跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏翰
研究生(外文):Bo-Han Chen
論文名稱:不同程度之低溫誘導淡、海水恆河稻田魚 (Oryzias dancena) 肝臟粒線體生源之比較
論文名稱(外文):Comparisons between different levels of cold-induced mitochondrial biogenesis in livers of fresh water- and seawater-acclimated Indian medaka, Oryzias dancena
指導教授:李宗翰李宗翰引用關係
口試委員:胡清華林惠真陳盛良盧福翊
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:恆河稻田魚肝臟低溫粒線體生源電子傳遞鏈超氧化物岐化酶細胞色素c氧化酶
外文關鍵詞:Oryzias dancenaliverlow temperaturemitochondrial biogenesiselectron transport chainsuperoxide dismutasecytochrome c oxidase
相關次數:
  • 被引用被引用:2
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
魚類是外溫動物,其體內的溫度會隨著外在環境溫度而變化。生物體面臨低溫時需要改變其能量供應狀態來適應環境,其中肝臟是生物體內重要的能量代謝器官,而與能量代謝相關最主要的胞器為粒線體。粒線體生源現象為粒線體DNA數量增加或是粒線體內的蛋白質或酵素活性增加的現象。先前研究顯示低溫會使魚類體內氧化壓力上升而導致內源性細胞凋亡。本論文主要研究淡水與海水馴養的恆河稻田魚 (Oryzias dancena) 面臨兩種不同程度的低溫 (降低攝氏10度之18°與最低耐受溫度15°) 下,對其肝臟中與粒線體相關的氧化壓力與內源性細胞凋亡的變化,以及與粒線體生源變化之相關影響。在第一部分的研究中發現肝臟中ROS含量在15°C下一週後,不論是淡水或海水組別皆顯著上升,而在18°C下一週後僅淡水組別顯著上升;超氧化物歧化酶 (superoxide dismutase, SOD) 之蛋白質表現量在兩種低溫處理下則並未提升,顯示粒線體電子傳遞鏈 (electron transport chain; ETC) 過程中的電子滲漏而造成之超氧陰離子 (O2-•) 可能增加;同時,內源性細胞凋亡之指標cytochrome c也沒有大量釋放到細胞質中,顯示無cytochrome c路徑引發之內源性細胞凋亡。第二部分的研究中發現淡水與海水恆河稻田魚面臨18°C低溫時,皆提升其肝臟COX4蛋白質表現量,而肝細胞粒線體DNA數量則僅在淡水組別有顯著上升,海水組別雖有上升趨勢但無顯著差異。在18°C低溫環境中七天後,淡水組別的肝臟COX活性顯著上升,海水組別則無顯著變化。第三部分的研究中則發現淡水與海水恆河稻田魚面臨15°C低溫時,肝細胞粒線體DNA數量皆顯著上升,淡水組別之肝臟COX4蛋白質表現量在七天內顯著下降而後回升,其COX活性則無顯著差異;海水組別之肝臟COX4蛋白表現量則在七天後顯著上升,且其COX活性也在七天後顯著上升。綜合以上結果,雖然淡水與海水恆河稻田魚在15°C環境中一週後造成其肝臟內ROS含量增加,但是淡水與海水恆河稻田魚馴養在兩種不同程度的低溫環境一週後皆未引發SOD的抗氧化機制上升,以及內源性細胞凋亡,且在兩種不同程度的低溫下皆發生了粒線體生源現象,但是淡水組別的反應皆較海水組別快速且劇烈;而淡水恆河稻田魚面臨低溫七天後額外提升其肝臟之COX活性,以供應淡水組別之能量需求。

Fish is a kind of ectotherms which change body temperature according to ambient environments. When encountered with low temperature environments, fish have to change their energy supply to adapt to environmental changes. Liver is one of the major organs responsible for energy metabolism in organisms, and mitochondria is the major organelle correlated with energy metabolism of cells. Mitochondrial biogenesis is defined as increases of mitochondria DNA, mitochondrial proteins, or enzyme activities in mitochondria. Previous studies revealed that oxidative stress was increased and intrinsic apoptosis was induced in fish during cold exposure. Therefore, the present study investigated the oxidative stress, intrinsic apoptosis, and mitochondrial biogenesis changes in livers of fresh water (FW)- and seawater (SW)-acclimated Indian medaka, Oryzias dancena, when encountered 18°C or the lowest tolerance temperature (15°C). In the first part of this study, we found that ROS contents were significantly increased in both FW and SW groups after one week of 15°C exposure, but after one week of 18°C exposure significant increase was only found in the FW group. There was no significant increase in protein expression of the superoxide dismutase (SOD) and cytosolic cytochrome c. The results indicated that superoxide anion produced by electron transport chain (ETC) leak might increase but the indicator of intrinsic apoptosis, cytochrome c, was not abundantly released from mitochondria to cytosol. In the second part of this study, three main results were: (1) protein expressions of liver cytochrome c oxidase subunit IV (COX4) were significantly increased in both FW and SW group after 18°C exposure; (2) mitochondrial DNA copy number in the liver significantly increased in the FW group; however, in the SW group, there was only a tendency to increase mitochondrial DNA copy number during 18°C exposure; (3) after 7 days of 18°C-exposure, hepatic cytochrome c oxidase (COX) activity was significantly increased