跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝丞凱
研究生(外文):Cheng-Kai Heish
論文名稱:菸草基因NbRTE1參與竹嵌紋病毒複製之研究
論文名稱(外文):The study of NbRTE1 from Nicotiana benthamiana involved in the replication of Bamboo mosaic virus
指導教授:蔡慶修蔡慶修引用關係
口試委員:林納生徐堯煇鄭綺萍
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:30
中文關鍵詞:菸草基因竹嵌紋病毒
外文關鍵詞:RTE1Bamboo mosaic virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
竹嵌紋病毒(Bamboo mosaic virus)是一正極單股核糖核酸的病毒,被分類於alpha-flexiviridae科Potexvirus屬。我們利用cDNA-AFLP技術篩選出在本氏菸草(Nicotiana benthamiana)中在經過竹嵌紋病毒感染後,針對具有不同表現量的宿主基因進行研究。其中有一感染後表現量下降的基因片段ACTG7-1,與阿拉伯芥(Arabidopsis)中的REVERSION-TO-ETHYLENE SENSITIVITY (RTE1)具有59%的相同。我們利用基因靜默技術(virus-induced gene silencing, VIGS)探討NbRTE1在竹嵌紋病毒感染過程中扮演的功能。前人以NbRTE1-靜默的原生質體進行竹嵌紋病毒的接種實驗指出NbRTE1在竹嵌紋病毒複製過程中可能扮演抑制病毒複製的角色。因此為釐清NbRTE1是如何參與病毒的複製,我將針對ethylene的訊息傳遞路徑進行探討,首先根據前人的研究指出阿拉伯芥中的RTE1是位於內質網膜(ER membrane)上,因此我們利用共軛焦顯微鏡及過表現目標蛋白-螢光蛋白的技術去證實菸草的NbRTE1確實是位於內質網膜上。由於RTE1在阿拉伯芥中是參與了乙烯的訊息途徑,會專一的與膜上的乙烯接受器ETR1結合,因此我利用了VIGS的技術將NbETR1的表現量下降至18%時竹嵌紋病毒之鞘蛋白降低至75%。這與我們所期待中的結果不同,如果乙烯的訊息途徑參與了竹嵌紋病毒的複製,降低NbETR1的結果應該會與NbRTE1的結果相似。更進一步的,我利用乙烯抑制劑去減少內生性的乙烯訊息分子,發現施加抑制劑後,竹嵌紋病毒之鞘蛋白與控制組並無太大差異。因此我們推測NbRTE1並非是經由乙烯途徑去影響竹嵌紋病毒之複製。

Bamboo mosaic virus (BaMV) is a single-stranded positive-sense RNA virus which belongs to the Potexvirus of alphaflexiviridae. We used cDNA-amplified fragment length polymorphism technique to screen the differentially expressed genes of Nicotiana benthamiana post BaMV inoculation. One of downregulated genes, ACTG7-1, sharing 59% identify to REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) of Arabidopsis was further investigated. We used virus-induced gene silencing (VIGS) technique to knock down the expression of RTE1 and investigate the involvement of NbRTE1 in BaMV infection cycle. The results derived from previous studies revealed that NbRTE1 could negatively regulate the replication of BaMV. My research goals are aiming at the localization of NbRTE1 in cell by using confocal microscopy and clarifying whether the ethylene response pathway is involved in BaMV infection. The RTE1 in Arabidopsis was reported to associate with endoplasmic reticulum (ER), accordingly the localization of NbRTE1 on the ER needs to be confirmed. Because RTE1 is one of the components in the ethylene response pathway and is involved in BaMV replication in N. benthamiana, we would like to examine more components in the pathway and inspect if they are also involved in BaMV infection. NbETR1, the ethylene receptor, specifically interacts with RTE1 to transduce the signaling. The results derived from VIGS indicated that the expression level of ETR1 was decreased to 18% that of the control plants, the accumulation of BaMV coat protein was reduced to 75%. To further inspect if ethylene is involve in the BaMV infection cycle, we have treated the protoplasts with the ethylene inhibitor to block the signaling pathway. The results revealed no significant difference of the BaMV accumulation. Overall, the results suggest that NbRTE1 involved in BaMV replication might not go through the ethylene signaling pathway. The mechanism of NbRTE1 involved in BaMV replication is still need to be clarified

Content
中文摘要 i
Abstract ii
Introduction 1
Bamboo mosaic virus 1
REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) in ethylene pathway 2
NbRTE1 negatively regulated the replication of BaMV 3
Aim 4
Materials and Methods 5
Virus-induced gene silencing 5
BaMV isolation 5
