(3.227.0.150) 您好!臺灣時間:2021/05/08 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蘇鈞卉
研究生(外文):Jung-Hung Su
論文名稱:利用薄荷醇調控樹突狀細胞的功能及減緩接觸性過敏反應
論文名稱(外文):Menthol Modulates Dendritic Cells Functions and Attenuates Allergic Contact Hypersensitive
指導教授:林季千
指導教授(外文):CHI-CHEN LIN
口試委員:陳與國陳樺翰
口試委員(外文):YU-GUO CHENHUA-HAN CHEN
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:34
中文關鍵詞:薄荷醇樹突狀細胞Th1細胞LPS接觸型過敏
外文關鍵詞:MentholDendritic cellTh1 CellLPSContact hypersensitive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
樹突狀細胞(Dendritic cell,簡稱:DCs)被認為先天性免疫與適應性免疫間的重要聯結因子。因此,樹突狀細胞(DCs)可視為發展免疫抑制劑最重要的標的。薄荷醇(Menthol)一種可以從薄荷或者其他薄荷相關的植物精油中提煉出來的天然單萜。目前已有許多文獻證實,薄荷醇具有調節免疫的功效,而樹突狀細胞正是免疫調節中扮演重要的角色,然而兩者間的相關性目前尚未明朗化。本研究中,試著讓小鼠骨髓樹突狀細胞在薄荷醇環境下再用LPS(Lipopolysaccharide, 脂多醣)去刺激後觀察其分化狀況。從我們的實驗證實,薄荷醇除了能夠有效降低促炎激素(TNF-α、IL-6)、趨化因子(IL-8、MCP-1)外還可以當LPS刺激樹突狀細胞(DCs)時可以降低IL-12的表現避免誘導成Th1,而這一切的反應並不會影響與MHC或共同刺激物(CD11c、CD40、CD80、CD86)的表現,主要原因是薄荷醇沒有佔用它們與抗原結合的位置和影響其結合的能力。另外,在2,4-二硝基-1-氟苯 (2,4-Dinitro-1-fluorobenzene)-pulsed樹突狀細胞轉移實驗中,發現薄荷醇在接觸型過敏模組中能夠有效減緩體內Th1的反應。綜合以上我們的研究結果顯示,薄荷醇可以有效的調控樹突狀細胞發炎的特性,主要是因為阻礙樹突狀細胞避免引起Th1免疫反應。這樣的結果讓薄荷醇在免疫學上有了新的功能見解,可適用在治療慢性發炎疾病或是因為Th1媒介的自體免疫性疾病。

Dendritic cells (DCs) link innate immune sensing of the environment to the initiation of adaptive immune responses. Accordingly, DCs are considered as a major target in the development of immunomodulators. Menthol is a naturally monoterpene isolated from the essential oil of peppermint or other mint plants. While substantial evidence indicates that menthol possesses immunomodulatory activity, however, the effect of menthol on dendritic cells (DCs) remains unknown. In this study, we investigated the effect of menthol on lipopolysacchride (LPS) stimulated mouse bone marrow-derived DCs activation. Our experimental results show that menthol could reduce the pro-inflammatory cytokines (TNF-α, IL-6), chemokine (IL-8, MCP-1) and Th1 cytokine IL-12 expression on LPS-activated DC and this reduction, however, it did not affect the expression of of MHC or costimulatory (CD11c、CD40、CD80、CD86) molecules and did not influence the ability to take up antigen. Furthermore, menthol also attenuates the Th1-type immune response in 2,4-Dinitro-1-fluorobenzene pulsed DC-transfer model of contact hypersensitive (CHS) in vivo. Collectively, our findings suggest that menthol can manipulate the inflammatory properties of DCs and furthermore, impedes the function of DCs to prime a Th1-mediated immune response. These results provide new insight into the immunopharmacological role of menthol and applied for treatment of chronic inflammatory disorders or Th1-mediated autoimmune diseases.

摘要 i
Abstract ii
目次 iii
表目錄 vi
圖目錄 vii
縮寫表 ix
第一章 文獻回顧 1
1. 文獻回顧 1
1.1 先天性與適應性免疫反應 1
1.2 樹突狀細胞介紹 2
1.3 Th1/Th2細胞 2
1.4 促炎激素/趨化因子介紹 3
2. 接觸型過敏介紹 3
3. 薄荷醇 4
3.1 薄荷醇介紹 4
3.2 薄荷醇結構 4
3.3 薄荷醇生物功能 4
3.3.1 抗發炎 4
3.3.2 抗菌 5
3.3.3 抗癌 5
4. 研究動機與目的 6
5. 論文架構與實驗設計 7
第二章 利用薄荷醇調控樹突狀細胞的功能及減緩接觸性過敏反應 8
1. 緒論 8
2. 材料與方法 9
2.1 Mice and Preparation of Mouse Bone Marrow derived
DCs 9
2.2 Flow Cytometric Analysis 11
2.3 Cytokine Release Assays 11
2.4 2,4-Dinitro-1-fluorobenzene-Induced contact
Hypersensitivity Assay 13
2.5 Quantitative RT-PCR 13
2.6 Reverse transcription-PCR 15
2.7 Statistical Analysis 16
3. 結果 16
3.1 Menthol decreases the cytokine and chemokine production
by LPS –stimulated mouse bone marrow derived DCs 16
3.2 Menthol does not affect the expression of surface
molecules and endocytosis capacity on LPS –stimulated
DCs 18
3.3 Menthol weaken 2,4-Dinitro-1-fluorobenzene induced
contact hypersensitivity (CHS) responses and Th1 immune
response in vivo 18
4. 討論 19
5. 結論 20
6. 參考文獻 21



