(3.236.214.19) 您好!臺灣時間:2021/05/09 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉宗政
研究生(外文):Zong-Zheng Liu
論文名稱:低溫逆境引發淡水與海水馴化之虱目魚肝臟有氧代謝變化
論文名稱(外文):Low-temperature induced changes in hepatic aerobic metabolism in fresh water- and seawater-acclimated milkfish, Chanos chanos
指導教授:李宗翰李宗翰引用關係
口試委員:胡清華盧福翊陳盛良林惠真
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:溫度鹽度有氧代謝虱目魚肝臟
外文關鍵詞:salinitytemperatureaerobic metabolismmilkfishliver
相關次數:
  • 被引用被引用:2
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
虱目魚(Chanos chanos)為台灣重要養殖魚種,具廣鹽性,可蓄養在淡水或是海水,具有不耐低溫的特性,常因寒流造成大量死亡,導致經濟損失。前人研究指出虱目魚馴化於海水下,對於低溫耐受性優於馴化於淡水的個體。肝臟是魚體最大代謝器官;因此本研究藉由肝臟有氧代謝路徑探討虱目魚面臨不同的環境鹽度(海水vs.淡水)及溫度改變(28ºC vs.18ºC)時,其能量供應的變化。馴化於淡、海水之虱目魚在低溫逆境下每分鐘鰓蓋開合數(Ventilation frequency)皆顯著下降;而低溫逆境下的虱目魚耗氧量,在海水環境顯著下降,淡水環境則無差異。原生地為海水的虱目魚面對低張環境時(淡水),其耗氧量顯著下降。此結果顯示,馴養在淡水的虱目魚,標準代謝速率會下降;而在海水中,個體標準代謝速率則隨環境溫度下降。參與有氧代謝中檸檬酸循環與電子傳遞鏈之重要酵素包括citrate synthase (CS)與cytochorme c oxidase (COX)。COX subunit 4 (COX4)與COX活性有密切關係,可做為觀察COX mRNA與蛋白質表現的主要目標。當海水虱目魚在低溫逆境下,CS mRNA及蛋白質表現有下降的趨勢,但CS活性卻顯著提升;COX4蛋白質表現量雖然顯著上升,但是COX活性卻顯著下降。淡水組面臨低溫時,CS活性也顯著提升35%,且提升幅度約為海水組面臨低溫逆境時的兩倍(17%);COX4的mRNA或蛋白質表現量都顯著上升,但是COX活性顯著下降,下降幅度為海水組面臨低溫時的兩倍。綜合以上結果,淡水及海水虱目魚在遭遇低溫時,雖然COX4蛋白質表現有補償增加的情形,但COX活性還是明顯下降,減少有氧代謝產生能量的效力;另一方面,虱目魚在淡、海水中遭遇低溫時,CS的活性明顯上升,且在淡水組明顯高於海水組(1.3倍),且藉由Q10發現CS會有過補償的現象,COX則是部份補償或是無補償,推論藉由增加TCA cycle效率,產生胺基酸去合成對抗逆境所需之蛋白,或是增加脂質合成以抵禦低溫逆境的影響。淡、海水虱目魚在低溫逆境中, 其檸檬酸循環與電子傳遞鏈的效能不同,藉此影響虱目魚在不同鹽度環境中對於低溫的耐受性。

Milkfish (Chanos chanos) is a euryhaline fish intolerant to hypothermal environments. Previous studies indicated that seawater (SW)-acclimated milkfish was more tolerable to hypothermal challenge than fresh water (FW)-acclimated individuals. The liver of fish provided sufficient energy which was required through aerobic and anaerobic metabolic pathways. In this study, we focused on the hypothermal (18ºC) effects on aerobic metabolism pathway to maintain energy homeostasis. The ventilation frequency of both SW- and FW-acclimated milkfish were down-regulated under hypothermal challenge. On the other hand, the oxygen consumption in the hypothermal environment was down-regulated in SW-acclimated milkfish, but not changed in the FW-acclimated groups. The citrate synthase (CS) and cytochrome c oxidase (COX) are important enzymes in TCA cycle and electron transfer chain (ETC) of aerobic metabolism, respectively. Moreover, cytochrome c oxidase subunit 4 (COX4) is an important subunit in the COX complex which is able to regulate COX activity. Hence we focused on COX4 mRNA and protein expression of COX in the liver. Upon hypothermal challenge, hepatic CS activity of FW-acclimated milkfish was up-regulated. COX4 mRNA and protein expression were up-regulated, while COX activity was down-regulated in the FW/18ºC group. SW-acclimated milkfish upon hypothermal challenge, however, CS mRNA and protein expression were down-regulated, while CS activity was increased. COX4 protein abundance and activity revealed the same pattern in FW and SW-acclimated milkfish. Taken