(3.236.100.86) 您好!臺灣時間:2021/05/06 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏肇
研究生(外文):Bo-Jau Chen
論文名稱:普魯士藍類結構物之製備與應用於過一硫酸氫鉀之催化研究
論文名稱(外文):Preparation of Prussian blue analogues and their application for catalytic activation of Peroxymonosulfate
指導教授:林坤儀林坤儀引用關係
口試委員:楊宏達陳致光
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:普魯士藍類結構物過一硫酸氫鉀羅丹明B
外文關鍵詞:Prussian blue analogues (PBAs)Peroxymonosulfate (PMS)Rhodamine B (RhB)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們評估了一個以普魯士藍類結構物(Prussian blue analogues, PBAs)做為催化劑活化過一硫酸氫鉀(Peroxymonosulfate, PMS)產生硫酸根自由基降解毒性染料羅丹明B(Rhodamine B, RhB)的方法。結果顯示,含鈷及錳的PBAs均能有效的活化PMS,含銅、鐵及鎳的PBAs則幾乎無法有效的活化PMS。在所有的PBAs中,活化效果最顯著的是Co3[Fe(CN)6]2 (Co-Fe)以及Co3[Co(CN)6]2 (Co-Co)。進一步分析了以Co-Fe及Co-Co活化PMS降解RhB的各種實驗條件,包括催化劑添加量變化、不同型態鈷催化劑之比較、氧化劑添加量變化、溫度變化、pH值變化。結果顯示,不論Co-Fe或是Co-Co皆有著比常見的PMS催化劑-四氧化三鈷更好的活化效果,顯示含鈷的PBAs是個極為有效的催化劑。較佳的操作條件是在高溫以及中性的環境下。抑制劑(自由基掃除劑)影響的實驗中可得知整個降解實驗中主要參與反應的自由基為硫酸根自由基以及少量之氫氧自由基。而Co-Fe及Co-Co儘管在多次的循環使用後仍然可以保有它們良好的催化性質。綜上所述,利用含鈷的PBAs做為催化劑來活化 PMS降解有機污染物是一個極為有效的方式。

In this study, we evaluated Prussian blue analogues (PBAs) as catalysts to activate peroxymonosulfate (PMS) which generates sulfate radicals to degrade a toxic dye, Rhodamine B (RhB). The results show that Co and Mn-containing PBAs were capable of activating PBAs while Cu, Fe and Ni-containing PBAs were almost unable to activate PMS. Among all PBAs, Co3[Fe(CN)6]2 (Co-Fe) and Co3[Co(CN)6]2 (Co-Co) were proven as the most effective catalysts for PMS activation. Factors influencing RhB decolorization were further investigated to examine PMS activation by Co-Fe and Co-Co under various conditions, including changes of PBA loading, PMS dosage, temperature and pH. The results show that both of Co-Fe and Co-Co exhibited much higher catalytic activities than Co3O4 for activating PMS to degrade RhB in water, indicating that Co-containing PBAs is a promising catalyst. The preferred operating conditions for PMS activation by Co-Fe and Co-Co were at high temperatures and neutral conditions. Effects of radical scavengers on degradation suggest that RhB degradation using PMS activated by Co-Fe and Co-Co both primarily involved sulfate radicals and hydroxyl radicals to a lesser extent. Recyclabilities of both Co-Fe and Co-Co were stable and effective for activating PMS over multiple cycles. In summary, Co-containing PBAs are promising catalysts to activate PMS for degradation of organic pollutants.

摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vii
表目錄 x
第一章、緒論 1
第二章、文獻回顧 4
2-1 染整廢水 4
2-1-1染整廢水概述 4
2-1-2染整廢水處理技術 4
2-1-3羅丹明B(RhB)染料特性 6
2-2高級氧化程序(AOPs) 7
2-2-1 AOPs概述 7
2-2-2以硫酸根自由基為主的AOPs 8
2-2-3 PMS的催化 9
2-3金屬有機架構物(MOFs) 10
2-3-1 MOFs概述 10
2-3-2 MOFs之應用 11
2-3-3普魯士藍及其類結構物 13
第三章、實驗方法 15
3-1實驗架構 15
3-2實驗儀器與設備 17
3-3實驗藥品 18
3-4材料製備與鑑定 19
3-4-1 PBAs之製備與命名 19
3-4-2 PBAs之鑑定 20
3-4-2-1場發射掃描式電子顯微鏡(FE-SEM) 20
3-4-2-2 X射線繞射分析儀(XRD) 21
3-4-2-3熱重分析儀(TGA) 22
3-4-2-4傅立葉轉換紅外線光譜儀(FTIR) 22
3-5降解RhB實驗 23
3-5-1 PBAs催化實驗 23
3-5-1-1吸附排除實驗 23
3-5-1-2單純氧化實驗 23
3-5-1-3催化實驗 24
3-5-2最佳參數實驗 24
3-5-2-1催化劑變化實驗 24
3-5-2-2氧化劑添加量變化實驗 25
3-5-2-3溫度變化實驗 25
3-5-2-4 pH值變化實驗 26
3-5-2-5抑制劑影響實驗 26
3-5-2-6回收實驗實驗 27
3-6動力模式分析 28
第四章、結果與討論 29
4-1材料鑑定 29
4-1-1晶型鑑定(FE-SEM & XRD) 29
4-1-2熱重分析儀(TG) 32
4-1-3傅立葉轉換紅外線光譜儀(FTIR) 35
4-2降解RhB實驗 37
4-2-1 PBAs催化實驗 37
4-2-2 Co-Fe最佳參數實驗 47
4-2-2-1 [Co-Fe] 催化劑變化實驗 47
4-2-2-2 [Co-Fe] 氧化劑添加量變化實驗 48
4-2-2-3 [Co-Fe] 溫度變化實驗 49
4-2-2-4 [Co-Fe] pH值變化實驗 50
4-2-2-5 [Co-Fe] 抑制劑影響實驗 52
4-2-2-6 [Co-Fe] 回收實驗 54
4-2-3 Co-Co最佳參數實驗 55
4-2-3-1 [Co-Co] 催化劑變化實驗 55
4-2-3-2 [Co-Co] 氧化劑添加量變化實驗 56
4-2-3-3 [Co-Co] 溫度變化實驗 57
4-2-3-4 [Co-Co] pH值變化實驗 58
4-2-3-5 [Co-Co] 抑制劑影響實驗 60
4-2-3-6 [Co-Co] 回收實驗 61
4-2-4 動力模式分析 62
第五章、結論與建議 64
5-1 結論 64
5-2 建議 65
參考資料 66


Andrew Lin, K.-Y., & Chen, B.-C. (2016). Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67. Dalton Transactions, 45(8), 3541-3551. doi: 10.1039/C5DT04277A
Andrew Lin, K.-Y., & Hsieh, Y.-T. (2015). Copper-based metal organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. Journal of the Taiwan Institute of Chemical Engineers, 50, 223-228. doi: http://dx.doi.org/10.1016/j.jtice.2014.12.008
Anipsitakis, G. P., Stathatos, E., & Dionysiou, D. D. (2005). Heterogeneous Activation of Oxone Using Co3O4. The Journal of Physical Chemistry B, 109(27), 13052-13055. doi: 10.1021/jp052166y
Antoniou, M. G., de la Cruz, A. A., & Dionysiou, D. D. (2010). Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms. Applied Catalysis B: Environmental, 96(3–4), 290-298. doi: http://dx.doi.org/10.1016/j.apcatb.2010.02.013
Bauer, C., Jacques, P., & Kalt, A. (2001). Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 140(1), 87-92. doi: http://dx.doi.org/10.1016/S1010-6030(01)00391-4
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G., & Williams, I. D. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150.
Do, S.-H., Jo, J.-H., Jo, Y.-H., Lee, H.-K., & Kong, S.-H. (2009). Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil. Chemosphere, 77(8), 1127-1131. doi: http://dx.doi.org/10.1016/j.chemosphere.2009.08.061
Dou, Z., Cao, C., Chen, Y., & Song, W. (2014). Fabrication of porous Co3O4 nanowires with high CO sensing performance at a low operating temperature. Chemical Communications, 50(94), 14889-14891. doi: 10.1039/C4CC05498A
Escax, V., Bleuzen, A., Cartier dit Moulin, C., Villain, F., Goujon, A., Varret, F., & Verdaguer, M. (2001). Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the Photo- and Thermally Induced Electron Transfer by the [Fe(CN)6] Vacancies in Cesium Derivatives. Journal of the American Chemical Society, 123(50), 12536-12543. doi: 10.1021/ja011296r
Feng, S., Li, X., Ma, F., Liu, R., Fu, G., Xing, S., & Yue, X. (2016). Prussian blue functionalized microcapsules for effective removal of cesium in a water environment. RSC Advances, 6(41), 34399-34410. doi: 10.1039/C6RA01450J
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149).
