跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黨美齡
研究生(外文):Mei-Ling Tang
論文名稱:福島核事故情境下之台灣核能發電廠事故劑量評估
論文名稱(外文):Dose estimation for Nuclear Power Plant accident in Taiwan at Fukushima nuclear meltdown emission level
指導教授:莊秉潔莊秉潔引用關係
口試委員:張能復張艮輝林能暉黃清勇
口試日期:2016-07-05
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:放射性輻射物質高斯煙流模式核能發電廠劑量評估
外文關鍵詞:RadionuclidesGaussian plume modelnuclear power plantdose estimation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:856
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:0
本研究改進高斯軌跡煙流模式,加入全球網格再分析資料與日本地面氣象資料,前七天逐時輻射物質釋放量取自日本原能會評估排放量。2011年福島核災之模擬結果顯示觀測與模式模擬沉降量分布一致,相關係數為0.35。進一步運用世界衛生組織(WHO)推算2011年福島核災的放射性物質排放量,搭配軌跡模式進行臺灣核四廠的放射性輻射物質劑量評估。根據美國考慮地面反射及食入每年不超過50毫西弗做為撒離原則下,研究結果顯示,氣象狀態對於輻射物質的飄散有顯著的影響,其影響區隨發生事件時之氣象狀況而異。若核災發生於東北風盛行的9月至隔年4月,汙染面積會更廣,而夏季則影響較小。根據2011年3月11日後計365日風場分析,全台平均有11%機率的土地輻射劑量超過50毫西弗。以位於貢寮鄉的核四廠為例,若發生福島等級的核災,北部大都會地區,包含北北基、桃園市、新竹市、宜蘭縣,合計居民約一千萬人,各縣市土地達50毫西弗的機率分別為基隆市51%、新北市48%、臺北市38%、桃園市30%、新竹市18%、宜蘭縣15%。結果亦顯示中央山脈的西部山谷地區(多數水庫所在地)及最南端的屏東縣亦有3%的機率達疏散區。意即,在東北季風的狀況下,西部所有地區皆可能成為水資源匱乏區。

An advanced Gaussian trajectory dispersion model was established to provide realistic meteorological conditions by cooperating with the ERA-interim reanalysis data and Japan monitor station data. The hourly emission inventory was adapted from AEC/JP. Simulated deposition of radionuclides was consistent with the airborne monitoring result with 0.35 correlation coefficient of cesium which validated the applicability of this model system to assess radionuclides distribution in the Fukushima nuclear power plant accident during March 11th~17th, 2011.
Further, this system used to evaluate the evacuation zone if nuclear meltdown at the Nuclear Power Plant in Taiwan, with the same emission level as that occurred at Fukushima nuclear meltdown (FNM) in 2011. Our study demonstrates that a FNM emission level would pollute 1%, 5% and 9 % of the island’s land area with annual effective dose ≥ 50 mSv using the meteorological data from NPP 1, NPP 2 and NPP 4 on 11 March 2011 in Taiwan, respectively. Three hundred sixty-five daily events using the meteorological data from 11 March 2011 to 9 March 2012 are evaluated. It is found that the mean probability of the land area of Taiwan to become PEZ from NPP 1 to NPP 4 as high as 8%, 13%, 2%, 11%, respectively. Especially, the probabilities of the northern counties/cities (Keelung, New Taipei, Taipei and Taoyuan) to be PEZs are high, ranging from 30% in Taoyuan County to 51% in Keelung City. Note that the total population of the four cities/counties is as high as 9 million people. Moreover, the western valleys of the Central Mountain Range are also found to be probable being PEZs, where all of the reservoirs in western Taiwan are located. For example, the probability can be as high as 3% in the far southern-most tip of Taiwan Island in Pingtung County. This shows that the entire populations in western Taiwan can be at risk due to the shortage of clean water sources under an event at FNM emission level, especially during the NE monsoon period.


