跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝任育
研究生(外文):Ren-Yu Hsieh
論文名稱:以MCM-41/N-TiO2複合材料光催化降解染料AR27之研究
論文名稱(外文):Study on the Photocatalytic Degradation of Acid Red 27 by Using MCM-41/N-TiO2 Composite
指導教授:謝永旭謝永旭引用關係
口試委員:吳志超張禎祐
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:二氧化鈦光催化反應偶氮染料溶膠凝膠法改質光觸媒
外文關鍵詞:TiO2Photocatalytic reactionAzo dyeSol-gel methodModified photocatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶膠凝膠法製備二氧化鈦和氮改質二氧化鈦(NT),以水熱法製備中孔洞二氧化矽MCM-41,並將兩種材料複合,用以降解偶氮染料AR27。其中氮改質二氧化鈦以不同氮鈦莫耳百分比(0.1、0.2、0.5、0.75、10)製成,而MCM-41/ TiO2複合材料(MT)則是以重量比2:1、1:1、1:2複合,合成之材料以FE-SEM、TEM、XRD、UV-Vis、BET、Zeta potential、FTIR分析其特性差異。光催化降解AR27主要分為兩部分,第一部分為求出NT及MT之最佳比例,並備製最佳比例之材料(MNT),並以MNT進行第二部分不同操作參數之實驗,包含不同初始pH、不同初始濃度及不同光源。
根據實驗發現,0.1 %氮改質二氧化鈦以及MCM-41/ TiO2¬重量比為1:2時為最佳的複合比例,而根據材料表面特性分析之結果,其主要晶型為銳鈦礦,零電位點pH為5.5,比表面積為339.54 m2/g。
在不同操作條件部分,初始pH以不調整及酸性條件達到99 %去除率有最佳的效果;不同初始濃度以10mg/L為最佳之操作條件;不同光源以紫外光作為照射光源有較佳的色度去除率及礦化率,以可見光則有些許的色度去除率,但沒有礦化率。綜合以上結果,本實驗所製備之複合材料對於染料AR27色度去除有良好的能力。


In this study, TiO2 and N-TiO2(NT)were synthesized by sol-gel method. MCM-41 was synthesized by hydrothermal method. New composite photocatalysts MCM-41/TiO2 and MCM-41/N-TiO2 were prepared with the combination of these two materials.and applied to degrade azo dye AR27. TiO2 was modified by nitrogen with different molar ratios (N:Ti) which are 1%, 2%, 5% 7.5 % and 10 % respectively. The MCM-41/ TiO2 composite(MT)was made with different MCM-41:Ti weight ratio(2:1,1:1,1:2). FE-SEM、TEM、XRD、UV-Vis、BET、Zeta potential、FTIR were used to characterize the composites.
Two major parameters were studied in the photocatalytic experiment . First,finding the optimal ratio of the composite(MNT),and the second one was using MNT to find the optimal operating parameters, including different pH, initial concentrations of AR27, and light sources.
The results demonstrated that the optimal ratio of MCM41/N- TiO2 in molar ratios(N:Ti) was 1%, for MCM41/ TiO2 was 1:2 in weight ratio. According to the characterization result, the main crystal structure was anatase phase, the pH zeta potential was 5.5, and the specific surface area was 339.54 m2/g.
With different operating conditions being tested in this study, acidic initial pH and conditions without any adjustment showed the best efficiency of decolorization and removal rate was up to 99%. The initial concentrations of AR27 in 10 mg/L was the optimal operating concentration. There are better color removal and mineralization rate under ultraviolet light irradiation. There is slightly color removal but no mineralization under visible light irradiation.
According to the above experiment results, the preparation of composite showed great decolorization efficiency for AR27.


摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 文獻回顧 2
2-1染整廢水概述 2
2-1-1染整廢水介紹 2
2-1-2染整廢水處理技術 3
2-1-3各國染整業廢水管制標準 6
2-2 染料概述及AR27基本特性介紹 8
2-3 MCM-41概述 9
2-3-1 MCM-41基本特性 9
2-3-2 MCM-41合成機制與方法 10
2-4二氧化鈦光觸媒概述 11
2-4-1二氧化鈦基本特性 11
2-4-2二氧化鈦製備方法 14
2-5MCM-41/二氧化鈦共參雜 16
2-6二氧化鈦改質 17
2-6-1過渡金屬改質 17
2-6-2貴金屬改質 18
2-6-3非金屬改質 19
2-7光催化反應 20
2-7-1二氧化鈦光催化反應機制 20
2-7-2氮改質二氧化鈦反應機制 22
2-7-3 光催化降解AR27反應機制 23
第三章 實驗設備與方法 26
3-1 實驗架構 26
3-2 實驗藥品 27
3-3 實驗設備與分析儀器 28
3-4實驗內容與方法 29
3-4-1光觸媒製備 29
3-4-2 MCM-41製備 30
3-4-3複合材料製備 32
3-4-4光催化實驗 33
3-5分析項目及方法 36
3-5-1觸媒特性分析 36
3-5-2水樣品分析 39
第四章 結果與討論 41
4-1光觸媒特性分析 41
4-1-1場發射掃描式電子顯微鏡(FE-SEM) 41
4-1-2穿透式電子顯微鏡(TEM) 54
4-1-3比表面積分析儀(BET) 61
4-1-4高解析X光繞射分析 63
4-1-5傅立葉紅外光譜(FT-IR) 69
4-1-6紫外光/可見光光譜分析 71
4-1-7界達電位儀 73
4-2前置實驗 78
4-2-1背景實驗 78
4-2-2直接光解實驗 79
4-2-3暗吸附實驗 80
4-3光催化實驗 82
4-3-1 不同重量比MCM-41/TiO2光催化活性 82
4-3-2 不同光源及不同氮改質比例TiO2光催化活性 84
4-3-3 不同染料初始pH值光催化活性 87
4-3-4 不同染料初始濃度光催化活性 88
4-3-5 不同光源光催化活性比較 89
第五章 結論與建議 91
5-1結論 91
5-2建議 93
參考文獻 94
附錄 100



1.中文部分
(1) 圖書
經濟部工業局(2011)產業節水與水再生技術手冊
經濟部工業局(1994)染整業水污染防治技術
(2) 中文文獻
鍾志遠(2009),不同底材(鈦/白金/玻璃/ITO玻璃)對於二氧
化鈦薄膜的觸媒特性,博士論文,國立海洋科技大學輪機
工程研究所。
沈善鎰(2013),摻雜過渡金屬之觸媒電極於表面特性及電觸媒
效應之研究,博士論文,國立國立中興大學環境工程學系。
(3) 網路資源
台灣區棉布印染整理工業同業公會
http://www.prtdyeing.org.tw/news/?mode=data&id=653
2.外文文獻
Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2–3), 520-529.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269-271. doi: 10.1126/science.1061051
Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007a). Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chemical Engineering Journal, 127(1–3), 167-176.
Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007b). Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. Journal of Hazardous Materials, 140(1–2), 257-263.
Bhatia, V. and A. Dhir (2016). "Transition metal doped TiO2 mediated
photocatalytic degradation of anti-inflammatory drug under solar
irradiations." Journal of Environmental Chemical Engineering 4(1):
1267-1273.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33-177.
Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27). Chemosphere, 56(10), 895-900.
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8), 53-229.
Dobrosz-Gómez, I., Gómez-García, M. Á., López Zamora, S. M., GilPavas, E., Bojarska, J., Kozanecki, M., & Rynkowski, J. M. (2015). Transition metal loaded TiO2 for phenol photo-degradation. Comptes Rendus Chimie, 18(10), 1170-1182.
dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369-2385.
Espino-Estévez, M. R., Fernández-Rodríguez, C., González-Díaz, O. M., Araña, J., Espinós, J. P., Ortega-Méndez, J. A., & Doña-Rodríguez, J. M. (2016). Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chemical Engineering Journal, 298, 82-95.
Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi: 10.1021/cr00017a016
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., . . . Kera, Y. (2001). Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B: Environmental, 30(3–4), 429-436.
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi: 10.1021/cr00033a004
Kadam, A. N., Dhabbe, R. S., Kokate, M. R., Gaikwad, Y. B., & Garadkar, K. M. (2014). Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 669-676.
Kazuhito, H., Hiroshi, I., & Akira, F. (2005). TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44(12R), 8269.
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712.
Li, Z., Zhu, Y., Pang, F., Liu, H., Gao, X., Ou, W., . . . Zhang, Y. (2015). Synthesis of N doped and N, S co-doped 3D TiO2 hollow spheres with enhanced photocatalytic efficiency under nature sunlight. Ceramics International, 41(8), 10063-10069.
Lin, S. H., & Lin, C. M. (1993). Treatment of textile waste effluents by ozonation and chemical coagulation. Water Research, 27(12), 1743-1748.
Mathis, J. E., Lieffers, J. J., Mitra, C., Reboredo, F. A., Bi, Z., Bridges, C. A., . . . Paranthaman, M. P. (2016). Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen. Ceramics International, 42(2, Part B), 3556-3562.
Mayer, J. T., Diebold, U., Madey, T. E., & Garfunkel, E. (1995). Titanium and reduced titania overlayers on titanium dioxide(110). Journal of Electron Spectroscopy and Related Phenomena, 73(1), 1-11.
