(3.236.214.19) 您好!臺灣時間:2021/05/06 21:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳政佑
研究生(外文):Cheng-Yu Chen
論文名稱:褐色嗜熱裂孢菌單銅多酚氧化酶的性質分析與其在木質纖維素降解過程的應用潛力探討
論文名稱(外文):Enzymatic Properties of a Monocopper Polyphenol Oxidase from Thermobifida fusca and its Application Potential in Lignocellulose Degradation Process
指導教授:孟孟孝楊昭順
口試委員:李昆達趙雲鵬黃介辰
口試日期:2016-05-31
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:褐色嗜熱裂孢菌單銅多酚氧化酶蔗渣木質素
外文關鍵詞:Thermobifida fuscaMonocopper Polyphenol OxidaseBagasseLignin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
褐色嗜熱裂孢菌(Thermobifida fusca) 是一株從堆肥中分離的嗜中高溫放線細菌。T. fusca具有良好降解木質纖維素的能力。其能分泌木聚醣酶、纖維酶、聚甘露醣酶及乙醯聚木糖酯酶等木質纖維素水解相關酵素。但是過去的研究卻未發現T. fusca有促進木質素降解的酵素。T. fusca具有利用蔗渣作為碳源的能力,所以本研究將T. fusca以蔗渣為單一碳源的胞外培養液與蔗渣進行混合。將能與蔗渣結合的胞外蛋白質以液相層析質譜儀進行分析後,將分析結果與資料庫進行比對。在比對出的蛋白質中含有一個推測性的含銅多酚氧化酶(染色體中基因座編號Tfu_1114的產物)。此含銅多酚氧化酶(本文稱為Tfu1114)含241個胺基酸殘基,分子量為24.7 kDa。其胺基酸序列與美國國家生物技術訊息中心 (NCBI) 資料庫中分離自牛胃微生物的漆酶RL5具有同源性,所以推測Tfu1114可以扮演降解木質素的角色。本研究將Tfu1114成功表現於大腸桿菌中,並且利用固定化鎳離子親和性層析法進行純化。純化後之Tfu1114能催化木質素相關的酚類與非酚類化合物―例如2,6-二甲氧基酚及藜蘆醇―進行氧化反應。Tfu1114在90℃、pH 8.0的條件下半衰期為4.7小時,並且在同樣的條件下,Tfu1114對於的低碳醇類 (甲醇、乙醇、異丙醇)及常見有機溶劑 (丙酮、乙腈)具有耐受性。EDTA及還原劑―如二硫蘇糖醇、-巰基乙醇―會抑制其活性。一般而言,疉氮化鈉對於真菌的漆酶具有強烈的抑制作用,但是Tfu1114對於疊氮化鈉具有良好的耐受性。由原子吸收光譜儀證實Tfu1114是含銅蛋白質,且銅離子與蛋白質單體比例為1。Tfu1114能夠增強木聚醣酶及纖維酶對蔗渣的水解效能。本研究進一步證明Tfu1114在氧化2,6-二甲氧基酚、鹼木質素或蔗渣時,同時將氧分子還原成過氧化氫。此外,Tfu1114能夠修飾鹼木質素,造成總酚含量減少及平均分子量分布向小分子位移。在經過Tfu1114處理過的蔗渣水解物中能夠偵測到雙木質醇如丁香酯酚及刺花椒醇。傅立葉轉換紅外線光譜分析結果顯示Tfu1114能打斷木質素芳香結構相鄰的C-C鍵結或C-O鍵結。處理後的甘蔗渣可以觀察到細胞壁結構顯著的遭到破壞。總體而言,Tfu1114為一個新穎且有潛力的木質素降解酵素,有助於建立一個友善環境的木質纖維素利用方式。

Thermobifida fusca is a moderately thermophilic actinomycetes isolated from compost. T. fusca is good at lignocellulose degradation. It can secrete xylanase, cellulase, mannanase, acetylxylan esterase and other lignocellulosic hydrolysis enzymes. However, no lignin degradation enzyme from T. fusca has been reported. In this study, sugarcane bagasse was used as the sole carbon source and the extracellular proteins able to bind the bagasse were isolated. The bagasse-binding proteins were identified using liquid chromatography-tandem mass spectrometry. Among them, a putative copper containing polyphenol oxidase of Tfu_1114 gene locus was particularly noted. This oxidase (referred to hereafter as Tfu1114) contains 241 amino acid residues with a molecular weight of 24.7 kDa. It shares homology in amino acid sequence with laccase RL5 that was isolated from rumen metagenome; therefore, Tfu1114 was thought to possibly play a role in lignin degradation. In this study, Tfu 1114 was successfully expressed in E. coli and purified by immobilized nickel affinity chromatography. The purified Tfu1114 is able to catalyze the oxidation reaction of phenolic and nonphenolic lignin related compounds such as 2,6-dimethoxyphenol and veratryl alcohol. It has a half-life of 4.7 h at 90°C in pH 8.0. Tfu1114 is tolerant of low carbon alcohols (methanol, ethanol, and isopropanol) and common organic solvents (acetone and acetonitrile). EDTA and reducing agents such as dithiothreitoland -mercaptoethanol inhibited the activity of Tfu1114. Interestingly, Tfu1114 was tolerant of sodium azide, a strong inhibitor of fungal laccase. Atomic absorption spectrometry indicated that Tfu1114 is a copper-containing protein and the ratio of copper to the protein monomer is 1. Tfu1114 can enhance the hydrolysis efficiency of sugarcane bagasse with xylanase and cellulase. This study also demonstrates that Tfu1114 catalyzes the oxidation of 2,6-dimethoxyphenol, alkaline lignin, or sugarcane bagasse with the