摘要 i
Abstract ii
Catalog iii
Figure Captions iv
Table Captions vii
1. Introduction 1
2. Literature review 3
2.1 Nuclear power plant accident 3
2.2 Atmospheric dispersion models 4
2.3 Source term 6
2.4 Radiation exposure 8
2.5 Risk zone 10
3. Methodology 13
3.1 Approach 13
3.2 Gaussian trajectory transfer-coefficient model (GTx) 16
3.2.1 Trajectory algorithms 18
3.2.2 Dry and scavenging deposition mechanisms 25
3.3 Meteorological data 28
3.3.1 Japan meteorological data 29
3.3.2 ERA-interim reanalysis data 29
3.4 Radionuclides emissions 30
3.5 Dose assessment 31
4. Results and Discussion 33
4.1 Model verification 33
4.1.1 Model settings 33
4.1.2 Trajectory process 36
4.1.3 Case study 40
4.2 Simulated Nuclear Power Plant accident in Taiwan 48
4.2.1 Model settings 48
4.2.2 Meteorological conditions 51
4.2.3 Concentration and deposition 52
4.2.4 Deposition characteristic 56
4.2.5 Deposition ratio 57
4.2.6 Exposure pathways 60
4.2.7 Evacuation zone 62
4.2.8 Probability distributions 68
5. Conclusion 71
Reference 73


Acton, J. M., & Hibbs, M. (2012). Why Fukushima was preventable.
Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis (p. 19). Colorado: US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division.
Anspaugh, L. R., Catlin, R. J., & Goldman, M. (1988). The global impact of the Chernobyl reactor accident. Science, 242(4885), 1513-1519.
Anspaugh, L. R. (2005). Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience.
Atomic Energy Commission (AEC/TW), (2012). Post-Fukushima Safety Fukushima Safety Re-Evaluation. http://www.aec.gov.tw/english/nuclear/files/2012-06.pdf
Atomic Energy Commission (AEC/TW), (2013a). What to do in a Nuclear Emergency? http://www.aec.gov.tw/webpage/control/emergency/files/index_07_9_01-2.pdf
Atomic Energy Commission (AEC/TW), (2013b). Emergency planning zone (EPZ). http://www.aec.gov.tw/english/emergency/article03.php.
Atomic Energy Commission (AEC/TW), (2013c). The Emergency planning zone assessment of Lungmen nuclear power plant in Taiwan. http://www.aec.gov.tw/webpage/control/emergency/files/index_01_1-21.pdf.
Atomic Energy Commission (AEC/TW), (2013d). Post-Fukushima Safety Enhancement Measures of Taiwan’s Nuclear Power Plants. http://www.aec.gov.tw/english/nuclear/files/2013-03.pdf
Atkinson, D. G., Bailey, D. T., Irwin, J. S., & Touma, J. S. (1997). Improvements to the EPA industrial source complex dispersion model. Journal of Applied Meteorology, 36(8), 1088-1095.
Baklanov, A., & S?rensen, J. H. (2001). Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(10), 787-799.
Balonov, M., & Bouville, A. (2011). Radiation Exposures Due to the Chernobyl Accident. Encyclopedia of Environmental Health, 709-720.
Bu, W., Fukuda, M., Zheng, J., Aono, T., Ishimaru, T., Kanda, J., ... & Yamada, M. (2014). Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible. Environmental science & technology, 48(16), 9070-9078.
Buesseler, K., Aoyama, M., & Fukasawa, M. (2011). Impacts of the Fukushima nuclear power plants on marine radioactivity. Environmental science & technology, 45(23), 9931-9935.
Butler, D. (2011). Reactors, residents and risk. Nature, 474, 36.
Chanin, D. I., Young, M. L., Randall, J., & Jamali, K. (1997). Code manual for MACCS2: volume 1, user’s guide. SAND97-0594, Sandia National Laboratories, Albuquerque, USA.
Chen, C. L., Tsuang, B. J., Pan, R. C., Tu, C. Y., Liu, J. H., Huang, P. L., ... & Cheng, M. T. (2002). Quantification on source/receptor relationship of primary pollutants and secondary aerosols from ground sources—Part II. Model description and case study. Atmospheric Environment, 36(3), 421-434.
Cheng, M. T., Chou, W. C., Chio, C. P., Hsu, S. C., Su, Y. R., Kuo, P. H., ... & Chou, C. C. K. (2008). Compositions and source apportionments of atmospheric aerosol during Asian dust storm and local pollution in central Taiwan. Journal of atmospheric chemistry, 61(2), 155-173.
Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G., & Yamazawa, H. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. Journal of nuclear science and technology, 48(7), 1129-1134.
Christodouleas, J. P., Forrest, R. D., Ainsley, C. G., Tochner, Z., Hahn, S. M., & Glatstein, E. (2011). Short-term and long-term health risks of nuclear-power-plant accidents. New England journal of medicine, 364(24), 2334-2341.
