(3.236.222.124) 您好!臺灣時間:2021/05/11 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:帝凡內
研究生(外文):Devanand Dhondiram Bondage
論文名稱:探討農桿菌第六型分泌系統中VgrG蛋白質的角色及功能
論文名稱(外文):Functional characterizations of the type VI secretion VgrG proteins in Agrobacterium tumefaciens strain C58
指導教授:賴爾王民
指導教授(外文):Erh-Min Lai
口試委員:郭志鴻鄧文玲史有伶劉啟德張晃猷
口試委員(外文):Chih-Horng KuoWen-Ling DengYu-Ling ShihChi-Te LiuHwang-Hou Chang
口試日期:2016-07-28
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:204
中文關鍵詞:第六型蛋白質分泌系統VgrGDNA分解酶毒素分子PAARTap-1農桿菌細菌間的互相競爭
外文關鍵詞:Type VI secretion systemVgrGDNase effectorPAARTap-1Agrobacterium tumefaciensinterbacterial competition.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
About a quarter of Gram-negative bacteria encode one or multiple type VI secretion systems (T6SS) that function to inject effectors into eukaryotic host for pathogenesis or toxins into competitor bacterial cells for survival. Structural and functional studies revealed that T6SS machine resembles bacteriophage tail-like structure with valine glycine repeat G (VgrG) likely acting as a spike protein to pierce the host cell membrane for effector delivery. In Agrobacterium tumefaciens strain C58, T6SS consists of 14 conserved proteins and is highly regulated by plant signals. A. tumefaciens strain C58 encodes two VgrG proteins (VgrG1 and VgrG2), which are functionally redundant in mediating the secretion of T6SS hallmark protein hemolysin co-regulated protein (Hcp). It also produces three toxin-immunity protein pairs, namely type VI amidase effector (Tae) and type VI amidase immunity (Tai); type VI DNase effector 1 (Tde1) and type VI DNase immunity 1 (Tdi1); and type VI DNase effector 2 (Tde2) and type VI DNase immunity 2 (Tdi2). Among these, Tde1 and Tde2 provide advantage to A. tumefaciens during interbacterial competition in-planta. However, neither the precise role of two VgrG proteins nor the molecular components and mechanisms underlying the secretion of these type VI effectors were known. Thus, the overall goal of my thesis was to characterize the functions of two VgrG proteins and their roles involved in type VI effector delivery.
The T6SS-associated VgrG proteins can be divided into two types, the evolved and canonical VgrG proteins. Evolved VgrG proteins are characterized by the presence of effector domain at C-terminus, whereas canonical VgrG proteins only serve as structural role without effector domain. Bioinformatics-driven study predicted that the A. tumefaciens VgrG proteins may belong to the group of evolved VgrG proteins as they contain a conserved N-terminal regions homologous to phage tail domains and C-terminal region homologous to pectate lyase C-like (PL) domain. However, attempts using biochemical assays and gene expression methods could not detect a role of VgrG proteins in PL activity. Further in-depth analysis of VgrG proteins using additional structure modeling approaches revealed that the predicted PL domain in the VgrG proteins do not contain the PL catalytic site required for PL activity. Thus, the overall investigation revealed that VgrG proteins of A. tumefaciens strain C58 may belong to the group of canonical VgrG proteins consisting of gp27 and gp5 domain alone without additional effector domain.
In view of the genetic linkage of vgrG1 to the tde1-tdi1 pair residing in the major T6SS gene cluster and vgrG2 to tde2-tdi2 encoded in a divergent vgrG2 operon, we hypothesized that VgrG1 and VgrG2 are specific carriers for secretion and delivery of Tde1 and Tde2, respectively, into target cells. By secretion and antibacterial activity assays, I found that VgrG1 and VgrG2 specifically control the Tde1 secretion and in-planta bacterial competition activity of Tde1 and Tde2, respectively. Deletion and domain swapping analysis identified that the C-terminal extension unique to VgrG1 specifically confers secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C-terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are molecular determinants specifically required for delivery of each cognate Tde toxin. Protein-protein interaction studies identified the adaptor/chaperone Tap proteins governing specific Tde toxin delivery via interactions with VgrG. Importantly, we pinpointed the regions involved in these interactions. While the entire C31 segment of VgrG1 is required for binding with Tap-1-Tde1 complex, only the first 15 aa of this region were necessary for PAAR binding. Taking all these findings together, my work resulted into discovery of a molecular components and mechanisms underlying the transport specificity of Tde toxins.


