|
1.中文部分 (1) 圖書 經濟部工業局(2011)產業節水與水再生技術手冊 經濟部工業局(1994)染整業水污染防治技術 (2) 中文文獻 鍾志遠(2009),不同底材(鈦/白金/玻璃/ITO玻璃)對於二氧 化鈦薄膜的觸媒特性,博士論文,國立海洋科技大學輪機 工程研究所。 沈善鎰(2013),摻雜過渡金屬之觸媒電極於表面特性及電觸媒 效應之研究,博士論文,國立國立中興大學環境工程學系。 (3) 網路資源 台灣區棉布印染整理工業同業公會 http://www.prtdyeing.org.tw/news/?mode=data&id=653 2.外文文獻 Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2–3), 520-529. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269-271. doi: 10.1126/science.1061051 Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007a). Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chemical Engineering Journal, 127(1–3), 167-176. Behnajady, M. A., Modirshahla, N., Daneshvar, N., & Rabbani, M. (2007b). Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. Journal of Hazardous Materials, 140(1–2), 257-263. Bhatia, V. and A. Dhir (2016). "Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations." Journal of Environmental Chemical Engineering 4(1): 1267-1273. Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33-177. Daneshvar, N., Rabbani, M., Modirshahla, N., & Behnajady, M. A. (2004). Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27). Chemosphere, 56(10), 895-900. Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8), 53-229. Dobrosz-Gómez, I., Gómez-García, M. Á., López Zamora, S. M., GilPavas, E., Bojarska, J., Kozanecki, M., & Rynkowski, J. M. (2015). Transition metal loaded TiO2 for phenol photo-degradation. Comptes Rendus Chimie, 18(10), 1170-1182. dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369-2385. Espino-Estévez, M. R., Fernández-Rodríguez, C., González-Díaz, O. M., Araña, J., Espinós, J. P., Ortega-Méndez, J. A., & Doña-Rodríguez, J. M. (2016). Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chemical Engineering Journal, 298, 82-95. Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi: 10.1021/cr00017a016 Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., . . . Kera, Y. (2001). Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B: Environmental, 30(3–4), 429-436. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi: 10.1021/cr00033a004 Kadam, A. N., Dhabbe, R. S., Kokate, M. R., Gaikwad, Y. B., & Garadkar, K. M. (2014). Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 669-676. Kazuhito, H., Hiroshi, I., & Akira, F. (2005). TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44(12R), 8269. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. Li, Z., Zhu, Y., Pang, F., Liu, H., Gao, X., Ou, W., . . . Zhang, Y. (2015). Synthesis of N doped and N, S co-doped 3D TiO2 hollow spheres with enhanced photocatalytic efficiency under nature sunlight. Ceramics International, 41(8), 10063-10069. Lin, S. H., & Lin, C. M. (1993). Treatment of textile waste effluents by ozonation and chemical coagulation. Water Research, 27(12), 1743-1748. Mathis, J. E., Lieffers, J. J., Mitra, C., Reboredo, F. A., Bi, Z., Bridges, C. A., . . . Paranthaman, M. P. (2016). Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen. Ceramics International, 42(2, Part B), 3556-3562. Mayer, J. T., Diebold, U., Madey, T. E., & Garfunkel, E. (1995). Titanium and reduced titania overlayers on titanium dioxide(110). Journal of Electron Spectroscopy and Related Phenomena, 73(1), 1-11. Nawaz, M. S., & Ahsan, M. (2014). Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Engineering Journal, 53(3), 717-722. Okamoto, K.-i., Yamamoto, Y., Tanaka, H., & Itaya, A. (1985). Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder. Bulletin of the Chemical Society of Japan, 58(7), 2023-2028. doi: 10.1246/bcsj.58.2023 Ou, H.-H., & Lo, S.-L. (2007). Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology, 58(1), 179-191. Phanikrishna Sharma, M. V., Durga Kumari, V., & Subrahmanyam, M. (2008). Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere, 72(4), 644-651. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. Sadjadi, M. S., Farhadyar, N., & Zare, K. (2009). Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices and Microstructures, 46(1–2), 266-271. Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157. Scherrer, P. (1918). Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen, 2, 96-100. Schmidt, R., Hansen, E. W., Stoecker, M., Akporiaye, D., & Ellestad, O. H. (1995). Pore Size Determination of MCM-51 Mesoporous Materials by means of 1H NMR Spectroscopy, N2 adsorption, and HREM. A Preliminary Study. Journal of the American Chemical Society, 117(14), 4049-4056. doi: 10.1021/ja00119a021 Selvam, P., Bhatia, S. K., & Sonwane, C. G. (2001). Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 40(15), 3237-3261. doi: 10.1021/ie0010666 Senthilnathan, J., & Philip, L. (2010). Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal, 161(1–2), 83-92. Shapovalov, V., Stefanovich, E. V., & Truong, T. N. (2002). Nature of the excited states of the rutile TiO2(1 1 0) surface with adsorbed water. Surface Science, 498(1–2), L103-L108. Slokar, Y. M., & Majcen Le Marechal, A. (1998). Methods of decoloration of textile wastewaters. Dyes and Pigments, 37(4), 335-356. Šojić, D. V., Despotović, V. N., Abazović, N. D., Čomor, M. I., & Abramović, B. F. (2010). Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 179(1–3), 49-56. Sun, B., Vorontsov, A. V., & Smirniotis, P. G. (2003). Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir, 19(8), 3151-3156. doi: 10.1021/la0264670 Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L., & Mullins, M. E. (1993). Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water. Water Environment Research, 65(5), 665-673. Tian, L., Liu, H., & Gao, Y. (2012). Degradation and adsorption of rhodamine B and phenol on TiO2/MCM-41. Kinetics and Catalysis, 53(5), 554-559. doi: 10.1134/s0023158412050175 Trevisan, V., Olivo, A., Pinna, F., Signoretto, M., Vindigni, F., Cerrato, G., & Bianchi, C. L. (2014). C-N/TiO2 photocatalysts: Effect of co-doping on the catalytic performance under visible light. Applied Catalysis B: Environmental, 160–161, 152-160. Tseng, Y.-H., Lin, H.-Y., Kuo, C.-S., Li, Y.-Y., & Huang, C.-P. (2006). Thermostability of Nano-TiO2 and its photocatalytic activity Reaction Kinetics and Catalysis Letters, 89(1), 63-69. doi: 10.1007/s11144-006-0087-2 Vaiano, V., Iervolino, G., Sannino, D., Murcia, J. J., Hidalgo, M. C., Ciambelli, P., & Navío, J. A. (2016). Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Applied Catalysis B: Environmental, 188, 134-146. Vallejo, W., Diaz-Uribe, C., & Cantillo, Á. (2015). Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 299, 80-86. Vandevivere, P. C., Bianchi, R., & Verstraete, W. (1998). Review: Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. Journal of Chemical Technology & Biotechnology, 72(4), 289-302. doi: 10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-# Vartuli, J. C., Kresge, C. T., & Roth, W. J. (1995). Designed synthesis of mesopore molecular sieve systems using surfactant directing agents. Wang, F., Shi, Z., Gong, F., Jiu, J., & Adachi, M. (2007). Morphology Control of Anatase TiO2 by Surfactant-assisted Hydrothermal Method*. Chinese Journal of Chemical Engineering, 15(5), 754-759. Wang, F., Zhu, N., Li, T., & Zhang, H.-C. (2014). Material and Energy Efficiency Analysis of Low Pressure Chemical Vapor Deposition of TiO2 Film. Procedia CIRP, 15, 32-37. Willerich, I., Li, Y., & Gröhn, F. (2010). Influencing Particle Size and Stability of Ionic Dendrimer−Dye Assemblies. The Journal of Physical Chemistry B, 114(47), 15466-15476. doi: 10.1021/jp107358q Yang, Y., Wang, G., Liang, Y., Yuan, C., Yu, T., Li, Q., & Li, Q. (2015). Enhanced photocatalytic performance of Ag decorated hierarchical micro/nanostructured TiO2 microspheres. Journal of Alloys and Compounds, 652, 386-392. Ying, J. Y., Mehnert, C. P., & Wong, M. S. (1999). Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition, 38(1-2), 56-77. doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
|