Protoplasts preparation 6
Transient expression of NbRTE1-OFP fusion protein 6
Western blotting assay 7
Total RNA extraction and real-time PCR 8
Ethylene treatment 8
Results 9
The replication of BaMV is promoted in NbRTE1-knockdown plants. 9
The fusion protein OFP-NbRTE1 is localized at endoplasmic reticulum of N. benthamiana 9
The ethylene pathway is not involved in the accumulation of BaMV. 9
Transient expression of NbRTE1 decreases the accumulation of BaMV. 11
Discussion 12
Figure 14
Appendix Figure. 1. Model for the ethylene signaling pathway (Ju and Chang, 2015).. 14
Fig. 1. The expression levels of NbRTE1 in Luc- and NbRTE1-knockdown plants. 15
Fig. 2. Localization of OFP-NbRTE1 in N. benthamiana protoplasts examined by confocal microscopy.. 16
Fig. 3. The full-length cDNA sequence of NbETR1 retrieved from the data base of Nicotiana benthamiana provided by The University of Sydney. 18
Fig. 4. The amino acid sequence alignment of NbETR1 and NtETR1.. 20
Fig. 5. The expression levels of NbETR1 in control and knockdown N. benthatmiana plants.. 21
Fig. 6. The accumulation levels of BaMV coat protein in control and NbETR1-knockdown plants.. 22
Fig. 7. The effect of silver thiosulfate (STS) on the accumulation of BaMV.. 23
Fig. 8. The accumulation levels of BaMV coat protein in NbRTE1-OFP or OFP-NbRTE1 transiently over-expressed plants. 24
Reference 25


Adams, M. J., Accotto, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Brunt, A. A., Candresse, T., Coutts, R. H. A., Dolja, V. V., Falk, B. W., 2005. Family flexiviridae. Virus taxonomy: classification and nomenclature of viruses, 1089-1124.
Alazem, M., Lin, K. Y., Lin, N. S., 2014. The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Molecular Plant-Microbe Interactions Journal 27, 177-189.
Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J. R., 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284, 2148-2152.
Alonso, J. M., Stepanova, A. N., 2004. The ethylene signaling pathway. Science 306, 1513-1515.
An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., 2010. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell 22, 2384-2401.
Ballut, L., Drucker, M., Pugniere, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H. P., Nicolas, P., Le Gall, O., 2005. HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology 86, 2595-2603.
Barry, C. S., Giovannoni, J. J., 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America 103, 7923-7928.
Bisson, M. M., Groth, G., 2015. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway. Molecular Plant 8, 1165-1174.
Chang, C., Kwok, S. F., Bleecker, A. B., Meyerowitz, E. M., 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539-544.
Chang, J., Clay, J. M., Chang, C., 2014. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. The Plant Journal 77, 558-567.
Chen, H. C., Kong, L. R., Yeh, T. Y., Cheng, C. P., Hsu, Y. H., Lin, N. S., 2012. The conserved 5′ apical hairpin stem loops of bamboo mosaic virus and its satellite RNA contribute to replication competence. Nucleic acids research, gks030.
Chen, I., Chiu, M. H., Cheng, S. F., Hsu, Y. H., Tsai, C. H., 2013. The glutathione transferase of Nicotiana benthamiana NbGSTU4 plays a role in regulating the early replication of Bamboo mosaic virus. New Phytologist 199, 749-757.
Chen, R., Binder, B. M., Garrett, W. M., Tucker, M. L., Chang, C., Cooper, B., 2011. Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular BioSystems 7, 2637-2650.