together, the whole body aerobic metabolism would decrease with hypothermal challenge which was speculated by the results of ventilation frequency and oxygen consumption. However, COX4 mRNA and protein expression were up-regulated and compensatory to ETC capacity. CS activity increased for compensation to drive the up-regulation of TCA cycle capacity, which enhanced production of energy and amino acids to synthesis protein and lipids to resistant cold stress. Hepatic TCA cycle and ETC capacity may lead to different abilities of hypothermal tolerance between SW- or FW-acclimated milkfish.

摘要 i
Abstract iii
前言 1
實驗目的 10
材料方法 11
結果 19
討論 25
結論 36
表 37
圖 41
參考文獻 50
附錄 58



1.Acin-Perez, R., Gatti, D. L., Bai, Y., and Manfredi, G. (2011). Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell. metabol. 13, 712-719.
2.Akiyoshi, H., and Inoue, A. (2004). Comparative histological study of teleost livers in relation to phylogeny. Zoolog. Sci. 21, 841-850.
3.Arnold, S., and Kadenbach, B. (1997). Cell Respiration is Controlled by ATP, an Allosteric Inhibitor of Cytochrome-c Oxidase. Eur. J. Biochem. 249, 350-354.
4.Arnold, S. (2012). The power of life—cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion. 12, 46-56.
5.Barton, B. A., and Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1, 3-26.
6.Barton, B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42, 517-525.
7.Battersby, B. J., and Moyes, C. D. (1998). Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. Am. J. Physiol. 275, R905-R912.
8.Blier, P. U., and Guderley, H. E. (1993). Mitochondrial activity in rainbow trout red muscle: the effect of temperature on the ADP-dependence of ATP synthesis. J. Exp. Biol. 176, 145-158.
9.Boeuf, G., and Payan, P. (2001). How should salinity influence fish growth?. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130, 411-423.
10.Capaldi, R. A. (1990). Structure and function of cytochrome c oxidase. Annu. Rev. Biochem.59, 569-596.
11.Daxboeck, C., Davie, P. S., Perry, S. F., and Randall, D. J. (1982). Oxygen uptake in a spontaneously ventilating, blood-perfused trout preparation. J. Exp. Biol. 101, 35-45.
12.De Boeck, G., Vlaeminck, A., Van der Linden, A., and Blust, R. (2000). The energy metabolism of common carp (Cyprinus carpio) when exposed to salt stress: an increase in energy expenditure or effects of starvation? Physiol. Biochem. Zool. 73, 102-111.
13.Del Toro-Silva, F. M., Miller, J. M., Taylor, J. C., and Ellis, T. A. (2008). Influence of oxygen and temperature on growth and metabolic performance of Paralichthys lethostigma (Pleuronectiformes: Paralichthyidae). J. Exp. Mar. Bio. Ecol. 358, 113-123.
14.Dunn, J. F. (1988). Low-temperature adaptation of oxidative energy production in cold-water fishes. Can. J.Zool. 66, 1098-1104.
15.Egginton, S., Cordiner, S., and Skilbeck, C. (2000). Thermal compensation of peripheral oxygen transport in skeletal muscle of seasonally acclimatized trout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R375-R388.