reduction of molecular oxygen to hydrogen peroxide. To alkaline lignin, treatment with Tfu1114 reduced the total phenolic content and shifted the molecular weight distribution to species with smaller sizes. The dilignol subunits such as syringaresinol and simulanol could be detected in the bagasse hydrolysate after the treatment with Tfu1114. Fourier transform infrared spectrometry suggested that Tfu1114 promotes the breaks of C-C, C-O bonds adjacent to aromatic rings. Observations of the Tfu1114-treated bagasse using a scanning electron microscope indicated significant disruption in the cell wall structure. Collectively, Tfu1114 is a novel and potential lignin-degrading enzymes, helpful for setting up an environment-friendly process for lignocellulose utilization.

一、前言 1
(一) 農業廢棄木質纖維素及甘蔗渣 1
(二) 木質纖維素 1
(三) 木質素 2
(五) 降解木質素相關酵素及機制 5
(六) 嗜高溫放線菌-T. fusca 11
(七) 銅氧化酶 12
二、實驗目的 17
三、材料與方法 17
(一) 使用菌株及載體 17
(二) 培養基質之製備 17
(三) 培養基組成 20
(四) 嗜高溫放線菌的培養 21
(五) DNA 分析用之緩衝液組成 21
(六) 聚合酶連鎖反應(polymerase chain reaction; PCR) 22
(七) DNA之操作 23
(八) 氧化酶活性測定 25
(九) 木聚醣酶活性測定 25
(十) 纖維酶活性測定 25
(十一) DNS法測定還原糖量 26
(十二) Tfu1114之酵素表現及純化 26
(十三) 木聚醣酶及纖維酶之表現及純化 27
(十四) 蛋白質定量 27
(十五) 蛋白質聚丙醯胺膠體電泳 27
(十六) 不同二價金屬對於 Tfu1114之影響 29
(十七) Tfu1114對於木聚醣酶及纖維酶水解蔗渣之影響 30
(十八) Tfu1114對於木聚醣酶水解蔗渣之影響 30
(十九) 以掃描式電子顯微鏡進行水解蔗渣之觀察 30
(二十) 以石墨爐原子吸收光譜儀偵測Tfu1114之含銅比例 30
(二十一) 過氧化氫產量分析 30
(二十二) 以高效能分子篩層析及分光光度計分析鹼木質素 31
(二十三) 總分含酚含量測定 31
(二十四) 製備預水解蔗渣 31
(二十五) Tfu1114水解纖維酶預處理之蔗渣 32
(二十六) 液相層析質譜儀分析 32
(二十七) 衰減全反射式傅立葉紅外線光譜儀分析 33
(二十八) 掃描式電子顯微鏡 33
三、結果 34
(一) 以不同培養基探討T. fusca BCRC19214誘導多酚氧化酶之影響 34
(二) 透過含蔗渣之醱酵液進行結合蔗渣之胞外蛋白之身分鑑定 34
(三) Tfu1114 表現及純化 39
(四) Tfu1114 氧化常見漆酶基質之特異性探討 39
(五) Tfu1114 最適溫度及熱穩定性之探討 39
(七) Tfu1114 銅離子含量測定 44
(八) 金屬離子對Tfu1114活性之影響 44
(九) 有機溶劑對於對Tfu1114活性之影響 46
(十) 常見抑制劑對於對Tfu1114活性之影響 46
(十一) Tfu1114幫助纖維酶/半纖維酶水解甘蔗渣 46
(十二) Tfu1114對於幫助木聚醣酶水解甘蔗渣之影響 47
(十三) 利用掃描式電子顯微鏡觀察經水解後之甘蔗渣 47
(十四) 探討Tfu1114對於甘蔗渣之結合能力 47
(十五) 探討Tfu1114氧化產生過氧化氫 51
(十六) 探討Tfu1114對於鹼木質素之總酚含量及分子量分布變化 51
(十七) 以液相層析串聯質譜儀探討Tfu1114修飾蔗渣中木質素之影響 60
(十八) 以液相層析串聯質譜儀探討Tfu1114修飾蔗渣中木質素之產物 60
(十九) 以傅立葉紅外線轉換 (FT-IR)光譜儀分析探討Tfu1114修飾蔗渣中之木質素影響 65
(二十) 以掃瞄式電子顯微鏡 (SEM)分析探討Tfu1114對於蔗渣之影響 73
四、討論 76
五、附件 84
附件一、含蔗渣之基礎培養基培養T. fusca BCRC19214後之蔗渣利用狀況 84
附件二、Tfu1114結合於蔗渣之胞外蛋白 85
附件三、Tfu1114基質特異性 86
附件四、溫度對於Tfu1114活性及穩定性之影響 87
附件五、pH對於Tfu1114活性及穩定性之影響 88
附件六、探討有機溶劑對於Tfu1114氧化2,6-DMP活性之影響 89
附件七、抑制劑對於Tfu1114氧化2,6-DMP活性之影響 90
六、參考資料 91



Adav SS, Ng CS, Arulmani M, Sze SK (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. Journal of Proteome Research 9(6):3016-3024
Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Molecular Biosystems 6(5):815-821
Aiello C, Ferrer A, Ledesma A (1996) Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technology 57(1):13-18
Aigbodion V, Hassan S, Ause T, Nyior G (2010) Potential utilization of solid waste (bagasse ash). Journal of Minerals & Materials Characterization & Engineering 9(1):67-77
Agrawal A, Kaushik N, Biswas S (2014) Derivatives and Applications of Lignin – An Insight. The Scitech Journal 1(7):30-36
Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends in Biotechnology 18(2):41-42
Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771-783
Avigad G, Amaral D, Asensio C, Horecker B (1962) The D-galactose oxidase of Polyporus circinatus. Journal of Biological Chemistry 237(9):2736-2743
Balakshin M, Chen CL, Gratzl JS, Kirkman AG, Jakob H (2001) Biobleaching of pulp with dioxygen in laccase-mediator system-effect of variables on the reaction kinetics. Journal of Molecular Catalysis B: Enzymatic 16(3):205-215
Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiology Reviews 30(2):215-242
Bao W, O''Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260(5108):672-674
Barrett F, Andersen S (1981) Phenoloxidases in larval cuticle of the blowfly, Calliphora vicina. Insect Biochemistry 11(1):17-23
Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine Rumen biochemical properties, structural analysis, and phylogenetic relationships. Journal of Biological Chemistry 281(32):22933-22942
Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41(23):7325-7333
Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Biology 54(1):519-546
Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Applied and Environmental Microbiology 48(4):849-854
Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. Journal of the American Chemical Society 133(45):18006-18009
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011a) Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports 28(12):1883-96 doi:10.1039/c1np00042j
Bugg TD, Ahmad M, Hardiman EM, Singh R (2011b) The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology 22(3):394-400
Busch J, Stutzenberger F (1997) Amylolytic activity of Thermomonospora fusca. World Journal of Microbiology and Biotechnology 13(6):637-642
Bykov I (2008) Characterization of natural and technical lignins using FTIR spectroscopy. Unpublished master’s thesis, Lulea University of Technology, Department of Chemical Engineering and Geosciences, Lulea, Sweden
Call H, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of Biotechnology 53(2):163-202
Camarero S, Bockle B, Martinez MJ, Martinez AT (1996) Manganese-Mediated Lignin Degradation by Pleurotus pulmonarius. Applied and Environmental Microbiology 62(3):1070-1072
Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martı́nez MaJ, Martı́nez ÁT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry 274(15):10324-10330
Chen CY, Hsieh ZS, Cheepudom J, Yang CH, Meng M (2013a) A 24.7-kDa copper-containing oxidase, secreted by Thermobifida fusca, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse. Applied Microbiology and Biotechnology 97(20):8977-8986
Chen CY, Huang YC, Wei CM, Meng M, Liu WH, Yang CH (2013b) Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express 3(1):1-9
Chen H (2011) Biotechnology of Lignocellulose:Theory and Practice. Springer, pp 316
Cheng YF, Yang CH, Liu WH (2005) Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast Pichia pastoris. Enzyme and Microbial Technology 37(5):541-546
Claus H (2004) Laccases: structure, reactions, distribution. Micron 35(1):93-96
Cohen R, Hadar Y, Yarden O (2001) Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environmental Microbiology 3(5):312-322
Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnology Advances 24(5):500-513
Couto SR, Sanromán M, Hofer D, Gübitz G (2004) Production of laccase by Trametes hirsuta grown in an immersion bioreactor and its application in the docolorization of dyes from a leather factory. Engineering in Life Sciences 4(3):233-238
Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology 1(1): 36-50.
de la Rubia T, Linares A, Pérez J, Muñoz-Dorado J, Romera J, Martı́nez J (2002) Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Research in Microbiology 153(8):547-554
Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends in Biochemical Sciences 25(8):392-397
Dooley DM, McGuirl MA, Brown DE, Turowski PN, Mclntire WS, Knowles PF (1991) A Cu (I)-semiquinone state in substrate-reduced amine oxidases. Nature 349:262-264
Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Journal of Biological Inorganic Chemistry 11(4):514-526
Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technology 96(18):2019-2025
Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of Biochemistry 133(5):671-677
Enoki A, Hirano T, Tanaka H (1993) Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Materials and Organisms 27(4):243-261
Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 45(s1):21-28
Ferraroni M, Myasoedova N, Schmatchenko V, Leontievsky A, Golovleva L, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Structural Biology 7(1):60
Freudenberg K (1965) Lignin: Its Constitution and Formation from p-Hydroxycinnamyl Alcohols: Lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure. Science 148(3670):595-600
Gómez‐Toribio V, Martinez AT, Martinez MJ, Guillén F (2001) Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. European Journal of Biochemistry 268(17):4787-4793
Gerdemann C, Eicken C, Krebs B (2002) The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins. Accounts of Chemical Research 35(3):183-191
Germann UA, Müller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms of Neurospora crassa laccase. Amino-and carboxyl-terminal processing of a precursor. Journal of Biological Chemistry 263(2):885-896
Ghodake GS, Kalme SD, Jadhav JP, Govindwar SP (2009) Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes. Applied Biochemistry and Biotechnology 152(1):6-14
Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 114(3):1077-1083
Gottschalk LM, Bon EP, Nobrega R (2008) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Biotechnology for Fuels and Chemicals. Springer, pp 391-400
Guillén F, Martínez MJ, Gutiérrez A (2005) Biodegradation of lignocellu-losics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 8:195-204
Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl‐alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. European Journal of Biochemistry 209(2):603-611
Guillen F, Martinez MJ, Munoz C, Martinez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Archives of Biochemistry and Biophysics 339(1):190-9 doi:10.1006/abbi.1996.9834
Hakulinen N, Kruus K, Koivula A, Rouvinen J (2006) A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochemical and Biophysical Research Communications 350(4):929-934
Hatakka A (2005) Biodegradation of lignin. Biopolymers Online doi: 10.1002/3527600035.bpol1005
Heinfling A, Ruiz-Dueñas FJ, Martı́nez MaJ, Bergbauer M, Szewzyk U, Martı́nez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Letters 428(3):141-146
Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D (2007) Focal plane array infrared imaging: a new way to analyse leaf tissue. New Phytologist 173(1):216-225.
Henriksson G, Zhang L, Li J, Ljungquist P, Reitberger T, Pettersson G, Johansson G (2000) Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? Biochimica et Biophysica Acta 1480(1-2):83-91
Higuchi T (1971) Formation and biological degradation of lignins. Advances in Enzymology and Related Areas of Molecular Biology 34:207-283
Higuchi T (1985) Biosynthesis of lignin. Biochemistry of wood components. Academic Press, pp 141-160
Hildén KS, Bortfeldt R, Hofrichter M, Hatakka A, Lundell TK (2008) Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology 154(8):2371-2379
Hofrichter M, Ziegenhagen D, Vares T, Friedrich M, Jäger M, Fritsche W, Hatakka A (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Letters 434(3):362-366
Hong SS, Hwang JS, Lee MK, Hwang BY (2006) Lignans from the stem barks of Kalopanax septemlobus. Natural Product Sciences 12(4):201-204