Chen, S. C., Desprez, A., Olsthoorn, R. C. L., 2010. Structural homology between bamboo mosaic virus and its satellite RNAs in the 5′ untranslated region. Journal of General Virology 91, 782-787.
Chen, Y. F., Shakeel, S. N., Bowers, J., Zhao, X. C., Etheridge, N., Schaller, G. E., 2007. Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. Journal of Biological Chemistry 282, 24752-24758.
Cheng, S. F., Huang, Y. P., Wu, Z. R., Hu, C. C., Hsu, Y. H., Tsai, C. H., 2010. Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism. BioMed Central Plant Biology 10, 1.
Clark, K. L., Larsen, P. B., Wang, X., Chang, C., 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proceedings of the National Academy of Sciences of the United States of America 95, 5401-5406.
Cruz, S. S., Roberts, A. G., Prior, D. A. M., Chapman, S., Oparka, K. J., 1998. Cell-to-cell and phloem-mediated transport of potato virus X: The role of virions. Plant Cell 10, 495-510.
Dong, C. H., Jang, M., Scharein, B., Malach, A., Rivarola, M., Liesch, J., Groth, G., Hwang, I., Chang, C., 2010a. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. Journal of Biological Chemistry 285, 40706-40713.
Dong, C. H., Jang, M., Scharein, B., Malach, A., Rivarola, M., Liesch, J., Groth, G., Hwang, I., Chang, C., 2010b. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. Journal of Biological Chemistry 285, 40706-40713.
Dong, C. H., Rivarola, M., Resnick, J. S., Maggin, B. D., Chang, C., 2008. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant Journal 53, 275-286.
Fontecave, M., Atta, M., Mulliez, E., 2004. S-adenosylmethionine: nothing goes to waste. Trends in Biochemical Sciences 29, 243-249.
Gao, Z., Chen, Y. F., Randlett, M. D., Zhao, X. C., Findell, J. L., Kieber, J. J., Schaller, G.E., 2003. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. Journal of Biological Chemistry 278, 34725-34732.
Grefen, C., Stadele, K., Růžička, K., Obrdlik, P., Harter, K., Horak, J., 2008. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Molecular Plant 1, 308-320.
Hirayama, T., Kieber, J. J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J. M., Dailey, W. P., Dancis, A., Ecker, J. R., 1999. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease–related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383-393.
Hua, J., Chang, C., Sun, Q., Meyerowitz, E. M., 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269, 1712-1714.
Huang, Y., Li, H., Hutchison, C. E., Laskey, J., Kieber, J. J., 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. The Plant Journal 33, 221-233.
Huang, Y. W., Hu, C. C., Liou, M. R., Chang, B. Y., Tsai, C. H., Meng, M. H., Lin, N. S., Hsu, Y. H., 2012. Hsp90 interacts specifically with viral RNA and differentially regulates replication initiation of Bamboo mosaic virus and associated satellite RNA. Public Library of Science Pathogens 8, e1002726.
Hung, C. J., Hu, C. C., Lin, N. S., Lee, Y. C., Meng, M. H., Tsai, C. H., Hsu, Y. H., 2014. Two key arginine residues in the coat protein of Bamboo mosaic virus differentially affect the accumulation of viral genomic and subgenomic RNAs. Molecular Plant Pathology 15, 196-210.
Hyodo, K., Okuno, T., 2014. Host factors used by positive-strand RNA plant viruses for genome replication. Journal of General Plant Pathology 80, 123-135.
Ivanov, K. I., Makinen, K., 2012. Coat proteins, host factors and plant viral replication. Current Opinion in Virology 2, 712-718.
Ju, C., Chang, C., 2012. Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. Annals of Botany Plants 2012, pls031.
Ju, C., Chang, C., 2015. Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiology 169, 85-95.
Kao, Y. S., 2011. The study of NbDXR from Nicotiana benthamiana involving the infection cycle of Bamboo mosaic virus. 1-33.
Kende, H., 1993. Ethylene Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 44, 283-307.
Lan, P., Yeh, W. B., Tsai, C. W., Lin, N. S., 2010. A unique glycine-rich motif at the N-terminal region of Bamboo mosaic virus coat protein is required for symptom expression. Molecular Plant-Microbe Interactions Journal 23, 903-914.