Christoudias, T., & Lelieveld, J. (2013). Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmospheric Chemistry and Physics, 13(3), 1425-1438.
Clark, M. J., & Smith, F. B. (1988). Wet and dry deposition of Chernobyl releases.
Cox, R. M., Sontowski, J., Fry Jr, R. N., Dougherty, C. M., & Smith, T. J. (1998). Wind and diffusion modeling for complex terrain. Journal of Applied Meteorology, 37(10), 996-1009.
Cutter, S., & Barnes, K. (1982). Evacuation behavior and Three Mile Island.Disasters, 6(2), 116-124.
CTBTO Preparatory Commission website. http://www.ctbto.org/press-centre/highlights/2011/fukushima-related-measurements-by-the-ctbto/fukushimarelated-measurements-by-the-ctbto-page-1/
Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD.
Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., ... & Saito, K. (2015). World Meteorological Organization''s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. Journal of environmental radioactivity, 139, 172-184.
Drozdovitch, V., Bouville, A., Chobanova, N., Filistovic, V., Ilus, T., Kovacic, M., ... & Cardis, E. (2007). Radiation exposure to the population of Europe following the Chernobyl accident. Radiation protection dosimetry, 123(4), 515-528.
Dept. of Household Registration Affairs (MOI), (2011). http://www.moi.gov.tw/stat/national.aspx
Dept. of Household Registration Affairs (MOI), (2013). http://sowf.moi.gov.tw/stat/month/list.html
Eckerman, K. F., & Ryman, J. C. (1993). External exposure to radionuclides in air, water, and soil.
EPA, I. (1995). User''s Guide for the Industrial Source Complex (ISC3) Dispersion Models. Description of Model Algorithms, vol. IIU. S. Environmental Protection Agency. Office of Air Quality Planning and Standards. Emissions, Monitoring, and Analysis Division, Research Triangle Park, North Carolina.
Environmental Protection Agency, United States (EPA/US), 2013. PAG Manual—Protective Action Guides And Planning Guidance For Radiological Incidents.
Environmental Restoration and Conservation Agency (ERCA), 2011. http://www.erca.go.jp/yobou/taiki/taisaku/02_02.html
Evangeliou, N., Balkanski, Y., Cozic, A., & M?ller, A. P. (2014). Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for radiocaesium (134 Cs & 137 Cs). Environment international, 64, 17-27.
Filipović-Vinceković, N., Barišić, D., Mašić, N., & Lulić, S. (1991). Distribution of fallout radionuclides through soil surface layer. Journal of Radioanalytical and Nuclear Chemistry, 148(1), 53-62.
Fox, M. H. (2014). Why We Need Nuclear Power: The Environmental Case. Oxford University Press.
Fukushima, I. R. S. N. (2012). One Year Later: Initial Analyses of the Accident and its Consequences. IRSN/DG/2012-003. Paris, France: Institut de radioprotectionet de surete nuclaire.
Giani, L., & Helmers, H. (1997). Migration of Cesium‐137 in typical soils of North Germany ten years after the Chernobyl accident. Zeitschrift für Pflanzenernährung und Bodenkunde, 160(1), 81-83.
Gudiksen, P. H., Harvey, T. F., & Lange, R. (1989). Chernobyl source term, atmospheric dispersion, and dose estimation. Health Physics, 57(5), 697-706.
Hales, J.M. (1986). The mathematical characterisation of precipitation scavenging. ... Environmental Chemistry / O. Hutzinger, editor, Vol. 4, Part A, pp. 149- 217.
Hamada, N., & Ogino, H. (2012). Food safety regulations: what we learned from the Fukushima nuclear accident. Journal of environmental radioactivity, 111, 83-99.
Holt, M., Campbell, R. J., & Nikitin, M. B. (2012). Fukushima nuclear disaster. Congressional Research Service.
Holzworth, G. C. (1964). Estimates of mean maximum mixing depths in the contiguous United States. Mon. Weather Rev, 92(5), 235-242.
Holzworth, G. C. (1967). Mixing depths, wind speeds and air pollution potential for selected locations in the United States. Journal of applied Meteorology, 6(6), 1039-1044.
Holzworth, G. C. (1972). Mixing heights, wind speeds, and potential for urban air pollution throughout the contiguous United States. In EPA Publication. EPA.