ACKNOWLEDGEMENT…………………………………………………………i
ABSTRACT……………………………………………………………iii
TABLE OF CONTENTS………………………………………………………………vi
LIST OF TABLES…………………………………………………… ix
LIST OF FIGURES………………………………………………………………x
LIST OF APPENDIX TABLES……………………………………………xii
LIST OF APPENDIX FIGURES………………………………………………………xiii
CHAPTER I: General Introduction……………………………… 01
1.1 Protein Secretion Systems in Gram-negative bacteria…02
1.1.1 Single-membrane spanning secretion systems 03
1.1.1.1 Inner-membrane (IM) spanning protein secretion systems……………… 03
1.1.1.1.1 Sec protein secretion system………………………………… 03
1.1.1.1.2 Twin-arginine translocation (Tat) system…………………… 04
1.1.1.2 Outer-membrane spanning protein secretion systems……………………… 05
1.1.1.2.1 Type V secretion system (T5SS)…………………………………… 05
1.1.1.2.2 Chaperone usher (CU) pathway or type VII secretion system (T7SS).. 06
1.1.1.2.3 Curli or type VIII secretion system (T8SS)…………………………07
1.1.1.2.4 Por secretion system (PorSS) or type IX secretion system (T9SS)… 08
1.2 Double-membrane spanning protein secretion system……………………………………09
1.2.1 Type I secretion system (T1SS)…………………………………………………… 09
1.2.2 Type II secretion system (T2SS)…………………………………………………… 09
1.2.3 Type III secretion system (T3SS)………………………………………………… 10
1.2.4 Type IV secretion system (T4SS)…………………………………………………11
1.2.5 Type VI secretion system (T6SS)…………………………………………………… 13
1.3 Agrobacterium biology………………………………………………………………30
1.4 T6SS of Agrobacterium: discovery and current knowledge……………………………… 37
CHAPTER II: Analysis of pectate lyase activity of A. tumefaciens C58 VgrG proteins...... 43
Summary………………………………………………………………44
Introduction…………………………………………………………45
Materials and methods………………………………………………48
Results…………………………………………………………………51
Discussion…………………………………………………………54
CHAPTER III: VgrG C-terminus confers the type VI effector transport specificity and is required for binding with adaptor-effector complex…………………………………… 69
Summary………………………………………………………………70
Introduction……………………………………………………71
Materials and methods……………………………………………………………… 73
Results……………………………………………………………… 79
Discussion……………………………………………………………91
CHAPTER IV: Conclusions and Future Prospects………… 128
APPENDICES………………………………………………………… 138
REFERENCES…………………………………………………………162
CURRICULUM VITAE……………………………………………………………… 189



1.Gerlach RG & Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297(6):401-415.

2.Tseng TT, Tyler BM, & Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9 Suppl 1:S2.

3.Costa TR, et al. (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343-359.

4.Desvaux M, Hebraud M, Talon R, & Henderson IR (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17(4):139-145.

5.Fekkes P & Driessen AJ (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev63(1):161-173.

6.Randall LL & Hardy SJ (1995) High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem Sci 20(2):65-69.

7.Zahn R, Perrett S, Stenberg G, & Fersht AR (1996) Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science 271(5249):642-645.

8.Fekkes P, vander Does C, & Driessen AJM (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16(20):6105-6113.

9.Nishiyama K, Hanada M, & Tokuda H (1994) Disruption of the gene encoding P12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13(14):3272-3277.

10.Pogliano JA & Beckwith J (1994) SecD and SecF facilitate protein export in Escherichia coli. EMBO J 13(3):554-561.

11.Economou A & Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78(5):835-843.

12.Dalbey RE & Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260(29):15925-15931.

13.Valent QA, et al. (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol 25(1):53-64.

14.de Gier JWL, et al. (1998) Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci USA 95(25):14646-14651.

15.Luirink J, et al. (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 13(10):2289-2296.

16.Valent QA, et al. (1998) The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J17(9):2504-2512.

17.Natale P, Bruser T, & Driessen AJ (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim biophys acta 1778(9):1735-1756.

18.Frobel J, Rose P, & Muller M (2012) Twin-arginine-dependent translocation of folded proteins. Philos T R Soc B367(1592):1029-1046.

19.Beeckman DS & Vanrompay DC (2010) Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system. Curr Issues Mol Biol 12(1):17-41.

20.Thanassi DG, Stathopoulos C, Karkal A, & Li H (2005) Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria. Mol Mem Biol 22(1-2):63-72.

21.Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, & Ala''Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biology Rev 68(4):692-744.

22.Leo JC, Grin I, & Linke D (2012) Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos T R Soc B 367(1592):1088-1101.

23.Jose J, Jahnig F, & Meyer TF (1995) Common structural features of IgA1 protease-like outer membrane protein autotransporters. Mol Microbiol 18(2):378-380.

24.Pohlner J, Halter R, Beyreuther K, & Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325(6103):458-462.

25.Eslava C, et al. (1998) Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect Immun 66(7):3155-3163.

26.Leininger E, et al. (1992) Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun 60(6):2380-2385.

27.Locht C, Bertin P, Menozzi FD, & Renauld G (1993) The filamentous haemagglutinin, a multifaceted adhesion produced by virulent Bordetella spp. Mol Microbiol 9(4):653-660.

28.Russell AB, Peterson SB, & Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12(2):137-148.

29.Aoki SK, Webb JS, Braaten BA, & Low DA (2009) Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J Bacteriol 191(6):1777-1786.

30.Ruhe ZC, Low DA, & Hayes CS (2013) Bacterial contact-dependent growth inhibition. Trends Microbiol 21(5):230-237.

31.Kajava AV, et al. (2001) Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins. Mol Microbiol 42(2):279-292.

32.Aoki SK, et al. (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309(5738):1245-1248.

33.Waksman G & Hultgren SJ (2009) Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7(11):765-774.

34.Chagnot C, Zorgani MA, Astruc T, & Desvaux M (2013) Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4:303.

35.Indrelid S, Mathiesen G, Jacobsen M, Lea T, & Kleiveland CR (2014) Computational and experimental analysis of the secretome of Methylococcus capsulatus (Bath). PloS one 9(12):e114476.

36.Abby SS, et al. (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080.