in the FW group and there was no change in the SW group. In the third part of this study, three main results were: (1) protein expression of hepatic COX4 was significantly decreased in 7 days of the FW group after 15°C-exposure, but in the SW group, protein expression of hepatic COX4 was significantly increased after 7 days of 15°C-exposure; (2) mitochondrial DNA copy number was significantly increased in both FW and SW groups after 15°C-exposure; (3) COX activity was only significantly increased in the SW group but not in the FW group after 7 days of 15°C-exposure. Although the volume of ROS in livers of FW and SW medaka increased at 15°C as well as in livers of FW medaka at 18°C, anti-oxidative stress enzyme, SODs or intrinsic apoptosis were not elevated in both FW and SW groups during 7 days of 18°C- and 15°C-exposure. Mitochondrial biogenesis occurred in both FW- and SW-acclimated Indian medaka during 7 days of 18°C- and 15°C-exposure. The hepatic responses of the FW group were more rapid and acute than the SW group. Increased hepatic COX activity, however, was an extra improvement to match the energy demand of the FW group after 7 days of low-temperature exposure.

摘要 i
Abstract iii
目錄 v
前言 1
研究目的 10
材料與方法 11
結果 20
討論 26
結論 35
圖 36
參考文獻 58
附錄一 恆河稻田魚肝臟細胞粒線體萃取流程 71
附錄二 COX活性測定流程 72
附錄三 粒線體蛋白加載校正 73


Agius, L., 2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414, 1-18.
Ali, S.S., Marcondes, M.-C.G., Bajova, H., Dugan, L.L., Conti, B., 2010. Metabolic depression and increased reactive oxygen species production by isolated mitochondria at moderately lower temperatures. J. Biol. Chem. 285, 32522-32528.
Antonini, E., Brunori, M., 1970. Catalytic mechanism of cytochrome oxidase. Nature 228, 936-937.
Arnold, S., Goglia, F., Kadenbach, B., 1998. 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem. 252, 325-330.
Arnold, S., Kadenbach, B., 1997. Cell respiration is controlled by ATP, an allosteric inhibitor of cytochrome-c oxidase. Eur. J. Biochem. 249, 350-354.
Arnold, S., Kadenbach, B., 1999. The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosterically. FEBS Lett. 443, 105-108.
Battersby, B.J., Moyes, C.D., 1998. Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 275, R905-R912.
Bennett, A.F., Dawson, W.R., 1972. Aerobic and anaerobic metabolism during activity in the lizard Dipsosaurus dorsalis. J. comp. Physiol. 81, 289-299.
Bremer, K., Kocha, K., Snider, T., Moyes, C., 2014. Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression. Can. J. Zool. 92, 557-568.
Bremer, K., Monk, C.T., Gurd, B.J., Moyes, C.D., 2012. Transcriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 303, R150-R158.
Bremer, K., Moyes, C.D., 2011. Origins of variation in muscle cytochrome c oxidase activity within and between fish species. J. Exp. Biol. 214, 1888-1895.
Bremer, K., Moyes, C.D., 2014. mRNA degradation: an underestimated factor in steady-state transcript levels of cytochrome c oxidase subunits? J. Exp. Biol. 217, 2212-2220.
Brown, T.A., Clayton, D.A., 2002. Release of replication termination controls mitochondrial DNA copy number after depletion with 2’ ,3’-dideoxycytidine. Nucleic Acids Res. 30, 2004-2010.
Campbell, C.M., Spencer Davies, P., 1978. Temperature acclimation in the teleost, Blennius pholis: Changes in enzyme activity and cell structure. Comp. Biochem. Physiol. B-Comp. Biochem. 61, 165-167.
Capitanio, N., Peccarisi, R., Capitanio, G., Villani, G., De Nitto, E., Scacco, S., Papa, S., 1994. Role of nuclear-encoded subunits of mitochondrial cytochrome c oxidase in proton pumping revealed by limited enzymic proteolysis. Biochemistry 33, 12521-12526.
