http://dx.doi.org/10.1016/S0016-2361(03)00160-1

PlasticEurope. (2015). Plastic Europe. Plastics - the facts 2014/2015. http://www.plasticseurope.org/Document/plastics-the-facts-2014.aspx

Pol, V. G. (2010). Upcycling: Converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres. Environmental Science & Technology, 44(12), pp. 4753-4759. doi: 10.1021/es100243u

Qian, W., Liu, T., Wang, Z., Yu, H., Li, Z., Wei, F., Luo, G. (2003). Effect of adding nickel to iron–alumina catalysts on the morphology of as-grown carbon nanotubes. Carbon, 41(13), pp. 2487-2493. doi: http://dx.doi.org/10.1016/S0008-6223(03)00324-5

Ren, R., Ma, J. (2015). Lamellar Ni/Al-SBA-15 fibers: preparation, characterization, and applications as highly efficient catalysts for amine and imine syntheses. RSC Advances, 5(91), pp. 74802-74810. doi: 10.1039/C5RA14382A

Reshetenko, T. V., Avdeeva, L. B., Ismagilov, Z. R., Chuvilin, A. L., Ushakov, V. A. (2003). Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Applied Catalysis A: General, 247(1), pp. 51-63. doi: http://dx.doi.org/10.1016/S0926-860X(03)00080-2

Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagiot, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S., Thompson, R. C. (2013). Policy: Classify plastic waste as hazardous. Nature, 494, pp. 169-171.

Rodriguez, N. M. (1993). A review of catalytically grown carbon nanofibers. Journal of Materials Research, 8(12), pp. 3233-3250. doi: 10.1557/JMR.1993.3233

Romero, A., Garrido, A., Nieto-Márquez, A., Sánchez, P., Lucas, A. d., Valverde, J. L. (2008). Synthesis and structural characteristics of highly graphitized carbon nanofibers produced from the catalytic decomposition of ethylene: Influence of the active metal (Co, Ni, Fe) and the zeolite type support. Microporous and Mesoporous Materials, 110(2–3), pp. 318-329. doi: http://dx.doi.org/10.1016/j.micromeso.2007.06.031

Saini, V. K., Pinto, M., Pires, J. (2011). Natural clay binder based extrudates of mesoporous materials: improved materials for selective adsorption of natural and biogas components. Green Chemistry, 13(5), pp. 1251-1259. doi: 10.1039/C0GC00940G

Sanches, S. G., Flores, J. H., de Avillez, R. R., Pais da Silva, M. I. (2012). Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming. International Journal of Hydrogen Energy, 37(8), pp. 6572-6579. doi: http://dx.doi.org/10.1016/j.ijhydene.2012.01.033

Sawant, S. Y., Somani, R. S., Panda, A. B., Bajaj, H. C. (2013). Utilization of plastic wastes for synthesis of carbon microspheres and their use as a template for nanocrystalline copper(II) oxide hollow spheres. ACS Sustainable Chemistry & Engineering, 1(11), pp. 1390-1397. doi: 10.1021/sc400119b

Song, R., Ji, Q. (2011). Synthesis of carbon nanotubes from polypropylene in the presence of Ni/Mo/MgO catalysts via combustion. Chemistry Letters, 40(10), pp. 1110-1112.

Song, R., Jiang, Z., Bi, W., Cheng, W., Lu, J., Huang, B., Tang, T. (2007). The combined catalytic action of solid acids with nickel for the transformation of polypropylene into carbon nanotubes by pyrolysis. Chemistry – A European Journal, 13(11), pp. 3234-3240. doi: 10.1002/chem.200601018

Song, R., Li, B., Zhao, S., Li, L. (2009). Transferring polypropylene into carbon nanotubes via combustion of PP/zeolites (H-ZSM-5 or H-beta)/Ni2O3. Journal of Applied Polymer Science, 112(6), pp. 3423-3428. doi: 10.1002/app.29754

Song, X. H., Teo, W. S., Wang, K. (2012). Synthesis and characterization of activated carbons prepared from benzene CVD on zeolite Y. Journal of Porous Materials, 19(2), pp. 211-215. doi: 10.1007/s10934-011-9462-0