37.Gillespie JJ, et al. (2015) Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 39(1):47-80.

38.Shah S & Briken V (2016) Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis. Front Cell Infect Microbiol 6:49.

39.Saulino ET, Bullitt E, & Hultgren SJ (2000) Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci USA 97(16):9240-9245.

40.Hammar M, Arnqvist A, Bian Z, Olsen A, & Normark S (1995) Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18(4):661-670.

41.Dueholm MS, Albertsen M, Otzen D, & Nielsen PH (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PloS one 7(12).

42.Cegelski L, et al. (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5(12):913-919.

43.Goyal P, et al. (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516(7530):250-3.

44.Barnhart MM & Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131-147.

45.Brinker A, et al. (2001) Dual function of protein confinement in chaperonin-assisted protein folding. Cell107(2):223-233.

46.Costa TRD, et al. (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbio 13(6):343-359.

47.Takagi F, Koga N, & Takada S (2003) How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations. Proc Natl Acad Sci USA 100(20):11367-11372.

48.Sato K, et al. (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA 107(1):276-281.

49.McBride MJ & Zhu YT (2013) Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol 195(2):270-278.

50.Sato K, et al. (2010) A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA 107(1):276-281.

51.Nakayama K (2015) Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 50(1):1-8.

52.Fitzpatrick RE, Wijeyewickrema LC, & Pike RN (2009) The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 4(4):471-487.

53.Pavloff N, et al. (1997) Molecular cloning and characterization of Porphyromonas gingivalis lysine-specific gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J Biol Chem272(3):1595-1600.

54.Seers CA, et al. (2006) The RgpB C-terminal domain has a role in attachment of RgpB to the outer membrane and belongs to a novel C-terminal-domain family found in Porphyromonas gingivalis. J Bacteriol 188(17):6376-6386.

55.Nguyen KA, Travis J, & Potempa J (2007) Does the importance of the c-terminal residues in the maturation of RgpB from Porphyromonas gingivalis reveal a novel mechanism for protein export in a subgroup of gram-negative bacteria? J Bacteriol 189(3):833-843.

56.de Diego I, et al. (2016) The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal beta-sandwich domain. Sci Rep 6.

57.Paramonov N, et al. (2005) Structural analysis of a novel anionic polysaccharide from Porphyromonas gingivalisstrain W50 related to Arg-gingipain glycans. Mol Microbiol 58(3):847-863.

58.Shrivastava A, Johnston JJ, van Baaren JM, & McBride MJ (2013) Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol195(14):3201-3212.

59.Zhu YT & McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biot 98(2):763-775.

60.Kharade SS & McBride MJ (2014) Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J Bacteriol 196(5):961-970.

61.Stanley P, Koronakis V, & Hughes C (1991) Mutational analysis supports a role for multiple structural features in the C-terminal secretion signal of Escherichia coli haemolysin. Mol Microbiol 5(10):2391-2403.

62.Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochimi Biophys acta 1694(1-3):149-161.

63.Thanabalu T, Koronakis E, Hughes C, & Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E.coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17(22):6487-6496.

64.Schmitt L, Benabdelhak H, Blight MA, Holland IB, & Stubbs MT (2003) Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. J Mol Biol 330(2):333-342.

65.Schulein R, Gentschev I, Mollenkopf HJ, & Goebel W (1992) A topological model for the haemolysin translocator protein HlyD. Mol Gen Gene 234(1):155-163.

66.Koronakis V, Sharff A, Koronakis E, Luisi B, & Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405(6789):914-919.

67.Binet R & Wandersman C (1995) Protein secretion by hybrid bacterial ABC-transporters: specific functions of the membrane ATPase and the membrane fusion protein. EMBO J 14(10):2298-2306.

68.Pugsley AP, Francetic O, Possot OM, Sauvonnet N, & Hardie KR (1997) Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria- a review. Gene192(1):13-19.

69.Nouwen N, et al. (1999) Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc Natl Acad Sci USA 96(14):8173-8177.

70.Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13(12):581-588.

71.Toth IK & Birch PRJ (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8(4):424-429.

72.Pineau C, et al. (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94(1):126-140.

73.Yamazaki A, et al. (2011) Commensal effect of pectate lyases secreted from Dickeya dadantii on proliferation of Escherichia coli O157:H7 EDL933 on Lettuce Leaves. Appl Environ Microbiol 77(1):156-162.

74.Davidsson PR, Kariola T, Niemi O, & Palva ET (2013) Pathogenicity of and plant immunity to soft rot pectobacteria. Front Plant Sci 4.

75.Ray SK, Rajeshwari R, & Sonti RV (2000) Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol Plant Microbe In 13(4):394-401.

76.Ryan RP, et al. (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9(5):344-355.

77.Cornelis GR (2010) The type III secretion injectisome, a complex nanomachine for intracellular ''toxin'' delivery. Biol Chem 391(7):745-751.

78.Kubori T, et al. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280(5363):602-605.

79.Ghosh P (2004) Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68(4):771-795.

80.Hegazy WA, Xu X, Metelitsa L, & Hensel M (2012) Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infect Immun 80(3):1193-1202.

81.Akeda Y & Galan JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437(7060):911-915.

82.Tsai CL, Burkinshaw BJ, Strynadka NC, & Tainer JA (2015) The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes. J Bacteriol 197(4):672-675.

83.Buttner D & He SY (2009) Type III protein secretion in plant pathogenic bacteria. Plant Physiol 150(4):1656-1664.