Garde, R., Villain, F., & Verdaguer, M. (2002). Molecule-Based Room-Temperature Magnets: Catalytic Role of V(III) in the Synthesis of Vanadium−Chromium Prussian Blue Analogues. Journal of the American Chemical Society, 124(35), 10531-10538. doi: 10.1021/ja020528z
Gao, Y.-q., Gao, N.-y., Deng, Y., Yang, Y.-q., & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195–196, 248-253. doi: http://dx.doi.org/10.1016/j.cej.2012.04.084
Ge, D., Zeng, Z., Arowo, M., Zou, H., Chen, J., & Shao, L. (2016). Degradation of methyl orange by ozone in the presence of ferrous and persulfate ions in a rotating packed bed. Chemosphere, 146, 413-418. doi: http://dx.doi.org/10.1016/j.chemosphere.2015.12.058
Ghosh, S. N. (1974). Infrared spectra of the Prussian blue analogs. Journal of Inorganic and Nuclear Chemistry, 36(11), 2465-2466. doi: http://dx.doi.org/10.1016/0022-1902(74)80454-9
Glaze, W. H., & Kang, J. W. (1989). Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor. Industrial & Engineering Chemistry Research, 28(11), 1573-1580. doi: 10.1021/ie00095a001
Guo, W., Su, S., Yi, C., & Ma, Z. (2013). Degradation of antibiotics amoxicillin by Co3O4-catalyzed peroxymonosulfate system. Environmental Progress & Sustainable Energy, 32(2), 193-197. doi: 10.1002/ep.10633
He, Z., Sun, C., Yang, S., Ding, Y., He, H., & Wang, Z. (2009). Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. Journal of Hazardous Materials, 162(2–3), 1477-1486. doi: http://dx.doi.org/10.1016/j.jhazmat.2008.06.047
Hu, M., Ishihara, S., Ariga, K., Imura, M., & Yamauchi, Y. (2013). Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Self-Assembly to Periodic Arrangements. Chemistry – A European Journal, 19(6), 1882-1885. doi: 10.1002/chem.201203138
Hu, M., Torad, N. L., & Yamauchi, Y. (2012). Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells. European Journal of Inorganic Chemistry, 2012(30), 4795-4799. doi: 10.1002/ejic.201200654
Hu, P., & Long, M. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103-117. doi: http://dx.doi.org/10.1016/j.apcatb.2015.07.024
Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413-420. doi: http://dx.doi.org/10.1016/S0045-6535(02)00330-2
Itaya, K., Uchida, I., & Neff, V. D. (1986). Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Accounts of Chemical Research, 19(6), 162-168. doi: 10.1021/ar00126a001
Janzen, E. G., Kotake, Y., & Randall D, H. (1992). Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radical Biology and Medicine, 12(2), 169-173. doi: http://dx.doi.org/10.1016/0891-5849(92)90011-5
Karadas, F., El-Faki, H., Deniz, E., Yavuz, C. T., Aparicio, S., & Atilhan, M. (2012). CO2 adsorption studies on Prussian blue analogues. Microporous and Mesoporous Materials, 162, 91-97. doi: http://dx.doi.org/10.1016/j.micromeso.2012.06.019
Kaye, S. S., & Long, J. R. (2005). Hydrogen Storage in the Dehydrated Prussian Blue Analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). Journal of the American Chemical Society, 127(18), 6506-6507. doi: 10.1021/ja051168t
Kim, T.-H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 112(1–2), 95-103. doi: http://dx.doi.org/10.1016/j.jhazmat.2004.04.008
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450-1459. doi: 10.1039/B807080F
Lejeune, J., Brubach, J.-B., Roy, P., & Bleuzen, A. (2014). Application of the infrared spectroscopy to the structural study of Prussian blue analogues. Comptes Rendus Chimie, 17(6), 534-540. doi: http://dx.doi.org/10.1016/j.crci.2014.01.017
Li, B., Li, L., Lin, K., Zhang, W., Lu, S., & Luo, Q. (2013). Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrasonics Sonochemistry, 20(3), 855-863. doi: http://dx.doi.org/10.1016/j.ultsonch.2012.11.014
Li, B., Wen, H.-M., Zhou, W., & Chen, B. (2014). Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters, 5(20), 3468-3479. doi: 10.1021/jz501586e
Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477-1504. doi: 10.1039/B802426J
Li, X., Liu, J., Rykov, A. I., Han, H., Jin, C., Liu, X., & Wang, J. (2015). Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Applied Catalysis B: Environmental, 179, 196-205. doi: http://dx.doi.org/10.1016/j.apcatb.2015.05.033
Lin, K.-Y. A., & Chang, H.-A. (2015a). Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 139, 624-631. doi: http://dx.doi.org/10.1016/j.chemosphere.2015.01.041
Lin, K.-Y. A., & Chang, H.-A. (2015b). Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. Journal of the Taiwan Institute of Chemical Engineers, 53, 40-45. doi: http://dx.doi.org/10.1016/j.jtice.2015.02.027
