跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛乃綺
研究生(外文):Nai-Chi Hsueh
論文名稱:人工纖維素分解酵素複合體於枯草桿菌與其酵素和支架蛋白間的相互作用分析
論文名稱(外文):Construct artificial cellulosomes in Bacillus subtilis and cellulase-scaffolding interaction analysis
指導教授:黃介辰
指導教授(外文):Chieh-Chen Huang
口試委員:劉永銓張瑞仁
口試委員(外文):Yung-Chuan LiuJui-Jen Chang
口試日期:2016-01-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:木質纖維素纖維素水解酵素複合體支架蛋白纖維素水解酵素
外文關鍵詞:lignocellulosecellulosomescaffolding proteincellulase
相關次數:
  • 被引用被引用:3
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因應全球石油危機,全世界都在尋找其他能源。而其將纖維素(cellulose)醣化後再發酵成酒精,可以產生生質能源。且纖維素廣泛的存在自然界的植物細胞壁中,其含量龐大、價格便宜、含糖量豐富、且非糧食作物,是再生能源最佳的原料之一。但缺點是自然界中的纖維素被層層包覆在木質纖維素(lignocellulose)複雜的結構中,使得纖維素不易裸露在外,而不易被纖維素酵素(cellulase)水解。此外還需要木聚醣酵素(xylanase)不等的各種酵素合作,先分解纖維素原料外層複雜的結構,使得纖維素結構能露出,而能被纖維素酵素水解,藉此提升分解複雜木質纖維素原料的效率。而要再把纖維素完整醣化成葡萄糖也需要endo- glucosidase和exo-glucosidase等纖維素酵素,大量酵素的使用和繁複的步驟,使得花費相當龐大而不符合成本效益。先前研究發現利用來自微生物Clostridium thermocellum的纖維素水解酵素複合體(cellulosome)的結構,可以同時聯合不同纖維素酵素在一個支架蛋白上,使酵素間的距離接近而產生的鄰近加成作用,使木質纖維素水解效率提升。纖維素水解酵素複合體分為支架蛋白 (scaffolding protein)和各式木質纖維素水解酵素兩個部分;所以本實驗選擇纖維素水解酵素複合體中的六個木質纖維素水解酵素相關基因以及兩個支架蛋白相關基因,透過OGAB(Ordered Gene Assembly in Bacillus subtilis)方法,分別構築並表現在Bacillus subtilis中,探討支架蛋白和水解酶之間的關係以及其酵素活性分析,期望利用纖維素水解酵素複合體分解並糖化木質纖維素,以提升木質纖維素之糖化水解效果。

The structure complexity of lignocellulose makes it recalcitrant to be hydrolysised. To enhance the efficiency of cellulose degradation is a crucial issue for futher application. It has been discovered that cellulosome could enhance the efficiency of cellulose degradation through cellulases assembling on scaffolding protein and their synersm. Though Clostridium thermocellum could produce cellulosome, its anaerobic culturing condition is difficult to handle for application. According to a proteome-wide analysis of Clostridium thermocellum ATCC27405, eight cellulosomal genes including two exo-glucosidase genes (celK and celS), two endo-glucosidase genes (celA and celR), two xylanase genes (xynC and xynZ), one scaffolding protein gene (cipA) and one anchoring protein gene (sdbA) were cloned and co-expressed in Bacillus subtilis WB800 by a method named ordered gene assembly in Bacillus subtilis (OGAB) to produce designer cellulosome in order to exploit the potential for enzyme industry. In addition, to investigate cellulose-scaffolding protein interaction, scaffolding protein gene and anchoring protein gene were constructed together in one strain, and each cellulase gene mentioned above was constructed in each B. subtillis strains. Those strains were cultured and the secreted proteins were mixed in different ratio for enhancing cellulose hydrolysis activity.