Hosoda, M., Tokonami, S., Akiba, S., Kurihara, O., Sorimachi, A., Ishikawa, T., ... & Kashiwakura, I. (2013). Estimation of internal exposure of the thyroid to 131 I on the basis of 134 Cs accumulated in the body among evacuees of the Fukushima Daiichi Nuclear Power Station accident. Environment international, 61, 73-76.
Huh, C. A., Hsu, S. C., & Lin, C. Y. (2012). Fukushima-derived fission nuclides monitored around Taiwan: Free tropospheric versus boundary layer transport. Earth and Planetary Science Letters, 319, 9-14.
Ilyin, L. A., Balonov, M. I., Buldakov, L. A., Bur''yak, V. N., Gordeev, K. I., Dement''ev, S. I., ... & Linge, I. I. (1990). Radiocontamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. Journal of Radiological Protection, 10(1), 3.
International Atomic Energy Agency (IAEA), (1995). Validation of models using Chernobyl fallout data from the Central Bohernia region of the Czech Republic: Scenario CB. Vienna, IAEA, AEA-TECDOC-795.
International Atomic Energy Agency (IAEA), news, (2012). Remembering Fukushima, Looking Ahead. https://www.iaea.org/newscenter/news/remembering-fukushima-looking-ahead
International Atomic Energy Agency (IAEA), (2013). International Nuclear Events Scale. http://www-pub.iaea.org/MTCD/Publications/PDF/INES2013web.pdf
International Economic Statistics (IES), (1996). Map of the radiation hotspots of Cesium-137 in 1996 resulting from the Chernobyl nuclear power plant accident. http://www.lib.utexas.edu/maps/commonwealth/chornobyl_radiation96.jpg
Japan Atomic Energy Agency (JAEA), (2011). Database for Radioactive Substance Monitoring Data. http://emdb.jaea.go.jp/emdb/en/portals/b224/
Japan Meteorological Agency (JMA), (2011). http://www.jma.go.jp/jma/index.html.
Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). (2011). Readings at monitoring post out of 20 km zone of Fukushima Daiichi NPP. http://www.mext.go.jp/english/incident/1304082.html.
Katata, G., Ota, M., Terada, H., Chino, M., & Nagai, H. (2012a). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: Source term estimation and local-scale atmospheric dispersion in early phase of the accident. Journal of environmental radioactivity, 109, 103-113.
Katata, G., Terada, H., Nagai, H., & Chino, M. (2012b). Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of environmental radioactivity, 111, 2-12.
Kato, H., Onda, Y., & Teramage, M. (2012). Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 111, 59-64.
Kerth, R., & Kim, J. (2012). Too Close to Home: Nuclear Power and the Threat to Drinking Water. Environment America Research & Policy Center. http://environmentamericacenter.org/sites/environment/files/reports/Nukes%20and%20H20%20vUS.pdf
Kinoshita, N., Sueki, K., Sasa, K., Kitagawa, J. I., Ikarashi, S., Nishimura, T., ... & Sato, M. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proceedings of the National Academy of Sciences, 108(49), 19526-19529.
Kocar, C., & Sökmen, C. N. (2009). A model for radiological consequences of nuclear power plant operational atmospheric releases. Journal of environmental radioactivity, 100(1), 89-93.
Kobayashi, T., Nagai, H., Chino, M., & Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP Accident Related. Journal of Nuclear Science and Technology, 50(3), 255-264.
Konstantinou, K. I., Lin, C. H., & Liang, W. T. (2007). Seismicity characteristics of a potentially active Quaternary volcano: The Tatun Volcano Group, northern Taiwan. Journal of Volcanology and Geothermal Research, 160(3), 300-318.
Korsakissok, I., Mathieu, A., & Didier, D. (2013). Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: A local-scale simulation and sensitivity study. Atmospheric Environment, 70, 267-279.
Kukkonen, J., Härkönen, J., Walden, J., Karppinen, A., & Lusa, K. (2001). Evaluation of the dispersion model CAR-FMI against data from a measurement campaign near a major road. Atmos. Environ, 35(5), 949-960.
Kuo, P. H., Ni, P. C., Keats, A., Tsuang, B. J., Lan, Y. Y., Lin, M. D., ... & Chang, K. H. (2009). Retrospective assessment of air quality management practices in Taiwan. Atmospheric Environment, 43(25), 3925-3934.