Hoshino F, Kajino T, Sugiyama H, Asami O, Takahashi H (2002) Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Letters 530(1):249-252
Irfan M, Syed Q, Abbas S, Sher MG, Baig S, Nadeem M (2011) FTIR and SEM analysis of thermo-chemical fractionated sugarcane bagasse. Turkish Journal of Biochemistry 36(4):322-328
Ishigami T, Yamada Y (1986) Purification and properties of polyphenol oxidase from Chaetomium thermophile, a thermophilic fungus. The Journal of General and Applied Microbiology 32(4):293-301
Iyer G, Chattoo B (2003) Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiology Letters 227(1):121-126
Johansson T, Nyman PO (1993) Isozymes of lignin peroxidase and manganese (II) peroxidase from the white-rot basidiomycete Trametes versicolor: I. Isolation of enzyme forms and characterization of physical and catalytic properties. Archives of Biochemistry and Biophysics 300(1):49-56
Jolley RL, Evans LH, Makino N, Mason HS (1974) Oxytyrosinase. Journal of Biological Chemistry 249(2):335-345
Karhunen E, Niku-Paavola ML, Viikari L, Haltia T, van der Meer RA, Duine JA (1990) A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Letters 267(1):6-8
Kerr JL, Baldwin DS, Tobin MJ, Puskar L, Kappen P, Rees GN, Silvester E (2013) High spatial resolution infrared micro-spectroscopy reveals the mechanism of leaf lignin decomposition by aquatic fungi. PLoS One 8(4):e60857
Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences 87(8):2936-2940
Kim YJ, Kim DO, Chun OK, Shin DH, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. Journal of Agricultural and Food Chemistry 53(24):9560-9565
Kirk TK, Farrell RL (1987) Enzymatic" combustion": the microbial degradation of lignin. Annual Reviews in Microbiology 41(1):465-501
Klinman JP (1996) Mechanisms where by mononuclear copper proteins functionalize organic substrates. Chemical Reviews 96(7):2541-2562
Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiology and Biotechnology 79(2):217-224
Kukolya J, Nagy I, Láday M, Tóth E, Oravecz O, Márialigeti K, Hornok L (2002) Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. International Journal of Systematic and Evolutionary Microbiology 52(4):1193-1199
Kulys J, Vidziunaite R (2003) Amperometric biosensors based on recombinant laccases for phenols determination. Biosensors and Bioelectronics 18(2):319-325
Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase-a versatile enzyme for biotechnological applications. Communicating Current Research and Educational Topics and Trends in Applied Microbiology 1:233-245
Lankinen PV, Bonnen AM, Anton LH, Wood DA, Kalkkinen N, Hatakka A, Thurston CF (2001) Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus. Applied Microbiology and Biotechnology 55(2):170-176
Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56(1):1-24
Lee KH, Wi SG, Singh AP, Kim YS (2004) Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science 50(3):281-284
Lisov A, Leontievsky A, Golovleva L (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochemistry 68(9):1027-1035
Locci R, Baldacci E, B P (1967) Contribution to the study of oligosporic actinomycetes. I. Description of a new species of Actinobifida: Actinobifida alba sp. nov. and revision of the genus. Giornale di Microbiologia 15(1-2):79-91
Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. Journal of Bacteriology 189(6):2477-2486
Malmstrom B, Andréasson LE, Reinhammar B (1975) Copper-containing oxidases and superoxide dismutase. The Enzymes 12:507-579