Lin, K.-Y. A., Chang, H.-A., & Chen, R.-C. (2015). MOF-derived magnetic carbonaceous nanocomposite as a heterogeneous catalyst to activate oxone for decolorization of Rhodamine B in water. Chemosphere, 130, 66-72. doi: http://dx.doi.org/10.1016/j.chemosphere.2015.03.025
Lin, K.-Y. A., Chen, S.-Y., & Jochems, A. P. (2015). Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine. Materials Chemistry and Physics, 160, 168-176. doi: http://dx.doi.org/10.1016/j.matchemphys.2015.04.021
Lin, K.-Y. A., Yang, H., Petit, C., & Hsu, F.-K. (2014). Removing oil droplets from water using a copper-based metal organic frameworks. Chemical Engineering Journal, 249, 293-301. doi: http://dx.doi.org/10.1016/j.cej.2014.03.107
Liu, S.-Q., Cheng, S., Luo, L., Cheng, H.-Y., Wang, S.-J., & Lou, S. (2011). Degradation of dye rhodamine B under visible irradiation with Prussian blue as a photo-Fenton reagent. Environmental Chemistry Letters, 9(1), 31-35. doi: 10.1007/s10311-009-0242-x
Motkuri, R. K., Thallapally, P. K., McGrail, B. P., & Ghorishi, S. B. (2010). Dehydrated Prussian blues for CO2 storage and separation applications. CrystEngComm, 12(12), 4003-4006. doi: 10.1039/C0CE00199F
Neta, P., Huie, R. E., & Ross, A. B. (1988). Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(3), 1027-1284. doi: doi:http://dx.doi.org/10.1063/1.555808
Olmez-Hanci, T., & Arslan-Alaton, I. (2013). Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chemical Engineering Journal, 224, 10-16. doi: http://dx.doi.org/10.1016/j.cej.2012.11.007
Pajerowski, D. M., Gardner, J. E., Frye, F. A., Andrus, M. J., Dumont, M. F., Knowles, E. S., Meisel, M. W., & Talham, D. R. (2011). Photoinduced Magnetism in a Series of Prussian Blue Analogue Heterostructures. Chemistry of Materials, 23(12), 3045-3053. doi: 10.1021/cm2003337
Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59(2), 73-84. doi: http://dx.doi.org/10.1016/j.ibiod.2006.08.006
Qi, F., Chu, W., & Xu, B. (2013). Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate. Applied Catalysis B: Environmental, 134–135, 324-332. doi: http://dx.doi.org/10.1016/j.apcatb.2013.01.038
Qi, F., Chu, W., & Xu, B. (2014). Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources. Chemical Engineering Journal, 235, 10-18. doi: http://dx.doi.org/10.1016/j.cej.2013.08.113
Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F., & Belgiorno, V. (2009). Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Research, 43(4), 979-988. doi: http://dx.doi.org/10.1016/j.watres.2008.11.040
Safari, J., Mansouri Kafroudi, Z., & Zarnegar, Z. (2014). Co3O4-decorated carbon nanotubes as a novel efficient catalyst in the selective oxidation of benzoins. Comptes Rendus Chimie, 17(9), 958-963. doi: http://dx.doi.org/10.1016/j.crci.2013.09.003
Shen, X., Wu, S., Liu, Y., Wang, K., Xu, Z., & Liu, W. (2009). Morphology syntheses and properties of well-defined Prussian Blue nanocrystals by a facile solution approach. Journal of Colloid and Interface Science, 329(1), 188-195. doi: http://dx.doi.org/10.1016/j.jcis.2008.09.067
Shi, P., Zhu, S., Zheng, H., Li, D., & Xu, S. (2014). Supported Co3O4 on expanded graphite as a catalyst for the degradation of Orange II in water using sulfate radicals. Desalination and Water Treatment, 52(16-18), 3384-3391. doi: 10.1080/19443994.2013.796896
Takahashi, A., Tanaka, H., Minami, N., Kurihara, M., & Kawamoto, T. (2014). Simultaneous Enhancement of Cs-Adsorption and Magnetic Properties of Prussian Blue by Thermal Partial Oxidation. Bulletin of the Chemical Society of Japan, advpub. doi: 10.1246/bcsj.20140229
Thompson, R. C. (1981). Catalytic decomposition of peroxymonosulfate in aqueous perchloric acid by the dual catalysts silver(1+) and peroxydisulfate(2-) and by cobalt(2+). Inorganic Chemistry, 20(4), 1005-1010. doi: 10.1021/ic50218a012
Torad, N. L., Hu, M., Imura, M., Naito, M., & Yamauchi, Y. (2012). Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas. Journal of Materials Chemistry, 22(35), 18261-18267. doi: 10.1039/C2JM32805D
Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R. L., & Bjerg, P. L. (2010). In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology, 40(1), 55-91. doi: 10.1080/10643380802039303
Verdaguer, M., & Girolami, G. S. (2005). Magnetic Prussian Blue Analogs Magnetism: Molecules to Materials (pp. 283-346): Wiley-VCH Verlag GmbH & Co. KGaA.