Lin, Y. M., Chen, C. J., & Lin, P. H. (1996). Natural background radiation dose assessment in Taiwan. Environment International, 22, 45-48.
Lin, Y. C., Lan, Y. Y., Tsuang, B. J., & Engling, G. (2008). Long-term spatial distributions and trends of ambient CO concentrations in the central Taiwan Basin. Atmospheric Environment, 42(18), 4320-4331.
Lipscy, P. Y., Kushida, K. E., & Incerti, T. (2013). The Fukushima disaster and Japan’s nuclear plant vulnerability in comparative perspective. Environmental science & technology, 47(12), 6082-6088.
Lochbaum, D., & Lyman, E. (2012). US Nuclear Power Safety One Year After Fukushima. Cambridge, MA: Union of Concerned Scientists. March. Online at http://ucsusa.org/nuclear-power/nuclearpower-accidents/fukushima-anniversary-report.
Malá, H., Rulík, P., Bečková, V., Mihalík, J., & Slezáková, M. (2013). Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents. Journal of environmental radioactivity, 126, 92-98.
Masson, O., Baeza, A., Bieringer, J., Brudecki, K., Bucci, S., Cappai, M., ... & Didier, D. (2011). Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environmental science & technology, 45(18), 7670-7677.
McCurry, J., (2013). Fukushima residents may never go home, say Japanese officials.
McMahon, T. A., & Denison, P. J. (1979). Empirical atmospheric deposition parameters—a survey. Atmospheric Environment (1967), 13(5), 571-585.
Mettler Jr, F. A., & Voelz, G. L. (2002). Major radiation exposure—what to expect and how to respond. New England Journal of Medicine, 346(20), 1554-1561.
Ministry of Internal Affairs and Communications, Statistics Bureau, Japan (MIAC), (2015). Population Census. http://www.stat.go.jp/english/data/kokusei/index.htm
Ministry of Economic, Trade and Industry, Japan (METI), (2011). Restricted Area, Deliberate Evacuation Area And Regions including Specific Spots Recommended for Evacuation. http://www.meti.go.jp/english/earthquake/nuclear/roadmap/pdf/evacuation_map_111125.pdf
Ministry of Health, Labour and Welfare, Japan (MHLW), (2011). Inspections on Radioactive Concentrations in food. http://www.mhlw.go.jp/stf/houdou/2r9852000001b06c.html.
Mohan, M. R. (2015). Nuclear Energy and Liability in South Asia: Institutions, Legal Frameworks and Risk Assessment Within SAARC. Springer.
Morino, Y., Ohara, T., & Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophysical research letters, 38(7).
Murakami, M., & Oki, T. (2012). Estimation of thyroid doses and health risks resulting from the intake of radioactive iodine in foods and drinking water by the citizens of Tokyo after the Fukushima nuclear accident. Chemosphere, 87(11), 1355-1360.
Muller, H., & Prohl, G. (1993). ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents. Health Physics, 64(3), 232-252.
National Institute for Environmental Studies of Japan (NIES), (2011). http://www.nies.go.jp/igreen/index.html
National Police Agency of Japan (NPA), (2011). Damage Situation and Police Countermeasures Associated with 2011 Tohoku District - off the Pacific Ocean Earthquake. http://www.npa.go.jp/archive/keibi/biki/higaijokyo_e.pdf
Nuclear Emergency Response Headquarters, (2011). Government of Japan: Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety – The Accident at TEPCO’s Fukushima Nuclear Power Stations, http://www.iaea.org/newscenter/focus/fukushima/japan-report/
Nuclear Regulatory Commission (NRC), (2011). NRC provides protective action recommendations based on U.S. guidelines. http://www.nrc.gov/reading-rm/doc-collections/news/2011/11-050.pdf
Nuclear Regulatory Commission (NRC), (2012). Petition to for rulemaking to improve emergency planning regulations (10 C.F.R. 50.47). http://www.nirs.org/reactorwatch/emergency/petitionforrulemaking22012.pdf
Oettl, D., Almbauer, R. A., Sturm, P. J., Piringer, M., & Baumann, K. (2001). Analysing the nocturnal wind field in the city of Graz. Atmospheric Environment, 35(2), 379-387.
Office for Nuclear Regulation (ONR), (2013). Technical assessment guide on the assessment of REPPIR submissions and the determination of detailed emergency planning zones. http://www.onr.org.uk/operational/tech_asst_guides/ns-tast-gd-082.pdf
Ogino, H., Ichiji, T., & Hattori, T. (2012). Verification of screening level for decontamination implemented after Fukushima nuclear accident. Radiation protection dosimetry, ncr450.