Castellana, S., Vicario, S., Saccone, C., 2011. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biol. Evol. 3, 1067–1079.
Cazenave, J., Bistoni, M.d.l.A., Pesce, S.F., Wunderlin, D.A., 2006. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat. Toxicol. 76, 1-12.
Chance, B., Williams, G.R., 1955. Respiratory enzymes in oxidative phosphorylation: i. kinetics of oxygen utilization. J. Biol. Chem. 217, 383-394.
Chen, H., Chomyn, A., Chan, D.C., 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280, 26185-26192.
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., Chan, D.C., 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189-200.
Chen, X., Li, L., Wong, C.K.C., Cheng, S.H., 2009. Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 149, 647-655.
Cooper, C.E., Nicholls, P., Freedman, J.A., 1991. Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem. Cell Biol. 69, 586-607.
Cosgrove, J.P., Church, D.F., Pryor, W.A., 1987. The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22, 299-304.
Crockett, E., Hazel, J., 1995. Cholesterol levels explain inverse compensation of membrane order in brush border but not homeoviscous adaptation in basolateral membranes from the intestinal epithelia of rainbow trout. J. Exp. Biol. 198, 1105-1113.
Daufresne, M., Lengfellner, K., Sommer, U., 2009. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106, 12788-12793.
Donaldson, M.R., Cooke, S.J., Patterson, D.A., Macdonald, J.S., 2008. Cold shock and fish. J. Fish Biol. 73, 1491-1530.
Dong, S., Kang, M., Wu, X., Ye, T., 2014. Development of a promising fish model (Oryzias melastigma) for assessing multiple responses to stresses in the marine environment. Biomed Res. Int. 2014, 17.
Dröge, W., 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95.
Dudkina, N.V., Kouřil, R., Peters, K., Braun, H.-P., Boekema, E.J., 2010. Structure and function of mitochondrial supercomplexes. Biochim. Biophys. Acta-Bioenerg. 1797, 664-670.
Duggan, A.T., Kocha, K.M., Monk, C.T., Bremer, K., Moyes, C.D., 2011. Coordination of cytochrome c oxidase gene expression in the remodelling of skeletal muscle. J. Exp. Biol. 214, 1880-1887.
Fornuskova, D., Stiburek, L., Wenchich, L., Vinsova, K., Hansikova, H., Zeman, J., 2010. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 428, 363-374.
Fox, T.D., 2012. Mitochondrial protein synthesis, import, and assembly. Genetics 192, 1203-1234.
Galluzzi, L., Blomgren, K., Kroemer, G., 2009. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10, 481-494.
Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I., Green, D.R., 2000. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2, 156-162.
Gonzales, D.H., Neupert, W., 1990. Biogenesis of mitochondrial c-type cytochromes. J. Bioenerg. Biomembr. 22, 753-768.
Green, D.R., Kroemer, G., 2004. The pathophysiology of mitochondrial cell death. Science 305, 626-629.
Grim, J.M., Miles, D.R.B., Crockett, E.L., 2010. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. J. Exp. Biol. 213, 445-452.
Guderley, H., 2004. Metabolic responses to low temperature in fish muscle. Biol. Rev. 79, 409-427.
Hüttemann, M., Helling, S., Sanderson, T.H., Sinkler, C., Samavati, L., Mahapatra, G., Varughese, A., Lu, G., Liu, J., Ramzan, R., 2012. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim. Biophys. Acta-Bioenerg. 1817, 598-609.
Hüttemann, M., Lee, I., Pecinova, A., Pecina, P., Przyklenk, K., Doan, J.W., 2008. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40, 445-456.
Hardewig, I., van Dijk, P.L.M., Moyes, C.D., Pörtner, H.O., 1999. Temperature-dependent expression of cytochrome-c oxidase in Antarctic and temperate fish. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 277, R508-R516.
Hazel, J.R., 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57, 19-42.
Hazel, J.R., Landrey, S.R., 1988. Time course of thermal adaptation in plasma membranes of trout kidney. I. Headgroup composition. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 255, R622-R627.
Heise, K., Estevez, M.S., Puntarulo, S., Galleano, M., Nikinmaa, M., Pörtner, H.O., Abele, D., 2007. Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J. Comp. Physiol. B 177, 765-777.
Heise, K., Puntarulo, S., Nikinmaa, M., Lucassen, M., Pörtner, H.-O., Abele, D., 2006. Oxidative stress and HIF-1 DNA binding during stressful cold exposure and recovery in the North Sea eelpout (Zoarces viviparus). Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 143, 494-503.