第一章、前言 1
第ㄧ節、生質能源 2
第二節、木質纖維素 2
第三節、木質纖維素分解酵素 3
第四節、纖維素酵素複合體(cellulosome) 7
第五節、Clostridium thermocellum 8
第六節、Bacillus subtilis 9
第七節、合成生物學 9
第二章、研究目的、策略及架構 13
第一節、研究目的 14
第二節、研究策略 14
一、基因重組宿主的選擇策略─Bacillus subtilis WB800 14
二、木質纖維素水解酵素生產基因群之選擇策略 15
第三節、研究架構 16
第三章、研究材料及方法 17
第一節、研究材料 17
ㄧ、菌種與質體 17
二、藥品及酵素 17
第二節、研究方法 17
一、培養基配製 17
二、試劑與緩衝溶液 19
三、DNA之製備 21
四、質體之構築與選殖(cloning) 24
五、Ordered Gene Assembly in Bacillus subtilis (OGAB) method 26
六、轉殖基因結果確認 30
七、表現蛋白確認 32
八、纖維素分解酵素複合體活性分析 37
第四章、研究結果與討論 39
第一節、製備所需Cellulosome相關基因片段 39
一、cipA基因的製備與鑑定: 39
二、sdbA基因的製備與鑑定: 41
第二節、分開構築基因並以B. subtillis WB800為宿主表現 42
一、表現支架蛋白及錨蛋白基因 42
二、表現單一纖維素水解酵素之相對應基因 43
第三節、表現蛋白的產出及功能性確認 44
一、單一纖維素水解酵素及支架蛋白的產出。 44
二、單一纖維素水解酵素及支架蛋白的功能性確認。 47
第四節、收集蛋白並分析比較各別酵素活性 49
一、表現單一纖維素水解酵素之菌株的胞內及胞外酵素活性分析 49
二、培養不同時間對酵素活性的影響 51
三、cellulosome之支架蛋白及纖維素分解酵素的交互作用分析 54
第五章、結論與未來展望 61
第六章、參考文獻 62
附錄一 67
1. 支架蛋白基因cipA以blast與原始菌株基因序列比對結果 67
2. 支架蛋白基因cipA以blastx與原始菌株胺基酸序列比對結果 72
3. 錨蛋白基因sdbA以blast與原始菌株基因序列比對結果 73
4. 製備錨蛋白基因sdbA所使用引子 75
5. 確認pGETS118質體所使用引子 75
附錄二 76
1. 5th International Conference on Industrial Bioprocesses與會海報 76
2. The ASM 115th General Meeting: Fermentation and Biotechnology與會海報 79


Bayer, E. A., et al. (2004). "The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides." Annu Rev Microbiol 58: 521-554.

Carvalho, A. L., et al. (2003). "Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex." Proc Natl Acad Sci U S A 100(24): 13809-13814.

Doi, R. H. and A. Kosugi (2004). "Cellulosomes: plant-cell-wall-degrading enzyme complexes." Nat Rev Microbiol 2(7): 541-551.

Dror, T. W., et al. (2003). "Regulation of the cellulosomal CelS (cel48A) gene of Clostridium thermocellum is growth rate dependent." J Bacteriol 185(10): 3042-3048.

Fontes, C. M. and H. J. Gilbert (2010). "Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates." Annu Rev Biochem 79: 655-681.

Gilbert, H. J. (2007). "Cellulosomes: microbial nanomachines that display plasticity in quaternary structure." Mol Microbiol 63(6): 1568-1576.

Gold, N. D. and V. J. Martin (2007). "Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis." J Bacteriol 189(19): 6787-6795.

Han, S. J., et al. (1995). "Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity." J Biol Chem 270(43): 26012-26019.

Handelsman, T., et al. (2004). "Cohesin-dockerin interaction in cellulosome assembly: a single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding." FEBS Lett 572(1-3): 195-200.

Itaya, M., et al. (2008). "Bottom-up genome assembly using the Bacillus subtilis genome vector." Nat Methods 5(1): 41-43.

Johnson, E. A., et al. (1982). "Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum." Appl Environ Microbiol 43(5): 1125-1132.

Kataeva, I., et al. (1999). "Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination." J Bacteriol 181(17): 5288-5295.

Kosugi, A., et al. (2002). "Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE." J Bacteriol 184(4): 884-888.

Morais, S., et al. (2010). "Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate." MBio 1(5).

Morais, S., et al. (2010). "Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes." Appl Environ Microbiol 76(12): 3787-3796.

Morais, S., et al. (2011). "Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate." MBio 2(6).

Nishizaki, T., et al. (2007). "Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis." Appl Environ Microbiol 73(4): 1355-1361.

Salamitou, S., et al. (1994). "Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome." J Bacteriol 176(10): 2828-2834.

Schwarz, W. H. (2001). "The cellulosome and cellulose degradation by anaerobic bacteria." Appl Microbiol Biotechnol 56(5-6): 634-649.

Spiers, A. J. and P. L. Bergquist (1992). "Expression and regulation of the RepA protein of the RepFIB replicon from plasmid P307." J Bacteriol 174(23): 7533-7541.

Tamaru, Y. and R. H. Doi (1999). "Three surface layer homology domains at the N terminus of the Clostridium cellulovorans major cellulosomal subunit EngE." J Bacteriol 181(10): 3270-3276.

Tsai, S. L., et al. (2010). "Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production." Appl Environ Microbiol 76(22): 7514-7520.

Tsai, S. L., et al. (2009). "Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production." Appl Environ Microbiol 75(19): 6087-6093.

Tsuge, K., et al. (2003). "One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid." Nucleic Acids Res 31(21): e133.

Tsuge, K., et al. (2007). "Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment." J Biotechnol 129(4): 592-603.

Wang, T. Y., et al. (2011). "Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses." Biotechnol Biofuels 4: 24.

Wen, F., et al. (2010). "Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol." Appl Environ Microbiol 76(4): 1251-1260.

Xu, Q., et al. (2013). "Improving activity of minicellulosomes by integration of intra- and intermolecular synergies." Biotechnol Biofuels 6(1): 126.

Zverlov, V. V., et al. (2005). "Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D." Microbiology 151(Pt 10): 3395-3401.

Zverlov, V. V., et al. (1998). "Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA." J Bacteriol 180(12): 3091-3099.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