Ohno, T., Muramatsu, Y., Miura, Y., Oda, K., Inagawa, N., Ogawa, H., ... & Sato, M. (2012). Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi nuclear power plant in different agricultural fields and forests. Geochemical Journal, 46(4), 287-295.
Organization for Economic Co-operation and Development (OECD), (2003). https://www.oecd-nea.org/rp/reports/2003/nea3600-short-term.pdf
Padro, J., Den Hartog, G., & Neumann, H. H. (1991). An investigation of the ADOM dry deposition module using summertime O3 measurements above a deciduous forest. Atmospheric Environment. Part A. General Topics, 25(8), 1689-1704.
Rolph, G. D. (2003). Real-time Environmental Applications and Display sYstem (READY) Website (http://www. arl. noaa. gov/ready/hysplit4. html). NOAA Air Resources Laboratory, Silver Spring. Md.
Saunier, O., Mathieu, A., Didier, D., Tombette, M., Quélo, D., Winiarek, V., & Bocquet, M. (2013). An inverse modeling method to assess the source term of the Fukushima nuclear power plant accident using gamma dose rate observations. Atmospheric Chemistry and Physics, 13(22), 11403-11421.
Schwede, D. B., & Paumier, J. O. (1997). Sensitivity of the industrial source complex model to input deposition parameters. Journal of Applied Meteorology, 36(8), 1096-1106.
Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric environment, 34(7), 1001-1027.
Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (1990). Model formulation and user''s guide for the CALPUFF dispersion model. Sigma Research Corp., Concord, MA.
Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (2000). A user’s guide for the CALPUFF dispersion model. Earth Tech, Inc. Concord, MA.
Seinfeld, J. H., & Pandis, S. N. (1986). Atmospheric chemistry and air pollution. Wiley Intersci. Publ., New York.
Steinfeld, J. I. (1998). Atmospheric chemistry and physics: from air pollution to climate change. Environment: Science and Policy for Sustainable Development, 40(7), 26-26.
Sportisse, B. (2007). A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmospheric Environment, 41(13), 2683-2698.
Srinivas, C. V., Rakesh, P. T., Prasad, K. H., Venkatesan, R., Baskaran, R., & Venkatraman, B. (2014). Assessment of atmospheric dispersion and radiological impact from the Fukushima accident in a 40-km range using a simulation approach. Air Quality, Atmosphere & Health, 7(2), 209-227.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of the Total Environment, 470, 800-817.
Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., ... & Yasunari, T. J. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics, 12(5), 2313-2343.
Takeyasu, M., & Sumiya, S. (2014). Estimation of dry deposition velocities of radionuclides released by the accident at the Fukushima Dai-ichi Nuclear Power Plant. Progress in Nuclear Science and Technology, 4, 64-67.
Tang, M. L., Tsuang, B. J., & Kuo, P. H. (2016). Dose estimation for nuclear power plant 4 accident in Taiwan at Fukushima nuclear meltdown emission level. Journal of environmental radioactivity, 155, 71-83.
Ten Hoeve, J. E., & Jacobson, M. Z. (2012). Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy & Environmental Science, 5(9), 8743-8757.
Thakur, P., Ballard, S., & Nelson, R. (2013). An overview of Fukushima radionuclides measured in the northern hemisphere. Science of the Total Environment, 458, 577-613.
Tost, H., Jöckel, P., Kerkweg, A., Sander, R., & Lelieveld, J. (2006). Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmospheric Chemistry and Physics, 6(3), 565-574.
Tsai, Y. I., & Chen, C. L. (2006). Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmospheric Environment, 40(25), 4751-4763.
Tseng, K. H., Wang, J. L., Kuo, P. H., & Tsuang, B. J. (2009). Using a photochemical index to discuss the ozone formation and estimate hydroxyl concentration at downwind area. Aerosol and Air Quality Research, 9(4), 441-452.
Tsuang, B. J. (2003). Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory. Atmospheric Environment, 37(28), 3981-3991.
Tsuang, B. J., & Tu, C. Y. (2002). Model structure and land parameter identification: an inverse problem approach. Journal of Geophysical Research: Atmospheres, 107(D10).
Tsuang, B. J. (2003). Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory. Atmospheric Environment, 37(28), 3981-3991.