Martín C, Thomsen AB (2007) Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production. Journal of Chemical Technology and Biotechnology 82(2):174-181
Martin C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology 40(3):426-432
Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Bioscience, Biotechnology, and Biochemistry 71(1):1-15
Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551-565
McCarthy A, Cross T (1984) A taxonomic study of Thermomonospora and other monosporic actinomycetes. Journal of General Microbiology 130(1):5-25
McDougall GJ, Morrison IM, Stewart D, Hillman JR (1996) Plant cell walls as dietary fibre: range, structure, processing and function. Journal of the Science of Food and Agriculture 70(2):133-150
McGuirl MA, Dooley DM (1999) Copper-containing oxidases. Current Opinion in Chemical Biology 3(2):138-144
Messerschmidt A (2013) Ascorbate oxidase. Encyclopedia of Metalloproteins. Springer, pp 195-201
Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin modelling and structural relationships. European Journal of Biochemistry 187(2):341-352
Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. Journal of Biological Chemistry 273(25):15412-15417
Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters 2(2):024001-024013
Michniewicz A, Ullrich R, Ledakowicz S, Hofrichter M (2006) The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Applied Microbiology and Biotechnology 69(6):682-688
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426-428
Mishra S, Bisaria V (2006) Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiology and Biotechnology 71(5):646-653
Miyazawa M, Utsunomiya H, Inada K-i, Yamada T, Okuno Y, Tanaka H, Tatematsu M (2006) Inhibition of Helicobacter pylori motility by (+)-Syringaresinol from unripe Japanese apricot. Biological and Pharmaceutical Bulletin 29(1):172-173
Monthong W, Pitchuanchom S, Nuntasaen N, Pompimon W (2011) (+)-Syringaresinol lignan from new species Magnolia thailandica. American Journal of Applied Sciences 8(12):1268-1271
Moreira PcR, Almeida-Vara E, Sena-Martins G, Polonia I, Malcata FX, Duarte JC (2001) Decolourisation of Remazol Brilliant Blue R via a novel Bjerkandera sp. strain. Journal of Biotechnology 89(2):107-111
Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant physiology 136(3):3537-3549
Mustafa R, Muniglia L, Rovel B, Girardin M (2005) Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydro-organic biphasic system. Food Research International 38(8):995-1000
Necochea R, Valderrama B, Díaz-Sandoval S, Folch-Mallol JL, Vázquez-Duhalt R, Iturriaga G (2005) Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiology Letters 244(2):235-241
Nyanhongo GS, Couto SR, Guebitz GM (2006) Coupling of 2, 4, 6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64(3):359-370
Palma C, Martınez A, Lema J, Martınez M (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. Journal of Biotechnology 77(2):235-245
Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. Journal of Biological Chemistry 272(50):31301-31307
Panicker CY, Varghese HT, Sajina K, Vaidyan A, John MA, Harikumar B (2008) IR, Raman and ab-initio calcualtions of 2, 6-dimethoxyphenol. Oriental Journal of Chemistry 24(3):973-976
Parsons M, Convery M, Wilmot C, Yadav K, Blakeley V, Corner A, Phillips S, McPherson M, Knowles P (1995) Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3(11):1171-1184
Piontek K, Smith A, Blodig W (2001) Lignin peroxidase structure and function. Biochemical Society Transactions 29(Pt 2):111-116