84.Roine E, et al. (1997) Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv tomato DC3000. Proc Natl Acad Sci USA 94(7):3459-3464.

85.Buttner D & He SY (2009) Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiol 150(4):1656-1664.

86.Jin QL & He SY (2001) Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294(5551):2556-2558.

87.Li CM, et al. (2002) The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J 21(8):1909-1915.

88.Weber E & Koebnik R (2005) Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. J Bacteriol 187(17):6175-6186.

89.Wallden K, Rivera-Calzada A, & Waksman G (2010) Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12(9):1203-1212.

90.Cabezon E, Ripoll-Rozada J, Pena A, de la Cruz F, & Arechaga I (2015) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39(1):81-95.

91.Kubori T, et al. (2014) Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc Natl Acad Sci USA 111(32):11804-11809.

92.Fronzes R, et al. (2009) Structure of a type IV secretion system core complex. Science 323(5911):266-268.

93.Chandran V, et al. (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462(7276):1011-1015.

94.Alvarez-Martinez CE & Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775-808.

95.Lawley TD, Klimke WA, Gubbins MJ, & Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Let 224(1):1-15.

96.Alvarez-Martinez CE & Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol R 73(4):775-808.

97.Christie PJ & Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8(8):354-360.

98.Frick-Cheng AE, et al. (2016) Molecular and structural analysis of the Helicobacter pylori cag type IV secretion system core complex. MBio 7(1):e02001-02015.

99.Rego AT, Chandran V, & Waksman G (2010) Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 425(3):475-488.

100.Weiss AA, Johnson FD, & Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90(7):2970-2974.

101.Bingle LE, Bailey CM, & Pallen MJ (2008) Type VI secretion: a beginner''s guide. Curr Opin Microbiol 11(1):3-8.

102.Boyer F, Fichant G, Berthod J, Vandenbrouck Y, & Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10.

103.Russell AB, et al. (2014) A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16(2):227-236.

104.Boyer F, Fichant G, Berthod J, Vandenbrouck Y, & Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104.

105.Pukatzki S, et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528-1533.

106.Bladergroen MR, Badelt K, & Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe In 16(1):53-64.

107.Rao PSS, Yamada Y, Tan YP, & Leung KY (2004) Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53(2):573-586.

108.Murdoch SL, et al. (2011) The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 193(21):6057-6069.

109.Zoued A, et al. (2014) Architecture and assembly of the type VI secretion system. Biochim Biophys acta1843(8):1664-1673.

110.Zheng J & Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66(5):1192-1206.

111.Lin JS, Ma LS, & Lai EM (2013) Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PloS one 8(7):e67647.

112.Shalom G, Shaw JG, & Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiol 153:2689-2699.

113.Durand E, et al. (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature 523(7562):555-60.

114.Basler M, Pilhofer M, Henderson GP, Jensen GJ, & Mekalanos JJ (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483(7388):182-186.

115.Basler M, Ho B, & Mekalanos J (2012) Type 6 secretion dynamics within and between bacterial cells. Mol Biol Cell 23.

116.Zoued A, et al. (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288(38):27031-27041.

117.Gerc AJ, et al. (2015) Visualization of the Serratia type VI secretion system reveals unprovoked attacks and dynamic assembly. Cell Rep 12(12):2131-2142.

118.Cascales E & Cambillau C (2012) Structural biology of type VI secretion systems. Phil T R Soc B 367(1592):1102-1111.

119.Leiman PG, et al. (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106(11):4154-4159.

120.Kube S, et al. (2014) Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8(1):20-30.

121.Clemens DL, Ge P, Lee BY, Horwitz MA, & Zhou ZH (2015) Atomic structure of T6SS reveals interlaced array essential to function. Cell 160(5):940-951.

122.Leiman PG & Shneider MM (2012) Contractile tail machines of bacteriophages. Adv Exp Med Biol 726:93-114.

123.Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, & Rossmann MG (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118(4):419-429.

124.Kostyuchenko VA, et al. (2005) The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12(9):810-813.

125.Leiman PG, et al. (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7:355.

126.Lossi NS, Dajani R, Freemont P, & Filloux A (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiol 157:3292-3305.

127.Brunet YR, Zoued A, Boyer F, Douzi B, & Cascales E (2015) The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. Plos Genet 11(10).

128.Brunet YR, Henin J, Celia H, & Cascales E (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15(3):315-321.

129.Kudryashev M, et al. (2015) Structure of the type VI secretion system contractile sheath. Cell 160(5):952-962.

130.Yap ML, Mio K, Leiman PG, Kanamaru S, & Arisaka F (2010) The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. J Mol Biol 395(2):349-360.

131.Kikuchi Y & King J (1975) Genetic control of bacteriophage T4 baseplate morphogenesis. 3. Formation of central plug and overall assembly pathway. J Mol Biol 99(4):695-716.

132.Zoued A, et al. (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531(7592):59-63.

133.Mougous JD, et al. (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526-1530.

134.Osipiuk J, et al. (2011) Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa. J Struct Funct Genomics 12(1):21-26.

135.Jobichen C, et al. (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PloS one 5(9):e12910.

136.Douzi B, et al. (2014) Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PloS one 9(2):e86918.

137.Bonemann G, Pietrosiuk A, Diemand A, Zentgraf H, & Mogk A (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28(4):315-325.

138.de Bruin OM, Ludu JS, & Nano FE (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7:1.