1.顧琪玫 and C.-M. Ku, 萜類化合物在體外及體內對Th1/Th2免疫反應之影響Effects of terpenoids on Th1/Th2 immune responses in vitro and in vivo.
2.Abbas, A.K., K.M. Murphy, and A. Sher, Functional diversity of helper T lymphocytes.
3.Abdi, K., N.J. Singh, and P. Matzinger, LPS Activated Dendritic cells:“Exhausted” or alert and waiting? DCs: “Exhausted”,alerted or waiting? Journal of Immunology (Baltimore, Md. : 1950), 2012. 188(12): p. 5981-5989.
4.Arakawa, T., et al., Anti-Allergic Effects of Peppermint Oil, Chicle and Jelutong. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 1992. 33(6): p. 569-575_1.
5.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-252.
6.Braga, P.C., et al., Anti-Inflammatory Activity of Thymol: Inhibitory Effect on the Release of Human Neutrophil Elastase.
7.Christensen, A.D., S. Skov, and C. Haase, Local and systemic effects of co-stimulatory blockade using cytotoxic T lymphocyte antigen-4-immunoglobulin in dinitrofluorobenzene- and oxazolone-induced contact hypersensitivity in mice. Clinical and Experimental Immunology, 2013. 171(2): p. 220-230.
8.de Cássia da Silveira e Sá, R., N.L. Andrade, and P.D. de Sousa, A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules, 2013. 18(1).
9.de Cassia da Silveira e Sa, R., L.N. Andrade, and D.P. de Sousa, A review on anti-inflammatory activity of monoterpenes. Molecules, 2013. 18(1): p. 1227-54.
10.Fearon, D.T. and R.M. Locksley, The instructive role of innate immunity in the acquired immune response. Science, 1996. 272(5258): p. 50-54.
11.Gaspari, A.A. and S.I. Katz, Contact hypersensitivity. (1934-368X (Electronic)).
12.Gouranton, E., et al., Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets, 2009. 8(1): p. 28-39.
13.Hamann, L., et al., Inhibition of LPS-induced activation of alveolar macrophages by high concentrations of LPS-binding protein. Biochem Biophys Res Commun, 2002. 295(2): p. 553-560.
14.Juergens, U.R., et al., New insights in the bronchodilatory and anti-inflammatory mechanisms of action of theophylline. Arzneimittelforschung, 1999. 49(8): p. 694-8.
15.Juergens, U.R., M. Stober, and H. Vetter, The anti-inflammatory activity of L-menthol compared to mint oil in human monocytes in vitro: a novel perspective for its therapeutic use in inflammatory diseases. Eur J Med Res, 1998. 3(12): p. 539-45.
16.Kamatou, G.P., et al., Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry, 2013. 96: p. 15-25.
17.Kayser, O., K.N. Masihi, and A.F. Kiderlen, Natural products and synthetic compounds as immunomodulators. Expert Rev Anti Infect Ther, 2003. 1(2): p. 319-35.
18.Li, J., et al., Inhibition of NF-[kappa]B Expression and Allergen-induced Airway Inflammation in a Mouse Allergic Asthma Model by Andrographolide.
19.Lin, J.P., et al., (-)-Menthol inhibits DNA topoisomerases I, II alpha and beta and promotes NF-kappaB expression in human gastric cancer SNU-5 cells. Anticancer Res, 2005. 25(3b): p. 2069-74.
20.Mahnke, K., et al., Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol, 2002. 80(5): p. 477-483.
21.Marcuzzi, A., et al., Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes. Int Immunopharmacol, 2010. 10(6): p. 639-42.
22.McLeod, R.L., et al., TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea pigs. Cough (London, England), 2006. 2: p. 10-10.
23.Morelli, A.E., et al., Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood, 2001. 98(5): p. 1512-1523.
24.Moser, M. and K.M. Murphy, Dendritic cell regulation of TH1-TH2 development. Nat Immunol, 2000. 1(3): p. 199-205.
25.Palma, G., et al., Plasmacytoids dendritic cells are a therapeutic target in anticancer immunity. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2012. 1826(2): p. 407-414.
26.Raphael, T.J. and G. Kuttan, Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol Immunotoxicol, 2003. 25(2): p. 285-94.
27.Sakaguchi, S., et al., Regulatory T Cells and Immune Tolerance. Cell, 2008. 133(5): p. 775-787.
28.Sato, K., et al., Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood, 2003. 101(9): p. 3581-3589.
29.Shreedhar, V., et al., Dendritic Cells Require T Cells for Functional Maturation In Vivo. Immunity, 1999. 11(5): p. 625-636.
30.Smits, E.L., et al., Dendritic cell-based cancer gene therapy. Hum Gene Ther, 2009. 20(10): p. 1106-18.
31.Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells. Annu Rev Immunol, 2003. 21: p. 685-711.
32.Teixeira, L.K., et al., The role of interferon-gamma on immune and allergic responses. Mem Inst Oswaldo Cruz, 2005. 100 Suppl 1: p. 137-44.
33.Trombetta, D., et al., Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrobial Agents and Chemotherapy, 2005. 49(6): p. 2474-2478.
34.Verdijk, P., et al., Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. European Journal of Immunology, 2004. 34(1): p. 156-164.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