跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏迪
研究生(外文):Po-Di Chen
論文名稱:建築能耗模擬與節能優化效果分析
論文名稱(外文):Building Energy Consumption Simulation and Optimization
指導教授:林明德林明德引用關係
指導教授(外文):Min-Der Lin
口試委員:蔡岡廷林宏嶽
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:遺傳規劃法建築優化模擬
外文關鍵詞:EnergyPlusGenOpt
相關次數:
  • 被引用被引用:3
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據聯合國環境規劃署(United Nations Environment Programme)於2011年指出,全球有50%人口居住於城市,且城市使用之能源高達世界總能源消耗的60-80%,其中國際能源署(International Energy Agency)表示建築平均佔全球能源消耗32%。而我國經濟部能源局於2012年報告亦顯示住商部門的電力消耗量高達37.42%,建築物之能源使用效率評估與優化(optimization)已成為全球共同關注之能源策略研究議題。
經由文獻回顧之探討發現,空調與照明等日常使用占了整體建築能耗近50~80%,且建築的外殼、建材種類、窗戶種類、開窗率與遮陰設施等設計都與建築物能源效率有密切的影響。因此如何將此龐雜的建築設計進行優化,以達成高效率的節能效果,是相當值得探討的議題。
故本研究利用遺傳規劃法(Genetic Programming)結合能源模擬模式EnergyPlus求解建築節能設計之優化問題,並以位於台灣南部之辦公大樓的能源使用作為研究案例。研究結果顯示,優化後之參數設計可降低案例建築總能源達26.87%,並在各項能源使用上分別降低冷氣需求44.65%、風扇需求46.02%、照明需求16.23%及暖氣需求3.29%。


According to UNEP’s (United Nations Environment Programme) statement in 2011, 50% of the total population on earth lives in cities and consumed 60-80% of the total energy in the world. The IEA (International Energy Agency) also mentioned that the energy used by buildings make up 32% of the global energy consumption. On the other hand, the report of Bureau of Energy also indicates that Taiwan electricity consumption in residential and commercial sector was up to 37.42% in 2012. Therefore, evaluation and optimization of the building energy efficiency have become an important issue of global energy strategy research.
Literature review indicates that the energy use of air conditioning and lighting on general building accounts for nearly 50% to 80% of the total energy consumption. Moreover, energy efficiency of building are also affected by the design of the building shells, building types, window types, shading rates, etc.. Therefore, developing optimization tools to improve the energy efficiency of buildings it is a very valuable topic to work on.
This study employed genetic programming, integrated with the energy simulator EnergyPlus, to optimize efficient energy designs of building. An office building in southern Taiwan is used as case study. The results showed that the optimized building design can reduce 26.87% of total energy consumption, including 44.65% energy reduction of air conditioning system, 46.02% reduction of electric fan, 16.32% reduction of lighting system, and 3.29% of heating system.


摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 研究流程與架構 8
第二章 文獻回顧 10
2.1 建築節能潛力評估 10
2.2 節能設計策略相關研究 12
2.2.1 建築外殼節能評估 12
2.2.2 空調系統 17
2.2.3 照明系統 21
2.3 建築節能優化相關研究 24
2.4 文獻小結 28
第三章 研究方法 29
3.1 EnergyPlus建築全能耗模擬模式 29
3.1.1 EnergyPlus之模擬架構 30
3.1.2 EnergyPlus資料輸入與輸出 34
3.2 遺傳規劃法 36
3.2.1 遺傳規劃法之結構與特性 39
3.2.2 遺傳規劃法之交配(Crossover)機制 41
3.2.3 遺傳規劃法之突變(Mutation)機制 42
3.2.4 遺傳規劃法設計參數配置 43
3.3 研究案例 44
3.3.1 研究案例基本資料 44
3.3.2 氣象資料輸入 45
3.3.3 建築配置與參數設定 46
3.3.4 案例外殼建材設置 47
3.3.5 空調系統與設備 48
3.4 優選模式設計 49
3.4.1 GenOpt通用優選模式 49
3.4.2 本案例設計之優化模式 50
3.4.3 建築外牆與屋頂優化設置 52
3.4.4 建築外觀窗戶與種類優化設置 53
3.4.5 照明控制系統優化設置 56
第四章 結果與討論 57
4.1 原始案例能耗與優化結果 57
4.1.1 原始案例建築能耗結果 57
4.1.2 建築能耗整合優化模擬結果 58
4.2 各項優化表現與分析 61
4.2.1 外牆增設隔熱層之優化 61
4.2.2 屋頂增設隔熱層之優化 64
4.2.3 各向窗戶寬度之優化 68
4.2.4 窗戶種類之優化 74
4.2.5 照明系統 78
4.2.6 各項優化與整合優化之能耗結果 80
第五章 結論與建議 83
5.1 研究結論 83
5.2 研究建議 84
參考文獻 85