Piscitelli A, Pezzella C, Giardina P, Faraco V, Sannia G (2010) Heterologous laccase production and its role in industrial applications. Bioengineered Bugs 1(4):254-264
Pointing SB, Pelling AL, Smith GJ, Hyde KD, Reddy CA (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research 109(01):115-124
Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Applied Spectroscopy 61(11):1168-1177
Pozdnyakova N, Turkovskaya O, Yudina E, Rodakiewicz-Nowak Y (2006) Yellow laccase from the fungus Pleurotus ostreatus D1: Purification and characterization. Applied Biochemistry and Microbiology 42(1):56-61
Ragazzi E, Veronese G (1973) Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. Journal of Chromatography A 77(2):369-375
Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environmental Microbiology 54(12):3057-3063
Reinhammar B, Malmström B (1981) Blue copper-containing oxidases. Copper proteins 3. Wiley, pp109-149.
Renganathan V, Usha S, Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium: interaction with microcrystalline cellulose. Applied Microbiology and Biotechnology 32(5):609-613
Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences 99(5):2766-2771
Rodakiewicz-Nowak J, Jarosz-Wilkołazka A, Luterek J (2006) Catalytic activity of versatile peroxidase from Bjerkandera fumosa in aqueous solutions of water–miscible organic solvents. Applied Catalysis A: General 308:56-61
Rogers MS, Baron AJ, McPherson MJ, Knowles PF, Dooley DM (2000) Galactose oxidase pro-sequence cleavage and cofactor assembly are self-processing reactions. Journal of the American Chemical Society 122(5):990-991
Ruiz-Dueñas FJ, Guillén F, Camarero S, Pérez-Boada M, Martínez MJ, Martínez ÁT (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Applied and Environmental Microbiology 65(10):4458-4463
Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of Experimental Botany 60(2):441-452
Ryan S, Schnitzhofer W, Tzanov T, Cavaco-Paulo A, Gübitz G (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology 33(6):766-774
Sakdaronnarong CK, Jonglertjunya W (2012) Rice straw and sugarcane bagasse degradation mimicking lignocellulose decay in nature: an alternative approach to biorefinery. ScienceAsia 38(4):364-372
Sakdaronnarong CK, Onsrithong N, Suwankrua R, Jonglertjunya W (2012) Improving enzymatic saccharification of sugarcane bagasse by biological/physico-chemical pretreatment using Trametes versicolor and Bacillus sp. BioResources 7(3):3935-3947
Selinheimo E, Autio K, Kruus K, Buchert J (2007) Elucidating the mechanism of laccase and tyrosinase in wheat bread making. Journal of Agricultural and Food Chemistry 55(15):6357-6365
Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L (2007) Characterization of two new multiforms of Trametes pubescens laccase. Bioorganic Chemistry 35(1):35-49
Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angewandte Chemie International Edition 40(24):4570-4590
Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chemical Reviews 96(7):2563-2606
Stöcklin W, De Silva L, Geissman T (1969) Constituents of Holacantha emoryi. Phytochemistry 8(8):1565-1569
Sterjiades R, Dean JF, Gamble G, Himmelsbach DS, Eriksson K-EL (1993) Extracellular laccases and peroxidases from sycamore maple (Acer pseudoplatanus) cell-suspension cultures. Planta 190(1):75-87
Sulistyaningdyah WT, Ogawa J, Tanaka H, Maeda C, Shimizu S (2004) Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters 230(2):209-214
Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environmental Microbiology 8(12):2214-2223
Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. Journal of Biotechnology 75(1):57-70