Tsuang, B. J. (2003). Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory. Atmospheric Environment, 37(28), 3981-3991.
Unterweger, M. P., Hoppes, D. D., & Schima, F. J. (1992). New and revised half-life measurements results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 312(1), 349-352.
United States. President''s Commission on the Accident at Three Mile Island. (1979). The need for change, the legacy of TMI: report of the President''s Commission on the Accident at Three Mile Island. The Commission.
Venkatesan, R., Mathiyarasu, R., & Somayaji, K. M. (2002). A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model. Atmospheric Environment, 36(18), 2933-2942.
Wakeford, R. (2011). And now, Fukushima. Journal of radiological protection, 31(2), 167.
Wesely, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment (1967), 23(6), 1293-1304.
White, F. M. Viscous Fluid Flow, McGraw-Hill, New York, 1991.
Whicker, F. W., & Kirchner, T. B. (1987). Pathway: a dynamic food-chain model to predict radionuclide ingestion after fallout deposition. Health Physics, 52(6), 717-737.
Williams, D. (2002). Cancer after nuclear fallout: lessons from the Chernobyl accident. Nature Reviews Cancer, 2(7), 543-549.
Winiarek, V., Bocquet, M., Saunier, O., & Mathieu, A. (2012). Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium‐137 and iodine‐131 source terms from the Fukushima Daiichi power plant. Journal of Geophysical Research: Atmospheres, 117(D5).
Winiarek, V., Bocquet, M., Duhanyan, N., Roustan, Y., Saunier, O., & Mathieu, A. (2014). Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmospheric environment, 82, 268-279.
World Health Organization (WHO), (2007). Arrangements for preparedness for a nuclear or radiological emergency. Safety guide.
World Health Organization (WHO), (2012). Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan earthquake and tsunami. The Organization.
Wu, J., Lu, C. H., Chang, S. J., Yang, Y. M., Chang, B. J., & Teng, J. H. (2006). Three-dimensional dose evaluation system using real-time wind field information for nuclear accidents in Taiwan. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 565(2), 812-820
Yamamoto, M., Takada, T., Nagao, S., Koike, T., Shimada, K., Hoshi, M., ... & Kimura, S. (2012). An early survey of the radioactive contamination of soil due to the Fukushima Dai-ichi Nuclear Power Plant accident, with emphasis on plutonium analysis. Geochemical Journal, 46(4), 341-353.
Yamamoto, M., Sakaguchi, A., Ochiai, S., Takada, T., Hamataka, K., Murakami, T., & Nagao, S. (2014). Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of environmental radioactivity, 132, 31-46.
Yamartino, R. J. (1985). Atmospheric Pollutant deposition modeling. Handbook of Applied Meteorology. Houghton, DD, Ed. John Wiley & Sons: New York.
Yasutaka, T., Iwasaki, Y., Hashimoto, S., Naito, W., Ono, K., Kishimoto, A., ... & Nakanishi, J. (2013). A GIS-based evaluation of the effect of decontamination on effective doses due to long-term external exposures in Fukushima. Chemosphere, 93(6), 1222-1229.
Yoshida, N., & Takahashi, Y. (2012). Land-surface contamination by radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Elements, 8(3), 201-206.
張文彬,(1987)。以煙陣模式修正煙流模式對核能電廠意外事件影響,碩士論文。
張闊顯,(2003)。鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估,碩士論文。
莊昀芳,(2014)。核災發生緊急疏散規劃,碩士論文。
黃朝丁,(1987)。核能一、 二廠意外事故影響及緊急計劃評估,碩士論文。
黃清勇,莊銘棟,(1993)。盛行東北季風下北台灣核能電廠附近污染物擴散之數值研究. 大氣科學, 21(2), 101-124.
陳厚任,(2013)。環境風場對核能電廠汙染源排放之影響-以台北都會區為例,碩士論文。
彭啟明,劉啟文,張闊顯,林能暉,(2010)。境外核子事故擴散對台灣影響之探討. 前瞻科技與管理, (S), 15-28.
曾慧婷,鄧仁星,蔡宗樺,王建勛,簡榮佑,(2014)。2014年天氣分析與預報研討會。國際核災劑量評估系統開發及其在福島事故之模擬研究。
黨美齡,(2010)。風場軌跡模式加入NCEP 資料於台灣境外污染長程傳輸之研究,碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top