中文文獻
內政部建築研究所,2015,綠廳舍改善之節能及室內舒適度模擬探討以屋頂隔熱為例。
王柏宜,2015,建築能耗模擬與節能策略分析,國立國立中興大學,國立國立中興大學碩士論文。
吳政祐,2014,高雄氣候下零耗能住宅設計策略之研究,國立成功大學,國立成功大學碩士論文。
林憲德,2003,熱濕氣候的綠色建築,詹氏書局。
林憲德,2008,綠色建築,詹氏書局。
林憲德,2010,綠建築84 技術,詹氏書局。
許涵皓,2013,綠建築改善策略之成本效益研究–應用宜船演算法於最佳化及多目標分析,國立台灣大學碩士論文。
陳昕瑜,邱詩佳,簡廷龍,徐于雯,鄭靖妤,鍾易書,2012,基因規劃於台灣股市投資之應用,明新科技大學專題報告。
陳樹衡,池秉聰,陳俊元,2005,經濟學中的創新行為建模:遺傳規劃的觀點,國立政治大學創新與創造力研究中心。
經濟部能源局,2012,建築節能應用技術手冊。
經濟部能源局,2014,照明系統Q&A 節能技術手冊。
韓選棠,徐嘉宏,劉康胤,2010,鋼筋混凝土外牆降低熱傳改善方式之研究-以台灣鄉村地區農宅為例,專論。
外文文獻
American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE (2000) BSR/ASHRAE Standard 140P, Standard Method of Test of the Evaluation of Building Energy Analysis Computer Programs.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE (2009) Indoor Air Quality Guide.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE (2011) Advanced Energy Design Guide for Small to Medium Office Buildings.
Asadi, E., M. G. da Silva, C. H. Antunes & L. Dias (2012) A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB. Building and Environment, 56, 370-378.
Bhaskoro, P. T., S. I. U. H. Gilani & M. S. Aris (2013) Simulation of energy saving potential of a centralized HVAC system in an academic building using adaptive cooling technique. Energy Conversion and Management, 75, 617-628.
Crawley, D. B., J. W. Hand, M. Kummert & B. T. Griffith (2008) Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43, 661-673.
Djuric, N., V. Novakovic, J. Holst & Z. Mitrovic (2007) Optimization of energy consumption in buildings with hydronic heating systems considering thermal comfort by use of computer-based tools. Energy and Buildings, 39, 471-477.
Eskin, N. & H. Türkmen (2008) Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey. Energy and Buildings, 40, 763-773.
Haq, M. A. u., M. Y. Hassan, H. Abdullah, H. A. Rahman, M. P. Abdullah, F. Hussin & D. M. Said (2014) A review on lighting control technologies in commercial buildings, their performance and affecting factors. Renewable and Sustainable Energy Reviews, 33, 268-279.
Hasan, A., M. Vuolle & K. Sirén (2008) Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Building and Environment, 43, 2022-2034.
Hong, T., C. Koo, J. Kim, M. Lee & K. Jeong (2015) A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase. Applied Energy, 155, 671-707.
Hu, J. & P. Karava (2014) Model predictive control strategies for buildings with mixed-mode cooling. Building and Environment, 71, 233-244.
Ihm, P. & M. Krarti (2012) Design optimization of energy efficient residential buildings in Tunisia. Building and Environment, 58, 81-90.
Jennings, J. D., F. M. Rubinstein, D. DiBartolomeo & S. L. Blanc (2000) Comparison of control options in private offices in an advanced lighting controls testbed. Journal of the Illuminating Engineering Society.
Joe, J., W. Choi, Y. Kwak & J.-H. Huh (2014) Optimal design of a multi-story double skin facade. Energy and Buildings, 76, 143-150.
Ke, M.-T., C.-H. Yeh & J.-T. Jian (2013) Analysis of building energy consumption parameters and energy savings measurement and verification by applying eQUEST software. Energy and Buildings, 61, 100-107.
Ma, J., J. Qin, T. Salsbury & P. Xu (2012) Demand reduction in building energy systems based on economic model predictive control. Chemical Engineering Science, 67, 92-100.
Martirano, L. (2011) A Smart Lighting Control to Save Energy. Technology and Applications.
Nguyen, A.-T., S. Reiter & P. Rigo (2014) A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058.
Pandharipande, A. & D. Caicedo (2011) Daylight integrated illumination control of LED systems based on enhanced presence sensing. Energy and Buildings, 43, 944-950.
Rahman, M. M., M. G. Rasul & M. M. K. Khan (2010) Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 87, 2994-3004.
Shen, H. & A. Tzempelikos (2012) Daylighting and energy analysis of private offices with automated interior roller shades. Solar Energy, 86, 681-704.
Susorova, I., M. Tabibzadeh, A. Rahman, H. L. Clack & M. Elnimeiri (2013) The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy and Buildings, 57, 6-13.
Suzuki, M. & T. Oka (1998) Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings, 28, 33-41.
Tavares, P. F. d. A. F. & A. M. d. O. G. Martins (2007) Energy efficient building design using sensitivity analysis—A case study. Energy and Buildings, 39, 23-31.
Vakiloroaya, V., B. Samali, A. Fakhar & K. Pishghadam (2014) A review of different strategies for HVAC energy saving. Energy Conversion and Management, 77, 738-754.
Wang, W., R. Zmeureanu & H. Rivard (2005) Applying multi-objective genetic algorithms in green building design optimization. Building and Environment, 40, 1512-1525.
World Business Council for Sustainable Development, WBCSD (2009) Transforming the Market: Energy Efficiency in Buildings.
Yang, C., H. Li, Y. Rezgui, I. Petri, B. Yuce, B. Chen & B. Jayan (2014) High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76, 92-101.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top