Tan, S. T., Ho, W. S., Hashim, H., Lee, C. T., Taib, M. R., Ho, C. S. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Conversion and Management, 102, pp. 111-120. doi: http://dx.doi.org/10.1016/j.enconman.2015.02.010

Tang, T., Chen, X., Meng, X., Chen, H., Ding, Y. (2005). Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angewandte Chemie, 117(10), pp. 1541-1544. doi: 10.1002/ange.200461506

Thostenson, E. T., Ren, Z., Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61(13), pp. 1899-1912. doi: http://dx.doi.org/10.1016/S0266-3538(01)00094-X

Tsoufis, T., Jankovic, L., Gournis, D., Trikalitis, P. N., Bakas, T. (2008). Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Materials Science and Engineering: B, 152(1–3), pp. 44-49. doi: http://dx.doi.org/10.1016/j.mseb.2008.06.029

Tsoufis, T., Xidas, P., Jankovic, L., Gournis, D., Saranti, A., Bakas, T., Karakassides, M. A. (2007). Catalytic production of carbon nanotubes over Fe–Ni bimetallic catalysts supported on MgO. Diamond and Related Materials, 16(1), pp. 155-160. doi: http://dx.doi.org/10.1016/j.diamond.2006.04.014

Tsuji, T., Okajima, S., Sasaki, A., Masuda, T. (2005). Steam reforming of oils produced from waste plastics. Journal of Chemical Engineering of Japan, 38(10), pp. 859-864.

Tuza, P. V., Manfro, R. L., Ribeiro, N. F. P., Souza, M. M. V. M. (2013). Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni–Cu catalysts derived from hydrotalcite precursors. Renewable Energy, 50(0), pp. 408-414. doi: http://dx.doi.org/10.1016/j.renene.2012.07.006

U.N. (2011). Environmental indicators of municipal waste treatment. Available at http://unstats.un.org/unsd/environment/wastetreatment.htm (accessed March, 2011)


U.S.EPA. (2014). 2012 Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures. Available at http://www3.epa.gov/epawaste/nonhaz/municipal/msw99.htm (accessed Feb, 2014).

Ungureanu, A., Dragoi, B., Hulea, V., Cacciaguerra, T., Meloni, D., Solinas, V., Dumitriu, E. (2012). Effect of aluminium incorporation by the “pH-adjusting” method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous and Mesoporous Materials, 163(0), pp. 51-64. doi: http://dx.doi.org/10.1016/j.micromeso.2012.05.007

van Grieken, R., Escola, J. M., Moreno, J., Rodríguez, R. (2009). Direct synthesis of mesoporous M-SBA-15 (M = Al, Fe, B, Cr) and application to 1-hexene oligomerization. Chemical Engineering Journal, 155(1–2), pp. 442-450. doi: http://dx.doi.org/10.1016/j.cej.2009.07.016

Wang, G., Takeguchi, T., Yamanaka, T., Muhamad, E. N., Mastuda, M., Ueda, W. (2010). Effect of preparation atmosphere of Pt–SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation. Applied Catalysis B: Environmental, 98(1–2), pp. 86-93. doi: http://dx.doi.org/10.1016/j.apcatb.2010.05.016

Wang, J.-F., Wang, K.-X., Wang, J.-Q., Li, L., Chen, J.-S. (2012). Decomposition of CO2 to carbon and oxygen under mild conditions over a zinc-modified zeolite. Chemical Communications, 48(17), pp. 2325-2327. doi: 10.1039/C2CC17382D

Wang, M., Wang, Z., Gong, X., Guo, Z. (2014). The intensification technologies to water electrolysis for hydrogen production – A review. Renewable and Sustainable Energy Reviews, 29, pp. 573-588. doi: http://dx.doi.org/10.1016/j.rser.2013.08.090

Wang, P., Tanabe, E., Ito, K., Jia, J., Morioka, H., Shishido, T., Takehira, K. (2002). Filamentous carbon prepared by the catalytic pyrolysis of CH4 on Ni/SiO2. Applied Catalysis A: General, 231(1–2), pp. 35-44. doi: http://dx.doi.org/10.1016/S0926-860X(01)00906-1