139.Broms JE, Lavander M, & Sjostedt A (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol 191(8):2431-2446.

140.Lossi NS, et al. (2013) The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem 288(11):7536-7548.

141.Zhang XY, et al. (2013) Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PloS one 8(11):e81074.

142.Silverman JM, Brunet YR, Cascales E, & Mougous JD (2012) Structure and regulation of the type VI secretion system. Annu Rev Microbiol Vol 66 66:453-472.

143.Miyata ST, Bachmann V, & Pukatzki S (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 62:663-676.

144.Fritsch MJ, et al. (2013) Proteomic identification of novel secreted antibacterial toxins of the Serratia marcescens type VI secretion system. Mol Cell Proteomics 12(10):2735-2749.

145.Lin JS, et al. (2014) Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS pathogens 10(3).

146.Mougous JD, Gifford CA, Ramsdell TL, & Mekalanos JJ (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9(7):797-U121.

147.Hsu F, Schwarz S, & Mougous JD (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72(5):1111-1125.

148.Casabona MG, et al. (2013) An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa. Environ Microbiol 15(2):471-486.

149.Silverman JM, et al. (2011) Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol 82(5):1277-1290.

150.Basler M & Mekalanos JJ (2012) Type 6 secretion dynamics within and between bacterial cells. Science337(6096):815-815.

151.Basler M, Ho BT, & Mekalanos JJ (2013) Tit-for-Tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152(4):884-894.

152.LeRoux M, et al. (2012) Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci USA 109(48):19804-19809.

153.Ho BT, Basler M, & Mekalanos JJ (2013) Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342(6155):250-253.

154.Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos T R Soc B 370(1679).

155.Chen L, Zou Y, She P, & Wu Y (2015) Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 172:19-25.

156.Walker JE, Saraste M, Runswick MJ, & Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945-951.

157.Brown ED (2005) Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 83(6):738-746.

158.Ma LS, Narberhaus F, & Lai EM (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem 287(19):15610-15621.

159.Kapitein N, et al. (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87(5):1013-1028.

160.Pietrosiuk A, et al. (2011) Molecular basis for the unique role of the AAA(+) chaperone ClpV in type VI protein secretion. J Biol Chem 286(34):30010-30021.

161.Forster A, et al. (2014) Coevolution of the ATPase ClpV, the sheath proteins TssB and TssC, and the accessory protein TagJ/HsiE1 distinguishes type VI secretion classes. J Biol Chem 289(47).

162.Lossi NS, et al. (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol 86(2):437-456.

163.Wang T, et al. (2015) Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathoge 11(7):e1005020.

164.Durand E, Cambillau C, Cascales E, & Journet L (2014) VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol 22(9):498-507.

165.Pukatzki S, Ma AT, Revel AT, Sturtevant D, & Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104(39):15508-15513.

166.Ma AT, McAuley S, Pukatzki S, & Mekalanos JJ (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5(3):234-243.

167.Suarez G, et al. (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192(1):155-168.

168.Toesca IJ, French CT, & Miller JF (2014) The type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by Pseudomallei Group Burkholderia Species. Infect Immun 82(4):1436-1444.

169.Schwarz S, et al. (2014) VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82(4):1445-1452.

170.Miyata ST, Kitaoka M, Brooks TM, McAuley SB, & Pukatzki S (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 79(7):2941-2949.

171.Miyata ST, Unterweger D, Rudko SP, & Pukatzki S (2013) Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathoge 9(12).

172.Jiang F, Waterfield NR, Yang J, Yang GW, & Jin Q (2014) A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15(5):600-610.

173.Zheng J & Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66(5):1192-1206.

174.Barker JR, et al. (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol 74(6):1459-1470.

175.Russell AB, et al. (2012) A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11(5):538-549.

176.Russell AB, et al. (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475(7356):343-347.

177.English G, et al. (2012) New secreted toxins and immunity proteins encoded within the type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86(4):921-936.

178.Whitney JC, et al. (2013) Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 288(37):26616-26624.

179.Brooks TM, Unterweger D, Bachmann V, Kostiuk B, & Pukatzki S (2013) Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288(11):7618-7625.

180.Dong TG, Ho BT, Yoder-Himes DR, & Mekalanos JJ (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA 110(7):2623-2628.

181.Russell AB, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496(7446):508-512.

182.Lery LM, et al. (2014) Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol 12:41.

183.Hachani A, Allsopp LP, Oduko Y, & Filloux A (2014) The VgrG proteins are "a la Carte" delivery systems for bacterial type VI effectors. J Biol Chem 289(25):17872-17884.

184.Busby JN, Panjikar S, Landsberg MJ, Hurst MRH, & Lott JS (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501(7468):547-50.

185.Koskiniemi S, et al. (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA 110(17):7032-7037.

186.Hood RD, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7(1):25-37.

187.Li M, et al. (2012) Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathoge 8(4).

188.Whitney JC, et al. (2014) Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 92(3):529-542.

189.Salomon D, et al. (2014) Marker for type VI secretion system effectors. Proc Natl Acad Sci USA 111(25):9271-9276.

190.Ma LS, Hachani A, Lin JS, Filloux A, & Lai EM (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16(1):94-104.

191.Jamet A & Nassif X (2015) New players in the toxin field: polymorphic toxin systems in bacteria. MBio 6(3):e00285-00215.

192.Silverman JM, et al. (2013) Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 51(5):584-593.