16.Evans, D. H. (1984). The roles of gill permeability and transport mechanisms in euryhalinity. Fish physiology, 10(Part B), 239-283.
17.Evans, D. H., Piermarini, P. M., and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177.
18.Ern, R., Huong, D. T., Cong, N. V., Bayley, M., and Wang, T. (2014). Effect of salinity on oxygen consumption in fishes: a review. J. Fish Biol. 84, 1210-1220.
19.Fangue, N. A., Richards, J. G., and Schulte, P. M. (2009). Do mitochondrial properties explain intraspecific variation in thermal tolerance? J. Exp. Biol. 212, 514-522.
20.Farrell, A. P. (2009). Environment, antecedents and climate change: lessons from the study of temperature physiology and river migration of salmonids. J. Exp. Biol. 212, 3771-3780.
21.Freeman, J. A. (1950). Oxygen consumption, brain metabolism and respiratory movements of goldfish during temperature acclimatization, with special reference to lowered temperatures. Biol. Bull. 99, 416-424.
22.Frick, N. T., Bystriansky, J. S., Ip, Y. K., Chew, S. F., and Ballantyne, J. S. (2010). Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R608-R616.
23.Fry, F. E. J. (1971). The effect of environmental factors on the physiology of fish. In Fish physiology. Vol. VI. Environmental relations and behavior. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York. pp. 1–98.
24.Guderley, H. (2004). Metabolic responses to low temperature in fish muscle. Biol. Rev. 79, 409-427.
25.Hardewig, I. P. L. S., Pörtner, H. O., and Peck, L. S. (1999). Thermal sensitivity of mitochondrial function in the Antarctic Notothenioid Lepidonotothen nudifrons. J. Comp. Physiol. B 169, 597-604.
26.Hardewig, I., Van Dijk, P. L. M., Moyes, C. D., and Pörtner, H. O. (1999). Temperature-dependent expression of cytochrome-c oxidase in Antarctic and temperate fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, 508-516.
27.Hazel, J. R., and Prosser, C. L. (1974). Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620-677.
28.Hazel, J. R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57, 19-42.
29.Heath, A. G. (1973). Ventilatory responses of teleost fish to exercise and thermal stress. Am. Zool. 13, 491-503.
30.Jana, S. N., Garg, S. K., and Patra, B. C. (2006). Effect of inland water salinity on growth performance and nutritional physiology in growing milkfish, Chanos chanos (Forsskal): field and laboratory studies. J. Appl. Ichthyol. 22, 25-34.
31.Jobling, M. (1981). Temperature tolerance and the final preferendum—rapid methods for the assessment of optimum growth temperatures. J. Fish Biol. 19, 439-455.
32.Jobling, M. (1988). A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions. Aquaculture 70, 1-19.
33.Kang, C. K., Tsai, S. C., Lee, T. H., and Hwang, P. P. (2008). Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. A151: 566–575.
34.Kang, C. K., Chen, Y. C., Chang, C. H., Tsai, S. C., and Lee, T. H. (2015). Seawater-acclimation abates cold effects on Na+, K+-ATPase activity in gills of the juvenile milkfish, Chanos chanos. Aquaculture. 446, 67-73.
35.Khalimonchuk, O., and Rödel, G. (2005). Biogenesis of cytochrome c oxidase. Mitochondrion, 5, 363-388.
36.Kindle, K. R., and Whitmore, D. H. (1986). Biochemical indicators of thermal stress in Tilapia aurea (Steindachner). J. Fish Biol. 29, 243-255.
37.Klover, P. J., and Mooney, R. A. (2004). Hepatocytes: critical for glucose homeostasis. Int. J. Biochem. Cell Biol. 36, 753-758.
38.Langhans, W. (1996). Role of the liver in the metabolic control of eating: what we know—and what we do not know. Neurosci. Biobehav. Rev. 20, 145-153.