Wang, X., Yang, X., Wu, Y. (1998). Catalytic behavior of Pd/C in the NOx removal reaction. Reaction Kinetics and Catalysis Letters, 64(2), pp. 309-316. doi: 10.1007/BF02475350

Wang, X. Q., Ge, H. L., Jin, H. X., Cui, Y. J. (2005). Influence of Fe on the thermal stability and catalysis of SBA-15 mesoporous molecular sieves. Microporous and Mesoporous Materials, 86(1–3), pp. 335-340. doi: http://dx.doi.org/10.1016/j.micromeso.2005.07.038

Wang, Z.-M., Lin, Y. S. (1998). Sol-gel synthesis of pure and copper oxide coated mesoporous alumina granular particles. Journal of Catalysis, 174(1), pp. 43-51. doi: http://dx.doi.org/10.1006/jcat.1997.1913

Wei, T.-T., Lin, Y.-H. (2012). Fast pyrolysis of polyolefin waste over cracking catalysts for producing hydrocarbon fuels using a fluidized-bed reactor. International Journal of Chemical Reactor Engineering, 10(1), pp. 1452-6580.

Wen, C. Y., Yu, Y. H. (1966). Mechanics of fluidization. The Chemical Engineering Progress Symposium Series, 62, pp. 100-111. doi: 10.1002/aic.690120343

Wen, X., Chen, X., Tian, N., Gong, J., Liu, J., Rümmeli, M. H., Chu, P. K., Mijiwska, E., Tang, T. (2014). Nanosized carbon black combined with Ni2O3 as “universal” catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Environmental Science & Technology, 48(7), pp. 4048-4055. doi: 10.1021/es404646e

Wey, M.-Y., Lo, C.-S., Wu, S.-Y., Lee, Y.-T. (1998). Operating parameters of autothermal pyrolosis of plastic waste in a fluidized bed. Waste Management & Research, 16(1), pp. 72-82. doi: http://dx.doi.org/10.1177/0734242x9801600109

Wey, M. Y., Huang, S. C., Shi, C. L. (1997). Oxidative pyrolysis of mixed solid wastes by sand bed and freeboard reaction in a fluidized bed. Fuel, 76(2), pp. 115-121. doi: http://dx.doi.org/10.1016/S0016-2361(96)00202-5

Wu, C., Nahil, M. A., Miskolczi, N., Huang, J., Williams, P. T. (2014). Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environmental Science & Technology, 48(1), pp. 819-826. doi: http://dx.doi.org/10.1021/es402488b

Wu, C., Wang, Z., Wang, L., Williams, P. T., Huang, J. (2012a). Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Advances, 2(10), pp. 4045-4047. doi: http://dx.doi.org/10.1039/C2RA20261A

Wu, C., Williams, P. T. (2009). Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Applied Catalysis B: Environmental, 87(3–4), pp. 152-161. doi: http://dx.doi.org/10.1016/j.apcatb.2008.09.003

Wu, C., Williams, P. T. (2010a). A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol. Environmental Science & Technology, 44(15), pp. 5993-5998. doi: http://dx.doi.org/10.1021/es100912w

Wu, C., Williams, P. T. (2010b). Pyrolysis–gasification of plastics, mixed plastics and real-world plastic waste with and without Ni–Mg–Al catalyst. Fuel, 89(10), pp. 3022-3032. doi: http://dx.doi.org/10.1016/j.fuel.2010.05.032

Wu, S., Baeyens, J. (1991). Effect of operating temperature on minimum fluidization velocity. Powder Technology, 67(2), pp. 217-220.

Wu, S., Han, Y., Zou, Y.-C., Song, J.-W., Zhao, L., Di, Y., Liu, S.-Z., Xiao, F.-S. (2004). Synthesis of heteroatom substituted SBA-15 by the “pH-adjusting” method. Chemistry of Materials, 16(3), pp. 486-492. doi: http://dx.doi.org/10.1021/cm0343857

Wu, X., Xing, G., Tan, S. L. J., Webster, R. D., Sum, T. C., Yeow, E. K. L. (2012b). Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: Effects of processing conditions. Physical Chemistry Chemical Physics, 14(26), pp. 9511-9519. doi: http://dx.doi.org/10.1039/C2CP40926G