193.Shneider MM, et al. (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500(7462):350-353.

194.Liang XY, et al. (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci USA 112(29):9106-9111.

195.Cianfanelli FR, Monlezun L, & Coulthurst SJ (2016) Aim, Load, Fire: The type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24(1):51-62.

196.Blondel CJ, Jimenez JC, Contreras I, & Santiviago CA (2009) Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC genomics 10:354.

197.De Maayer P, et al. (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 12:576.

198.Unterweger D, et al. (2015) Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 34(16):2198-2210.

199.Ballister ER, Lai AH, Zuckermann RN, Cheng Y, & Mougous JD (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105(10):3733-3738.

200.Brunet YR, Henin J, Celia H, & Cascales E (2014) Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15(3):315-321.

201.Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150(4):1665-1676.

202.Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, & Rorsch A (1977) Transfer of Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex-planta. J Gen Microbiol 98(Feb):477-484.

203.Goodner B, et al. (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323-2328.

204.Wood DW, et al. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294(5550):2317-2323.

205.Gohlke J & Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155.

206.Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45-68.

207.Vaudequin-Dransart V, Petit A, Chilton WS, & Dessaux Y (1998) The cryptic plasmid of Agrobacterium tumefaciens cointegrates with the Ti plasmid and cooperates for opine degradation. Mol Plant Microbe In 11(7):583-591.

208.McCullen CA & Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Bi 22:101-127.

209.Detrait M, et al. (2008) Agrobacterium radiobacter bacteremia in oncologic and geriatric patients: presentation of two cases and review of the literature. Int J Infect Dis 12(6):E7-E10.

210.Wright EL, Deakin WJ, & Shaw CH (1998) A chemotaxis cluster from Agrobacterium tumefaciens. Gene 220(1-2):83-89.

211.Cangelosi GA, et al. (1989) Role of Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 171(3):1609-1615.

212.Subramoni S, Nathoo N, Klimov E, & Yuan ZC (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front Plant Sci 5.

213.Wu CF, Lin JS, Shaw GC, & Lai EM (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathoge 8(9).

214.Stachel SE, Nester EW, & Zambryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens Vir gene expression. Proc Natl Acad Sci USA 83(2):379-383.

215.Stachel SE, Messens E, Vanmontagu M, & Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318(6047):624-629.

216.Hess KM, Dudley MW, Lynn DG, Joerger RD, & Binns AN (1991) Mechanism of phenolic activation of Agrobacterium virulence genes- development of a specific inhibitor of bacterial sensor response systems. Proc Natl Acad Sci USA 88(17):7854-7858.

217.Chang CH & Winans SC (1992) Functional roles assigned to the periplasmic, linker and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174(21):7033-7039.

218.Turk SCHJ, Vanlange RP, Regensburgtuink TJG, & Hooykaas PJJ (1994) Localization of the VirA domain involved in acetosyringone-mediated Vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol 25(5):899-907.

219.Toyoda-Yamamoto A, Shimoda N, & Machida Y (2000) Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Gene 263(6):939-947.

220.Pazour GJ & Das A (1990) Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res 18(23):6909-6913.

221.Brencic A & Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol R 69(1):155-94.

222.Cho HB & Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102(41):14843-14848.

223.Vergunst AC, et al. (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102(3):832-837.

224.Durrenberger F, Crameri A, Hohn B, & Koukolikova-Nicola Z (1989) Covalently bound VirD2 protein ofAgrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc NAtl Acad Sci USA86(23):9154-9158.

225.Pansegrau W, Schoumacher F, Hohn B, & Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90(24):11538-11542.

226.Scheiffele P, Pansegrau W, & Lanka E (1995) Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270(3):1269-1276.

227.Ward ER & Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5'' end of T-strand DNA. Science 242(4880):927-930.

228.Durrenberger F, Crameri A, Hohn B, & Koukolikovanicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc NAtl Acad Sci USA86(23):9154-9158.

229.Young C & Nester EW (1988) Association of the VirD2 protein with the 5'' end of T-strands in Agrobacterium tumefaciens. J Bacteriol 170(8):3367-3374.

230.Christie PJ, Ward JE, Winans SC, & Nester EW (1988) The Agrobacterium tumefaciens VirE2 gene product is a single-stranded-DNA-Binding protein that associates with T-DNA. J Bacteriol 170(6):2659-2667.

231.Citovsky V, Wong ML, & Zambryski P (1989) Cooperative Interaction of Agrobacterium VirE2 protein with single-stranded-DNA- Implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86(4):1193-1197.

232.Gelvin SB (2010) Finding a way to the nucleus. Curr Opin Microbiol 13(1):53-58.

233.Tinland B, Koukolikova-Nicola Z, Hall MN, & Hohn B (1992) The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci USA 89(16):7442-7446.

234.Citovsky V, Zupan J, Warnick D, & Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256(5065):1802-1805.

235.Citovsky V, Warnick D, & Zambryski P (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 91(8):3210-3214.

236.Rossi L, Hohn B, & Tinland B (1993) The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Gene 239(3):345-353.

237.Ziemienowicz A, Gorlich D, Lanka E, Hohn B, & Rossi L (1999) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci USA 96(7):3729-3733.

238.Dumas F, Duckely M, Pelczar P, Van Gelder P, & Hohn B (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98(2):485-490.

239.Koncz C, et al. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86(21):8467-8471.