Tanaka H, Yoshida G, Baba Y, Matsumura K, Wasada H, Murata J, Agawa M, Itakura S, Enoki A (2007) Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. Journal of Biotechnology 128(3):500-511
Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Advances in Chemistry Series 95:197-218
Thomas B, Yonekura M, Morgan T, Czapla T, Hopkins T, Kramer K (1989) A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochemistry 19(7):611-622
Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19-26
Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proceedings of the National Academy of Sciences 81(8):2280-2284
Umezawa T (2003) Diversity in lignan biosynthesis. Phytochemistry Reviews 2(3):371-390
Vicuña R (1988) Bacterial degradation of lignin. Enzyme and Microbial Technology 10(11):646-655
Wang L, Yan W, Chen J, Huang F, Gao P (2008) Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation. Science in China Series C: Life Sciences 51(3):214-221
Wang Q, Xia T (2008) Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnology Letters 30(5):937-944
Wang W, Huang F, Mei Lu X, Ji Gao P (2006) Lignin degradation by a novel peptide, Gt factor, from brown rot fungus Gloeophyllum trabeum. Biotechnology Journal 1(4):447-453
Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Canadian Journal of Microbiology 49(11):675-682
Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytologist 187(2):273-285
Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances 22(1):161-187
Wintzingerode Fv, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews 21(3):213-229
Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology 157(2):174-209
Xiao Y, Tu X, Wang J, Zhang M, Cheng Q, Zeng W, Shi Y (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Applied Microbiology and Biotechnology 60(6):700-707
Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1292(2):303-311
Yang CH, Cheng KC, Liu WH (2003) Optimization of medium composition for production of extracellular amylase by Thermobifida fusca using a response surface methodology. Journal of the Science of Food and Agriculture 5:35-40
Yang CH, Liu WH (2008) Purification and properties of an acetylxylan esterase from Thermobifida fusca. Enzyme and Microbial Technology 42(2):181-186
Yang LL, Tang SK, Zhang YQ, Zhi XY, Wang D, Xu LH, Li WJ (2008) Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and emended description of the genus Thermobifida. International Journal of Systematic and Evolutionary Microbiology 58(8):1821-1825
Yang YP, Cheng MJ, Teng CM, Chang YL, Tsai IL, Chen IS (2002) Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry 61(5):567-572
Yoshida H (1883) LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions 43:472-486
Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110(6):3552-3599
Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase - a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Current Protein & Peptide Science 7(3):255-80
Zhang S, Barr BK, Wilson DB (2000) Effects of noncatalytic residue mutations on substrate specificity and ligand binding of Thermobifida fusca endocellulase Cel6A. European Journal of Biochemistry 267(1):244-252
Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. International Journal of Systematic Bacteriology 48(2):411-422
Zimmermann W (1990) Degradation of lignin by bacteria. Journal of Biotechnology 13(2):119-130
謝至珅 (2011)。嗜高溫放線菌之熱穩定性漆酶的選殖、表達與特性分析 (碩士論文)。國立國立中興大學,台中市
魏千媚 (2012)。嗜高溫放線菌Thermobifida fusca 所分泌漆酶之生產、純化與性質探討 (碩士論文)。靜宜大學,台中市


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