Wang, C., Shi, P., Cai, X., Xu, Q., Zhou, X., Zhou, X., Yang, D., Fan, J., Min, Y., Ge, H., & Yao, W. (2016). Synergistic Effect of Co3O4 Nanoparticles and Graphene as Catalysts for Peroxymonosulfate-Based Orange II Degradation with High Oxidant Utilization Efficiency. The Journal of Physical Chemistry C, 120(1), 336-344. doi: 10.1021/acs.jpcc.5b10032
Wei, G., Liang, X., He, Z., Liao, Y., Xie, Z., Liu, P., Ji, S., He, H., Li, D., & Zhang, J. (2015). Heterogeneous activation of Oxone by substituted magnetites Fe3−xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH. Journal of Molecular Catalysis A: Chemical, 398, 86-94. doi: http://dx.doi.org/10.1016/j.molcata.2014.11.024
Wojdeł, J. C., & Bromley, S. T. (2004). Efficient calculation of the structural and electronic properties of mixed valence materials: application to Prussian Blue analogues. Chemical Physics Letters, 397(1–3), 154-159. doi: http://dx.doi.org/10.1016/j.cplett.2004.08.107
Yaghi, O. M., Li, G., & Li, H. (1995). Selective binding and removal of guests in a microporous metal-organic framework. Nature, 378(6558), 703-706.
Yang, Q., Choi, H., Al-Abed, S. R., & Dionysiou, D. D. (2009). Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Applied Catalysis B: Environmental, 88(3–4), 462-469. doi: http://dx.doi.org/10.1016/j.apcatb.2008.10.013
Yang, Q., Choi, H., Chen, Y., & Dionysiou, D. D. (2008). Heterogeneous activation of peroxymonosulfate by supported cobalt catalysts for the degradation of 2,4-dichlorophenol in water: The effect of support, cobalt precursor, and UV radiation. Applied Catalysis B: Environmental, 77(3–4), 300-307. doi: http://dx.doi.org/10.1016/j.apcatb.2007.07.020
Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., & Niu, R. (2010). Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 179(1–3), 552-558. doi: http://dx.doi.org/10.1016/j.jhazmat.2010.03.039
Yao, Y., Yang, Z., Sun, H., & Wang, S. (2012). Hydrothermal Synthesis of Co3O4–Graphene for Heterogeneous Activation of Peroxymonosulfate for Decomposition of Phenol. Industrial & Engineering Chemistry Research, 51(46), 14958-14965. doi: 10.1021/ie301642g
Yurtsever, A., Çınar, Ö., & Sahinkaya, E. (2016). Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. Journal of Membrane Science, 511, 228-237. doi: http://dx.doi.org/10.1016/j.memsci.2016.03.044
Zhang, L., Wu, H. B., & Lou, X. W. (2013). Metal–Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity. Journal of the American Chemical Society, 135(29), 10664-10672. doi: 10.1021/ja401727n
Zhang, Z., & Edwards, J. O. (1992). Chain lengths in the decomposition of peroxomonosulfate catalyzed by cobalt and vanadium. Rate law for catalysis by vanadium. Inorganic Chemistry, 31(17), 3514-3517. doi: 10.1021/ic00043a007



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