Nawaz, M. S., & Ahsan, M. (2014). Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 53(3), 717-722.
Okamoto, K.-i., Yamamoto, Y., Tanaka, H., & Itaya, A. (1985). Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder. Bulletin of the Chemical Society of Japan, 58(7), 2023-2028. doi: 10.1246/bcsj.58.2023
Ou, H.-H., & Lo, S.-L. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 58(1), 179-191.
Phanikrishna Sharma, M. V., Durga Kumari, V., & Subrahmanyam, M. (2008). Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere, 72(4), 644-651.
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255.
Sadjadi, M. S., Farhadyar, N., & Zare, K. (2009). Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices and Microstructures, 46(1–2), 266-271.
Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157.
Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen, 2, 96-100.
Schmidt, R., Hansen, E. W., Stoecker, M., Akporiaye, D., & Ellestad, O. H. (1995). Pore Size Determination of MCM-51 Mesoporous Materials by means of 1H NMR Spectroscopy, N2 adsorption, and HREM. A Preliminary Study. Journal of the American Chemical Society, 117(14), 4049-4056. doi: 10.1021/ja00119a021
Selvam, P., Bhatia, S. K., & Sonwane, C. G. (2001). Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 40(15), 3237-3261. doi: 10.1021/ie0010666
Senthilnathan, J., & Philip, L. (2010). Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal, 161(1–2), 83-92.
Shapovalov, V., Stefanovich, E. V., & Truong, T. N. (2002). Nature of the excited states of the rutile TiO2(1 1 0) surface with adsorbed water. Surface Science, 498(1–2), L103-L108.
Slokar, Y. M., & Majcen Le Marechal, A. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments, 37(4), 335-356.
Šojić, D. V., Despotović, V. N., Abazović, N. D., Čomor, M. I., & Abramović, B. F. (2010). Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 179(1–3), 49-56.
Sun, B., Vorontsov, A. V., & Smirniotis, P. G. (2003). Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir, 19(8), 3151-3156. doi: 10.1021/la0264670
Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., & Mullins, M. E. (1993). Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water. Water Environment Research, 65(5), 665-673.
Tian, L., Liu, H., & Gao, Y. (2012). Degradation and adsorption of rhodamine B and phenol on TiO2/MCM-41. Kinetics and Catalysis, 53(5), 554-559. doi: 10.1134/s0023158412050175
Trevisan, V., Olivo, A., Pinna, F., Signoretto, M., Vindigni, F., Cerrato, G., & Bianchi, C. L. (2014). C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light. Applied Catalysis B: Environmental, 160–161, 152-160.
Tseng, Y.-H., Lin, H.-Y., Kuo, C.-S., Li, Y.-Y., & Huang, C.-P. (2006). Thermostability of Nano-TiO2 and its photocatalytic activity Reaction Kinetics and Catalysis Letters, 89(1), 63-69. doi: 10.1007/s11144-006-0087-2
Vaiano, V., Iervolino, G., Sannino, D., Murcia, J. J., Hidalgo, M. C., Ciambelli, P., & Navío, J. A. (2016). Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Applied Catalysis B: Environmental, 188, 134-146.
Vallejo, W., Diaz-Uribe, C., & Cantillo, Á. (2015). Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 299, 80-86.
Vandevivere, P. C., Bianchi, R., & Verstraete, W. (1998). Review: Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. Journal of Chemical Technology & Biotechnology, 72(4), 289-302. doi: 10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#
Vartuli, J. C., Kresge, C. T., & Roth, W. J. (1995). Designed synthesis of mesopore molecular sieve systems using surfactant directing agents.
Wang, F., Shi, Z., Gong, F., Jiu, J., & Adachi, M. (2007). Morphology Control of Anatase TiO2 by Surfactant-assisted Hydrothermal Method*. Chinese Journal of Chemical Engineering, 15(5), 754-759.
Wang, F., Zhu, N., Li, T., & Zhang, H.-C. (2014). Material and Energy Efficiency Analysis of Low Pressure Chemical Vapor Deposition of TiO2 Film. Procedia CIRP, 15, 32-37.
Willerich, I., Li, Y., & Gröhn, F. (2010). Influencing Particle Size and Stability of Ionic Dendrimer−Dye Assemblies. The Journal of Physical Chemistry B, 114(47), 15466-15476. doi: 10.1021/jp107358q
Yang, Y., Wang, G., Liang, Y., Yuan, C., Yu, T., Li, Q., & Li, Q. (2015). Enhanced photocatalytic performance of Ag decorated hierarchical micro/nanostructured TiO2 microspheres. Journal of Alloys and Compounds, 652, 386-392.
Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition, 38(1-2), 56-77. doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