240.Deng W, et al. (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 95(12):7040-7045.

241.Bako L, Umeda M, Tiburcio AF, Schell J, & Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100(17):10108-10113.

242.Bhattacharjee S, et al. (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20(10):2661-2680.

243.Ballas N & Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94(20):10723-10728.

244.Tzfira T, Vaidya M, & Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20(13):3596-3607.

245.Tzfira T, Vaidya M, & Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99(16):10435-10440.

246.Lacroix B, Vaidya M, Tzfira T, & Citovsky V (2005) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24(2):428-437.

247.Tzfira T & Citovsky V (2005) Nuclear import and export in plants and animals (Landes Bioscience/Eurekah.com; Kluwer Academic/Plenum Publishers, Georgetown, Tex., U.S.A. New York, N.Y.) p 229 p.

248.Tzfira T, Vaidya M, & Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431(7004):87-92.

249.Schrammeijer B, et al. (2001) Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11(4):258-262.

250.Magori S & Citovsky V (2012) The role of the ubiquitin-proteasome system in Agrobacterium tumefaciens-mediated genetic transformation of plants. Plant Physiol 160(1):65-71.

251.Djamei A, Pitzschke A, Nakagami H, Rajh I, & Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318(5849):453-456.

252.Pitzschke A, Djamei A, Teige M, & Hirt H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci USA 106(43):18414-18419.

253.Zhou P & Howley PM (1998) Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell 2(5):571-580.

254.Margottin-Goguet F, et al. (2003) Prophase destruction of Emi1 by the SCF (betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev Cell 4(6):813-826.

255.Magori S & Citovsky V (2011) Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4(195):ra69.

256.Magori S & Citovsky V (2011) Epigenetic control of Agrobacterium T-DNA integration. Biochimi Biophys Acta 1809(8):388-394.

257.Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45-68.

258.Bundock P, Dendulkras A, Beijersbergen A, & Hooykaas PJJ (1995) Transkingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14(13):3206-3214.

259.Bundock P & Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93(26):15272-15275.

260.Park SY, et al. (2015) Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J 81(6):934-946.

261.Lacroix B & Citovsky V (2009) Agrobacterium aiming for the host chromatin: Host and bacterial proteins involved in interactions between T-DNA and plant nucleosomes. Commun Integr Biol 2(1):42-45.

262.Wu HY, Chung PC, Shih HW, Wen SR, & Lai EM (2008) Secretome analysis uncovers an hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 190(8):2841-2850.

263.Planamente S, et al. (2016) TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J35(15):1613-1627.

264.Pukatzki S, Ma AT, Revel AT, Sturtevant D, & Mekalanos JJ (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104(39):15508-15513.

265.Aschtgen MS, Bernard CS, De Bentzmann S, Lloubes R, & Cascales E (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190(22):7523-7531.

266.Shyntum DY, Venter SN, Moleleki LN, Toth I, & Coutinho TA (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 15:163.

267.Aschtgen MS, Thomas MS, & Cascales E (2010) Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence 1(6):535-540.

268.Hsu FS, Schwarz S, & Mougous JD (2009) TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72(5):1111-1125.

269.Willats WG, McCartney L, Mackie W, & Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47(1-2):9-27.

270.Harholt J, Suttangkakul A, & Vibe Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153(2):384-395.

271.Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11(7):359-367.

272.Underwood W (2012) The plant cell wall: a dynamic barrier against pathogen invasion. Front Plant Sci 3:85.

273.Vorwerk S, Somerville S, & Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9(4):203-209.

274.Jia YJ, Feng BZ, Sun WX, & Zhang XG (2009) Polygalacturonase, pectate lyase and pectin methylesterase activity in pathogenic strains of Phytophthora capsici incubated under different conditions. J Phytopathol 157(10):585-591.

275.Jones TM, Albershe.P, & Anderson AJ (1972) Host-pathogen interactions. 4. Studies on polysaccharide-degrading enzymes secreted by Fusarium Oxysporum sp. Lycopersici. Physiol Plant Pathol 2(2):153-&.

276.Perombelon MCM & Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361-387.

277.Annis SL & Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103(1):1-14.

278.Goldberg R, et al. (2001) Control of mung bean pectin methylesterase isoform activities. Influence of pH and carboxyl group distribution along the pectic chains. J Biol Chem 276(12):8841-8847.

279.Yakoby N, et al. (2001) Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol Plant Microbe In 14(8):988-995.

280.Bartling S, vanden Hombergh JPTW, Olsen O, von Wettstein D, & Visser J (1996) Expression of an Erwinia pectate lyase in three species of Aspergillus. Curr Genet 29(5):474-481.

281.Kamper J, et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97-101.

282.Oeser B, Heidrich PM, Muller U, Tudzynski P, & Tenberge KB (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurealrye interaction. Fungal Genet Biol 36(3):176-186.

283.Wubben JP, Mulder W, Ten Have A, Van Kan JAL, & Visser J (1999) Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol 65(4):1596-1602.

284.Jakob K, Kniskern JM, & Bergelson J (2007) The role of pectate lyase and the jasmonic acid defense response in Pseudomonas viridiflava virulence. Mol Plant Microbe In 20(2):146-158.

285.Rajeshwari R, Jha G, & Sonti RV (2005) Role of an in planta-expressed xylanase of Xanthomonas oryzae pv. oryzae in promoting virulence on rice. Mol Plant Microbe In 18(8):830-837.