39.LeMoine, C. M., Genge, C. E., and Moyes, C. D. (2008). Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol.211, 1448-1455.
40.Liao, I. C. (1991). Milkfish culture in Taiwan. In: McVey, J.P.(ed.), CRC Handbook of Mariculture, vol. II Finfish aquaculture. CRC Press Inc., Boca Raton, Florida, pp. 91-115.
41.Lin, Y. M., Chen, C. N., and Lee, T. H. (2003). The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. A135, 489-497.
42.Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D., and Lee, T. H. (2006). Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A143, 406-415.
43.Lowe, C. H., and Heath, W. G. (1969). Behavioral and physiological responses to temperature in the desert pupfish Cyprinodon macularius. Physiol. Zool. 42, 53-59.
44.Lucassen, M., Schmidt, A., Eckerle, L. G., and Pörtner, H. O. (2003). Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Am. J.Physiol. Regul. Integr. Comp. Physiol. 285, 1410-1420.
45.Luz, R. K., Martínez-Álvarez, R. M., De Pedro, N., and Delgado, M. J. (2008). Growth, food intake regulation and metabolic adaptations in goldfish (Carassius auratus) exposed to different salinities. Aquaculture 276, 171-178.
46.Maceina, M. J., Nordlie, F. G., and Shireman, J. V. (1980). The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J. Fish Biol. 16, 613-619.
47.Mathews, C. K., and VanHolde, K.E. Biochemistry. New York: Cummings, 1996.
48.McClelland, G. B., Craig, P. M., Dhekney, K., and Dipardo, S. (2006). Temperature-and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577, 739-751.
49.McCormick, S. D., Moyes, C. D., and Ballantyne, J. S. (1989). Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiol. Biochem.6, 243-254.
50.Morgan, J. D., Jensen, J. O., and Iwama, G. K. (1992). Effects of salinity on aerobic metabolism and development of eggs and alevins of steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Zool. 70, 1341-1346.
51.Morgan, J. D., Sakamoto, T., Grau, E. G., and Iwama, G. K. (1997). Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol. Part A: Physiology, 117, 391-398.
52.Nathanailides, C. (1996). Are changes in enzyme activities of fish muscle during cold acclimation significant? Can. J. Fish. Aquat. Sci. 53, 2333-2336.
53.Napiwotzki, J., and Kadenbach, B. (1998). Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol. Chem. 379, 335-340.
54.Nelson, D.L., and Cox, M.M. (2013). Lehninger Principles of Biochemistry (textbook) (6th ed). W.H. Freeman and Company, cop., New York.
55.O''Brien, K. M. (2011). Mitochondrial biogenesis in cold-bodied fishes. J. Exp. Biol. 214, 275-285.
56.Orczewska, J. I., Hartleben, G., and O''Brien, K. M. (2010). The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R352-R364.
57.Parry, G. (1960). The development of salinity tolerance in the salmon, Salmo salar (L.) and some related species. J. Exp. Biol. 37, 425-434.
58.Perry, S. F. (1998). Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 119, 9-16.
59.Perry, S. F., and Laurent, P. (1993). Environmental effects on fish gill structure and function. In Fish Ecophysiology, 231-264. Springer Netherlands.
60.Perry, S. F., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky, M., and Thomas, S. L. Y. (2003). Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: Their role in ionic and acidbase regulation. J. Exp. Zool. A Comp. Exp. Biol. 300, 53-62.
61.Pörtner, H. O. (2002). Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 205, 2217-2230
62.Puntel, R. L., Nogueira, C. W., and Rocha, J. B. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem. Res.30, 225-235.
63.Reyes, B. A., Pendergast, J. S., and Yamazaki, S. (2008). Mammalian peripheral circadian oscillators are temperature compensated. J. biol. rhythms, 23, 95.
64.Roberts, J. L. (1975). Active branchial and ram gill ventilation in fishes. Biol. Bull. 148, 85-105.