Xiao, R., Jin, B., Zhou, H., Zhong, Z., Zhang, M. (2007). Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion and Management, 48(3), pp. 778-786. doi: http://dx.doi.org/10.1016/j.enconman.2006.09.004

Yang, H., Lu, Q., Gao, F., Shi, Q., Yan, Y., Zhang, F., Xie, S., Tu, B., Zhao, D. (2005). One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels. Advanced Functional Materials, 15(8), pp. 1377-1384. doi: http://dx.doi.org/10.1002/adfm.200500026

Yang, H., Yan, R., Chen, H., Lee, D. H., Liang, D. T., Zheng, C. (2006). Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Processing Technology, 87(10), pp. 935-942. doi: http://dx.doi.org/10.1016/j.fuproc.2006.07.001

Yang, Z., Zhang, Q., Luo, G., Huang, J.-Q., Zhao, M.-Q., Wei, F. (2010). Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Applied Physics A, 100(2), pp. 533-540. doi: http://dx.doi.org/10.1007/s00339-010-5868-9

Yang, Z., Zhao, M., Florin, N. H., Harris, A. T. (2009). Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Industrial & Engineering Chemistry Research, 48(24), pp. 10765-10770. doi: http://dx.doi.org/10.1021/ie901137s

Yao, N., Lordi, V., Ma, S. X. C., Dujardin, E., Krishnan, A., Treacy, M. M. J., Ebbesen, T. W. (1998). Structure and oxidation patterns of carbon nanotubes. Journal of Materials Research, 13(09), pp. 2432-2437. doi: http://dx.doi.org/10.1557/JMR.1998.0338

Yen, Y.-w., Huang, M.-D., Lin, F.-J. (2008). Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers. Diamond and Related Materials, 17(4–5), pp. 567-570. doi: http://dx.doi.org/10.1016/j.diamond.2007.12.020

Zhang, J., Du, J., Qian, Y., Xiong, S. (2010). Synthesis, characterization and properties of carbon nanotubes microspheres from pyrolysis of polypropylene and maleated polypropylene. Materials Research Bulletin, 45(1), pp. 15-20. doi: http://dx.doi.org/10.1016/j.materresbull.2009.09.007

Zhang, J., Yan, B., Wan, S., Kong, Q. (2013). Converting polyethylene waste into large scale one-dimensional Fe3O4@C composites by a facile one-pot process. Industrial & Engineering Chemistry Research, 52(16), pp. 5708-5712. doi: http://dx.doi.org/10.1021/ie4004392

Zhang, X., Dong, H., Gu, Z., Wang, G., Zuo, Y., Wang, Y., Cui, L. (2015a). Preferential carbon monoxide oxidation on Ag/Al-SBA-15 catalysts: Effect of the Si/Al ratio. Chemical Engineering Journal, 269(0), pp. 94-104. doi: http://dx.doi.org/10.1016/j.cej.2015.01.085

Zhang, Y., Wu, C., Nahil, M. A., Williams, P. (2015b). Pyrolysis–catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen. Energy & Fuels, 29(5), pp. 3328-3334. doi: http://dx.doi.org/10.1021/acs.energyfuels.5b00408

Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), pp. 548-552. doi: http://dx.doi.org/10.1126/science.279.5350.548

Zhao, M., Yang, X., Church, T. L., Harris, A. T. (2012). Novel CaO–SiO2 sorbent and bifunctional Ni/Co–CaO/SiO2 complex for selective H2 synthesis from cellulose. Environmental Science & Technology, 46(5), pp. 2976-2983. doi: http://dx.doi.org/10.1021/es300135d

Zhao, W., Lee, M., Kim, H., Kim, I. (2011). The synthesis of carbon nanotubes (CNTs) by catalytic CVD using a Fe/Co-supported zeolite template. Electronic Materials Letters, 7(2), pp. 139-144. doi: http://dx.doi.org/10.1007/s13391-011-0609-6

Zhu, J., Gu, H., Rapole, S. B., Luo, Z., Pallavkar, S., Haldolaarachchige, N., Benson, T. J., Ho, T. C., Hopper, J., Young, D. P., Wei, S., Guo, Z. (2012). Looped carbon capturing and environmental remediation: case study of magnetic polypropylene nanocomposites. RSC Advances, 2(11), pp. 4844-4856. doi: http://dx.doi.org/10.1039/C2RA01150F