Helling, S., Vogt, S., Rhiel, A., Ramzan, R., Wen, L., Marcus, K., Kadenbach, B., 2008. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol. Cell. Proteomics 7, 1714-1724.
Inoue, K., Takei, Y., 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool. Sci. 19, 727-734.
Inoue, K., Takei, Y., 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 136, 635-645.
Jiang, X., Wang, X., 2004. Cytochrome c-mediated apoptosis. Annu. Rev. Biochem. 73, 87-106.
Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Liu, W., Fu, Z., 2010. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78, 846-852.
John, R.B., 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11, 99-113.
Jornayvaz, F.R., Shulman, G.I., 2010. Regulation of mitochondrial biogenesis. Essays Biochem. 47, 69-84.
Kadenbach, B., Arnold, S., 1999. A second mechanism of respiratory control. FEBS Lett. 447, 131-134.
Kammer, A.R., Orczewska, J.I., O''Brien, K.M., 2011. Oxidative stress is transient and tissue specific during cold acclimation of threespine stickleback. J. Exp. Biol. 214, 1248-1256.
Kang, C.-K., Chen, Y.-C., Chang, C.-H., Tsai, S.-C., Lee, T.-H., 2015. Seawater-acclimation abates cold effects on Na+, K+-ATPase activity in gills of the juvenile milkfish, Chanos chanos. Aquaculture 446, 67-73.
Kang, C.-K., Tsai, S.-C., Lee, T.-H., Hwang, P.-P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 151, 566-575.
Kaufmann, R., Wieser, W., 1992. Influence of temperature and ambient oxygen on the swimming energetics of cyprinid larvae and juveniles, in: W. Wieser, F. Schiemer, A. Goldschmidt, K. Kotrschal (Eds.), Environmental biology of European cyprinids: Papers from the workshop on ‘The Environmental Biology of Cyprinids’ held at the University of Salzburg, Austria, in September 1989. Springer Netherlands, Dordrecht, 87-96.
Korshunov, S.S., Skulachev, V.P., Starkov, A.A., 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15-18.
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870-1874.
Lee, H.-C., Wei, Y.-H., 2005. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 37, 822-834.
Leggatt, R.A., Brauner, C.J., Schulte, P.M., Iwama, G.K., 2007. Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 146, 317-326.
LeMoine, C.M., Genge, C.E., Moyes, C.D., 2008. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 211, 1448-1455.
Lewén, A., Fujimura, M., Sugawara, T., Matz, P., Copin, J.-C., Chan, P.H., 2001. Oxidative stress–dependent release of mitochondrial cytochrome c after traumatic brain injury. J. Cereb. Blood Flow Metab. 21, 914-920.
Lewis, J.M., Driedzic, W.R., 2010. Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia. J. Comp. Physiol. B 180, 179-188.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., 1997. Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
Li, Y., Park, J.-S., Deng, J.-H., Bai, Y., 2006. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283-291.
Liu, X., Kim, C.N., Yang, J., Jemmerson, R., Wang, X., 1996. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Luo, A., Zhang, A., Ho, S.Y., Xu, W., Zhang, Y., Shi, W., Cameron, S.L., Zhu, C., 2011. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. Bmc Genomics 12.
Malek, R.L., Sajadi, H., Abraham, J., Grundy, M.A., Gerhard, G.S., 2004. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 138, 363-373.
Malmstroem, B.G., 1990. Cytochrome c oxidase as a redox-linked proton pump. Chem. Rev. 90, 1247-1260.
Martinou, J.-C., Desagher, S., Antonsson, B., 2000. Cytochrome c release from mitochondria: all or nothing. Nat. Cell Biol. 2, E41-E43.
McKeel, D.W., Jarett, L., 1970. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J. Cell Biol. 44, 417-432.
Mitchell, P., 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148.
Napiwotzki, J., Kadenbach, B., 1998. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol. Chem. 379, 335-339.
Napiwotzki, J., Shinzawa-Itoh, K., Yoshikawa, S., Kadenbach, B., 1997. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol. Chem. 378, 1013-1021.
Naruse, K., 1996. Classification and phylogeny of fishes of the genus Oryzias and its relatives. The fish biology journal Medaka 8, 1-9.
Nelson, J.S., 2006. Fishes of the world. John Wiley and Sons, Hoboken, NJ.
O''Brien, K.M., 2011. Mitochondrial biogenesis in cold-bodied fishes. J. Exp. Biol. 214, 275-285.
Orczewska, J.I., Hartleben, G., O''Brien, K.M., 2010. The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 299, R352-R364.