65.Rodrigues, F., Ludovico, P., and Leão, C. (2006). Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism. Biodiversity and Ecophysiology of Yeasts. Berlin Heidelberg: Springer Verlag. pp. 101-121.
66.Rui, L. (2014). Energy metabolism in the liver. Compr. Physiol.
67.Seddon, W. L., and Prosser, C. L. (1997). Seasonal variations in the temperature acclimation response of the channel catfish, Ictalurus punctatus. Physiol. Zool. 33-44.
68.Shaklee, J. B., Christiansen, J. A., Sidell, B. D., Prosser, C. L., and Whitt, G. S. (1977). Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J. Exp. Zool. 201, 1-20.
69.Sedlák, E., and Robinson, N. C. (1999). Phospholipase A2 digestion of cardiolipin bound to bovine cytochrome c oxidase alters both activity and quaternary structure. Biochemistry, 38, 14966-14972.
70.Sidell, B. D. (1998). Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J. Exp. Biol. 201, 1119-1128.
71.Sollid, J., Weber, R. E., and Nilsson, G. E. (2005). Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J. Exp. Biol. 208, 1109-1116.
72.Somero, G. N. (2004). Adaptation of enzymes to temperature: searching for basic “strategies”. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 321-333.
73.St-Pierre, J., Charest, P. M., and Guderley, H. (1998). Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 201, 2961-2970.
74.Stickney, R. R. (1986). Tilapia tolerance of saline waters: a review. Prog. Fish Cult. 48, 161-167.
75.Swanson, C. (1998). Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos).J. Exp. Biol. 201, 3355-3366.
76.Sweetlove, L. J., Beard, K. F., Nunes-Nesi, A., Fernie, A. R., and Ratcliffe, R. G. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends in plant sci. 15, 462-470.
77.Teigen, L. E., Orczewska, J. I., McLaughlin, J., and O’Brien, K. M. (2015). Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Comp. Biochem. Physiol. A Mol. Integr. Physiol.188, 139-147.
78.Thillart, G., and Modderkolk, J. (1978). The effect of acclimation temperature on the activation energies of state III respiration and on the unsaturation of membrane lipids of goldfish mitochondria. Biochim. Biophys. Acta. 510, 38-51.
79.Truesdale, G. A., Downing, A. L., and Lowden, G. F. (1955). The solubility of oxygen in pure water and sea-water. J. Appl. Chem. 5, 53-62.
80.Van Dijk, P. L., Tesch, C., Hardewig, I., and Pörtner, H. O. (1999). Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202, 3611-3621.
81.Wallace, D. C. (1997). Mitochondrial DNA in aging and disease. Sci. Am. 277, 40-59
82.Wiegand, G., and Remington, S. J. (1986). Citrate synthase: structure, control, and mechanism. Annu. Rev. Biophys. Biophys. Chem. 15, 97-117.
83.Wodtke, E. (1981). Temperature adaptation of biological membranes. The effects of acclimation temperature on the unsaturation of the main neutral and charged phospholipids in mitochondrial membranes of the carp (Cyprinus carpio L.). Biochim. Biophys. Acta. 640, 698-709.
84.Wodtke, E. (1981). Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio L.). Biochim. Biophys. Acta. 640, 710-720.
85.Woo, N. Y., and Kelly, S. P. (1995). Effects of salinity and nutritional status on growth and metabolism of Sparus sarbain a closed seawater system. Aquaculture 135, 229-238.
86.Yee, G. M., and Tolman, W. B. (2015). Transition Metal Complexes and the Activation of Dioxygen. In Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. 131-204.
87.Yoshikawa, S., Shimada, A., and Shinzawa-Itoh, K. (2015). Respiratory conservation of energy with dioxygen: cytochrome c oxidase. Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, 89-130.
88.Yan, Y., and Xie, X. (2015). Metabolic compensations in mitochondria isolated from the heart, liver, kidney, brain and white muscle in the southern catfish (Silurus meridionalis) by seasonal acclimation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 183, 64-71.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