286.Charkowski AO, et al. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180(19):5211-5217.

287.Rodriguezpalenzuela P, Burr TJ, & Collmer A (1991) Polygalacturonase is a virulence factor in Agrobacterium tumefaciens biovar-3. J Bacteriol 173(20):6547-6552.

288.Shieh MT, et al. (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63(9):3548-3552.

289.Valette-Collet O, Cimerman A, Reignault P, Levis C, & Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe In 16(4):360-367.

290.Wang L, Rong W, & He C (2008) Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol Plant Microbe In 21(5):555-563.

291.Cantu D, Vicente AR, Labavitch JM, Bennett AB, & Powell ALT (2008) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13(11):610-617.

292.Rong L, et al. (1990) picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 172(10):5828-5836.

293.Rong LJ, Karcher SJ, & Gelvin SB (1991) Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 173(16):5110-5120.

294.Xiao ZH, et al. (2008) Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Appl Environ Microbiol 74(4):1183-1189.

295.Bruhlmann F, Kim KS, Zimmerman W, & Fiechter A (1994) Pectinolytic enzymes from Actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbiol 60(6):2107-2112.

296.Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4):402-408.

297.Buchan DWA, Minneci F, Nugent TCO, Bryson K, & Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41(W1):W349-W357.

298.Kelley LA & Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4(3):363-371.

299.Jakob K, Kniskern JM, & Bergelson J (2007) The role of pectate lyase and the jasmonic acid defense response in Pseudomonas viridiflava virulence. Mol Plant Microbe In 20(2):146-158.

300.Barras F, Vangijsegem F, & Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201-234.

301.Collmer A & Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383-409.

302.Shieh MT, et al. (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63(9):3548-3552.

303.De Lorenzo G, D''Ovidio R, & Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPS) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313-335.

304.Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11(7):359-367.

305.Hachani A, et al. (2011) Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 286(14):12317-12327.

306.Benz J & Meinhart A (2014) Antibacterial effector/immunity systems: it''s just the tip of the iceberg. Curr Opin Microbiol 17:1-10.

307.Hachani A, Wood TE, & Filloux A (2016) Type VI secretion and anti-host effectors. Curr Opin Microbiol 29:81-93.

308.Herron SR, Benen JA, Scavetta RD, Visser J, & Jurnak F (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci USA 97(16):8762-8769.

309.Collmer A, Ried JL, & Mount MS (1988) Assay methods for pectic enzymes. Method Enzymol 161:329-335.

310.Milner SE & Maguire AR (2012) Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Arkivoc:321-382.

311.Burns B, Mendz G, & Hazell S (1998) Methods for the measurement of a bacterial enzyme activity in cell lysates and extracts. Biol Proced Online 1:17-26.

312.Yang J, Tian B, Liang L, & Zhang KQ (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75(1):21-31.

313.Studier FW, Rosenberg AH, Dunn JJ, & Dubendorff JW (1990) Use of T7 RNA-polymerase to direct expression of cloned genes. Method Enzymol 185:60-89.

314.Altindis E, Dong T, Catalano C, & Mekalanos J (2015) Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. MBio 6(2):e00075.

315.Diniz JA & Coulthurst SJ (2015) Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 197(14):2350-2360.

316.Flaugnatti N, et al. (2016) A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99(6):1099-1118.

317.Chou S, et al. (2015) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 518(7537):98-101.

318.Metcalf JA, Funkhouser-Jones LJ, Brileya K, Reysenbach AL, & Bordenstein SR (2014) Antibacterial gene transfer across the tree of life. Elife 3.

319.Kapitein N, et al. (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87(5):1013-1028.

320.Horton RM, Hunt HD, Ho SN, Pullen JK, & Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes- gene-splicing by overlap extension. Gene 77(1):61-68.

321.Liu AC, Shih HW, Hsu T, & Lai EM (2008) A citrate-inducible gene, encoding a putative tricarboxylate transporter, is downregulated by the organic solvent DMSO in Agrobacterium tumefaciens. J Appl Microbiol 105(5):1372-1383.

322.Marchler-Bauer A & Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327-W331.

323.Arnold K, Bordoli L, Kopp J, & Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinfo 22(2):195-201.

324.Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinfo 9.

325.Lovell SC, et al. (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50(3):437-450.

326.Wallner B & Elofsson A (2003) Can correct protein models be identified? Protein Sci 12(5):1073-1086.

327.Holm L & Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545-W549.

328.Vergunst AC, et al. (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290(5493):979-982.

329.Schmidt-Eisenlohr H, Domke N, & Baron C (1999) TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular-weight structures in Escherichia coli. J Bacteriol 181(18):5563-5571.

330.Quandt J & Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127(1):15-21.

331.Schneider CA, Rasband WS, & Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods9(7):671-675.

332.Wang YD, Zhao S, & Hill CW (1998) Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 180(16):4102-4110.

333.Ho BT, Dong TG, & Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe15(1):9-21.

334.Brunet YR, Espinosa L, Harchouni S, Mignot T, & Cascales E (2013) Imaging type VI secretion-mediated bacterial killing. Cell reports 3(1):36-41.

335.Chang JH & Kim YG (2015) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol 53(1):32-37.

336.Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32(5):1792-1797.

337.Guindon S, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307-321.

338.Groves CP & Paterson JD (1991) Testing hominoid phylogeny with the Phylip programs. J Hum Evol 20(2):167-183.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