Zhu, J., Pallavkar, S., Chen, M., Yerra, N., Luo, Z., Colorado, H. A., Lin, H., Haldolaarachchige, N., Khasanov, A., Ho, T. C., Young, D. P., Wei, S., Guo, Z. (2013). Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis. Chemical Communications, 49(3), pp. 258-260. doi: http://dx.doi.org/10.1039/C2CC36810B

Zhuo, C., Levendis, Y. A. (2014). Upcycling waste plastics into carbon nanomaterials: A review. Journal of Applied Polymer Science, 131(4), pp. 39931. doi: http://dx.doi.org/10.1002/app.39931

Ziebro, J., Łukasiewicz, I., Grzmil, B., Borowiak-Palen, E., Michalkiewicz, B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. Journal of Alloys and Compounds, 485(1–2), pp. 695-700. doi: http://dx.doi.org/10.1016/j.jallcom.2009.06.039

行政院環境保護署(2015) “統計資料庫”,http://210.69.101.110/epa/stmain.jsp?sys=100

吳俊欣(2000) ”都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試”,國立中山大學環境工程研究所,碩士論文,高雄市。

吳耿東(2010) “生質物熱化學轉化製氫技術”,化工技術,205期,78-82頁。

吳耿東,李宏台(2001) “廢棄物氣化技術”,工程月刊,74期,第4卷,85-96頁。

吳耿東,楊凱成,朱敬平,胡博誠(2012) “生質物氣化:現況與展望”,台電工程月刊,765期,9-19頁。

李定粵(1991) “觸媒的原理與應用”,台北市,國立編譯館。

林秋良(2004) “流力行為對廢棄物焚化影響之研究”,國立國立中興大學環境工程學系,博士論文,台中市。

林福仁(2008) ”以不同高分子碳源及觸媒合成奈米碳管之研究及其純化效果之討論”,國立台灣科技大學材料科技研究所,碩士論文,台北。

柯賢文(2006) “未來的氫能經濟”,科學發展,399期,68-75頁。

孫平遠(2007) “新能源創新者傳播館到及採納行為研究-以油電混合車為例”,世新大學廣播電視電影學系,碩士論文,台北市。

張育菘(2006) “廢電腦塑膠物質熱裂解固體產品再利用之研究”,大葉大學環境工程學系,碩士論文,彰化縣。

張嘉修(2009) “生質氫能”,科學發展,433期,32-35頁。

莊桂鶴(2011) “微波多元醇法製備負載型銅觸媒應用於潔淨發電技術之研究”,國立國立中興大學環境工程研究所,博士論文,台中市。

郭展維(2010) ”磁場對電解水產氫效率之研究”,國立中央大學機械工程學系,碩士論文,桃園市。

陳柏強(2003) “桌上型電腦塑膠物質熱裂解資源回收之研究”,大葉大學環境工程學系,碩士論文,彰化縣。

陳軍,袁華堂(2004) “新能源材料”,台北市,五南圖書出版股份有限公司。

童婉貞(2008) ”添加金屬於中孔洞沸石與介金屬觸媒:製備、特性分析,及應用”,國立國立中興大學化學工程研究所,博士論文,台中市。

黃詠鈞(2007) “利用RF水氣電漿實行分解廢棄塑膠及衍生物質之研究”,龍華科技大學工程技術研究所,碩士論文,桃園市。

黃銘德(2006) ”利用化學氣相沉積法在流體化床反應器中以高分子合成奈米碳管,國立台灣科技大學材料科技研究所,碩士論文,台北市。

楊文毅(2000) ”鈀觸媒氧化焚化廢氣中有機物之研究”,國立國立中興大學環境工程研究所,碩士論文,台中。

經濟部能源局(2010) ”2010年能源產業技術白皮書”,經濟部能源局。

劉舜惠(2011) ”廢輪胎熱裂解回收碳黑再製高性能碳材製程之研究”,國立高雄應用科技大學工業工程與管理系,碩士論文,高雄市。

錢建嵩,黃正忠,楊玉樹,歐建志,張瑞顯,吳耿東,游逸將(1992) ”流體化床技術”,台北市,高立圖書有限公司。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top