Poyton, R.O., Trueblood, C.E., Wright, R.M., Farrell, L.E., 1988. Expression and function of cytochrome c oxidase subunit isologues. Ann. N. Y. Acad. Sci. 550, 289-307.
Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M., Spiegelman, B.M., 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839.
Ramzan, R., Staniek, K., Kadenbach, B., Vogt, S., 2010. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim. Biophys. Acta-Bioenerg. 1797, 1672-1680.
Rapaport, D., Brunner, M., Neupert, W., Westermann, B., 1998. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150-20155.
Reyes, B.A., Pendergast, J.S., Yamazaki, S., 2008. Mammalian peripheral circadian oscillators are temperature compensated. J. Biol. Rhythms 23, 95-98.
Roberts, T.R., 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias, with descriptions of four new species. Ichthyol. Res. 45, 213-224.
Rui, L., 2014. Energy metabolism in the liver. Compr. Physiol. 4, 177-197.
Scarpulla, R.C., 2006. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673-683.
Schägger, H., 2001. Respiratory chain supercomplexes. IUBMB Life 52, 119-128.
Shaklee, J.B., Christiansen, J.A., Sidell, B.D., Prosser, C.L., Whitt, G.S., 1977. Molecular aspects of temperature acclimation in fish: Contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J. Exp. Zool. 201, 1-20.
Smirnova, E., Griparic, L., Shurland, D.-L., van der Bliek, A.M., 2001. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256.
Sogl, B., Gellissen, G., Wiesner, R.J., 2000. Biogenesis of giant mitochondria during insect flight muscle development in the locust, Locusta migratoria (L.). Eur. J. Biochem. 267, 11-17.
Speers-Roesch, B., Ballantyne, J.S., 2005. Activities of antioxidant enzymes and cytochrome c oxidase in liver of Arctic and temperate teleosts. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 140, 487-494.
Staničová, J., Sedlák, E., Musatov, A., Robinson, N.C., 2007. Differential stability of dimeric and monomeric cytochrome c oxidase exposed to elevated hydrostatic pressure. Biochemistry 46, 7146-7152.
Sun, S., Ge, X., Zhu, J., Xuan, F., Jiang, X., 2014. Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 159, 69-77.
Suzanne Currie, Schulte, P.M., 2013. Thermal Stress, in: David H. Evans, James B. Claiborne, S. Currie (Eds.), The Physiology of Fishes, 4 ed. CRC Press, USA, 264.
Takehana, Y., Naruse, K., Sakaizumi, M., 2005. Molecular phylogeny of the medaka fishes genus Oryzias (Beloniformes: Adrianichthyidae) based on nuclear and mitochondrial DNA sequences. Mol. Phylogenet. Evol. 36, 417-428.
Tiano, L., Fedeli, D., Santoni, G., Davies, I., Falcioni, G., 2003. Effect of tributyltin on trout blood cells: changes in mitochondrial morphology and functionality. Biochim. Biophys. Acta-Mol. Cell Res. 1640, 105-112.
Trueman, R.J., Tiku, P.E., Caddick, M.X., Cossins, A.R., 2000. Thermal thresholds of lipid restructuring and delta(9)-desaturase expression in the liver of carp (Cyprinus carpio L.). J. Exp. Biol. 203, 641-650.
Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yoshikawa, S., 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136-1144.
Turrens, J.F., 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344.
Ugalde, C., Coenen, M.J.H., Farhoud, M.H., Gilinsky, S., Koopman, W.J.H., van den Heuvel, L.P., Smeitink, J.A.M., Nijtmans, L.G.J., 2002. New perspectives on the assembly process of mitochondrial respiratory chain complex cytochrome c oxidase. Mitochondrion 2, 117-128.
Villani, G., Attardi, G., 2000. In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic. Biol. Med. 29, 202-210.
Wang, Q., Tan, X., Jiao, S., You, F., Zhang, P.J., 2014. Analyzing cold tolerance mechanism in transgenic zebrafish (Danio rerio). PLoS One 9, e102492.
Westermann, B., 2012. Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta-Bioenerg. 1817, 1833-1838.
Wu, S.M., Liu, J.-H., Shu, L.-H., Chen, C.H., 2015. Anti-oxidative responses of zebrafish (Danio rerio) gill, liver and brain tissues upon acute cold shock. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 187, 202-213.
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., Spiegelman, B.M., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124.
Zhang, G., Mao, J., Liang, F., Chen, J., Zhao, C., Yin, S., Wang, L., Tang, Z., Chen, S., 2016. Modulated expression and enzymatic activities of Darkbarbel catfish, Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. Chemosphere 151, 271-279.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