Lee, C. C., Ho, Y. N., Hu, R. H., Yen, Y. T., Wang, Z. C., Lee, Y. C., Hsu, Y. H., Meng, M. H., 2011. The Interaction between Bamboo Mosaic Virus Replication Protein and Coat Protein Is Critical for Virus Movement in Plant Hosts. Journal of Virology 85, 12022-12031.
Li, Y. I., Cheng, Y. M., Huang, Y. L., Tsai, C. H., Hsu, Y. H., Meng, M. H., 1998. Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. Journal of Virology 72, 10093-10099.
Li, Y. I., Shih, T. W., Hsu, Y. H., Han, Y. T., Huang, Y. L., Meng, M. H., 2001a. The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5′ cap structure by exhibiting RNA 5′-triphosphatase activity. Journal of Virology 75, 12114-12120.
Li, Y. I., Chen, Y. J., Hsu, Y. H., Meng, M. H., 2001b. Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase. Journal of Virology 75, 782-788.
Lin, M. K., Chang, B. Y., Liao, J. T., Lin, N. S., Hsu, Y. H., 2004. Arg-16 and Arg-21 in the N-terminal region of the triple-gene-block protein 1 of Bamboo mosaic virus are essential for virus movement. The Journal of General Virology 85, 251-259.
Lin, M. T., Kitajima, E. W., Cupertino, F. P., Costa, C. L., 1977. Partial purification and some properties of bamboo mosaic virus. Phytopathology 67, 1439-1443.
Lin, N. S., Lin, B. Y., Lo, N. W., Hu, C. C., Chow, T. Y., Hsu, Y. H., 1994. Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. The Journal of General Virology 75 ( Pt 9), 2513-2518.
Maggio, C., Barbante, A., Ferro, F., Frigerio, L., Pedrazzini, E., 2007. Intracellular sorting of the tail-anchored protein cytochrome b5 in plants: a comparative study using different isoforms from rabbit and Arabidopsis. The Journal of Experimental Botany 58, 1365-1379.
Nelson, B. K., Cai, X., Nebenfuhr, A., 2007. A multicolored set of in vivo organelle markers for co‐localization studies in Arabidopsis and other plants. The Plant Journal 51, 1126-1136.
Qiao, H., Shen, Z., Huang, S. S., Schmitz, R. J., Urich, M. A., Briggs, S. P., Ecker, J. R., 2012. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338, 390-393.
Qiu, L., Xie, F., Yu, J., Wen, C. K., 2012. Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant physiology 159, 1263-1276.
Resnick, J. S., Wen, C. K., Shockey, J. A., Chang, C., 2006. Reversion-to-Ethylene Sensitivity1, a Conserved Gene That Regulates Ethylene Receptor Function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 7917-7922.
Rivarola, M., McClellan, C. A., Resnick, J. S., Chang, C., 2009. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiology 150, 547-551.
Sakai, H., Hua, J., Chen, Q. G., Chang, C., Medrano, L. J., Bleecker, A. B., Meyerowitz, E. M., 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 95, 5812-5817.
Shakeel, S. N., Gao, Z., Amir, M., Chen, Y. F., Rai, M. I., Haq, N. U., Schaller, G. E., 2015. Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana. Journal of Biological Chemistry 290, 12415-12424.
Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., Tsien, R. Y., 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods 5, 545-551.
Tsai, C. H., Cheng, C. P., Peng, C. W., Lin, B. Y., Lin, N. S., Hsu, Y. H., 1999. Sufficient length of a poly (A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. Journal of Virology 73, 2703-2709.
Wang, H. C., 2012. The study of the ACTG7-1 from Nicotiana benthamiana involving in the replication of Bamboo mosaic virus. 1-32.
Wilkinson, J. Q., Lanahan, M. B., Yen, H. C., Giovannoni, J. J., Klee, H. J., 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270, 1807-1809.
Zhou, X., Liu, Q., Xie, F., Wen, C. K., 2007. RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiology 145, 75-86.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top