(3.235.139.152) 您好!臺灣時間:2021/05/11 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳韻竹
研究生(外文):Yun-Chu Chen
論文名稱:DEAD-box RNA解旋酶AtRH57在幼苗發育時期高葡萄糖條件下影響離層酸累積的回饋抑制及前核醣體RNA的加工
論文名稱(外文):AtRH57, a DEAD-box RNA helicase, affects the feedback inhibition of abscisic acid accumulation and pre-ribosomal RNA processing under high glucose conditions during seedling development
指導教授:王國祥
口試委員:王敏盈王強生趙光裕陸重安
口試日期:2016-06-06
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:91
中文關鍵詞:葡萄糖離層酸核糖核酸解璇酶核醣體生合成
外文關鍵詞:glcuose(Glc)abscisic acid (ABA)RNA helicaseribosome biogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
DEAD-box RNA解旋酶存在大多數的真核和原核生物。它們不僅參與許多細胞代謝的過程,也反應各種不同逆境。先前利用3%葡萄糖環境,在上千個阿拉伯芥T-DNA突變株裡,篩選到一個具有對葡萄糖高敏感性 (hypersensitivity)之rh57-1突變株。而其他兩個不同插入位點之T-DNA突變株rh57-2及 rh57-3也具有相似對葡萄糖高敏感性之外表型。此嶄新AtRH57基因(At3g09720)會編譯出DEAD-box RNA家族之解旋酶。從洋蔥表皮細胞定位實驗顯示AtRH57蛋白是位於細胞核和細胞核核仁。在不同濃度的葡萄糖、離層酸或鹽類(NaCl)環境下,rh57-1和rh57-3呈現對葡萄糖、離層酸和NaCl高敏感性,而兩個 35S::AtRH57 轉植株則呈現對其低敏感的外表型。在4.5%葡萄糖環境下,rh57-1突變株的離層酸含量明顯地比野生株高出1.6倍。且離層酸生合成抑制劑fluridone能夠明顯恢復rh57突變株被高糖抑制所產生的外表型,顯示在rh57突變株對葡萄糖高敏感的外表型是經由高糖媒介的離層酸訊息而達成的。從即時定量聚合酶鏈鎖反應(qRT-PCR)的分析,發現相較於野生株,rh57突變株中光合作用基因的表現明顯受到高糖抑制,而離層酸生合成,訊息傳遞和其他基因的表現皆顯著地受到高糖誘導。AtRH57與ABI4皆位於葡萄糖訊息傳遞的HXK1基因下游,而受ABI4正調控的AtRH57會回饋抑制離層酸的累積,因此形成高糖經由離層酸調控的獨特回饋迴路。外加10μM離層酸時,rh57突變株中離層酸與逆境的相關基因表現相較於野生株有明顯被誘導的情形,此與在35S::AtRH57 轉植株中這些基因表現被抑制的結果相呼應,顯示AtRH57能夠改變離層酸與逆境相關的基因表現。rh57突變株比起野生株累積較多的45S/35S pre-rRNA及不正常的pre-rRNA前驅物。且由多醣體輪廓圖(polysome profile)實驗中也發現AtRH57基因的突變和高糖環境兩者能加乘性地損害40S核糖體的形成,顯示AtRH57基因的突變和高糖會影響核醣體生合成過程。進一步地處理抑制蛋白質合成抗生素streptomycin和spectinomycin時,rh57-1及高糖環境的植株相較於野生株在無糖環境下都有較好的生長,推測AtRH57基因的突變和高糖可能改變了抗生素與40S 核醣體的結合所導致的。且rh57-1突變株提高對蛋白質合成抑制劑cycloheximide的敏感性,顯示rh57-1的不正常核醣體功能降低了蛋白質合成活性。以上結果顯示,在阿拉伯芥種子萌發及幼苗發育時期,AtRH57不僅扮演葡萄糖媒介離層酸訊息傳遞的重要角色,並且參與核糖體生合成過程。

DEAD-box RNA helicases are found in most eukaryotes and prokaryotes. They not only participate in different cellular processes but respond to various stresses. Previously, thousands of Arabidopsis thaliana T-DNA insertion mutants grown at 3 % glucose (Glc) have been screened and identified a Glc hypersensitive mutant rh57-1 for further analysis. The other mutants rh57-2 and rh57-3 also displayed similar Glc hypersensitive phenotypes. The new identified AtRH57 (At3g09720) gene encodes a DEAD-box RNA helicase. Transient expression analysis in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Under different concentrations of Glc, abscisic acid (ABA) or salt (NaCl), the seed germination and seedling growth of rh57-1 and rh57-3 exhibited hypersensitive phenotypes while two 35S::AtRH57 lines displayed hyposensitivity. Under 4.5% high Glc conditions, the ABA content in rh57-1 showed 1.6-fold higher than that in wild-type (WT). The ABA biosynthesis inhibitor fluridone profoundly recovered rh57 mutant seedlings, suggesting that Glc-hypersensitive phenotypes of rh57 mutants was resulted from Glc-mediated ABA signaling. Quantitative real time polymerase chain reaction (qRT-PCR) analysis showed transcripts of photosynthetic genes were significantly repressed in rh57 mutants when compared with WT plants while ABA biosynthesis, ABA signaling and other Glc-responsive genes were strongly induced by high Glc. Both AtRH57 and ABI4 acted downstream of HXK1 in the Glc signaling network, while ABI4- induced AtRH57 negatively regulated the accumulation of ABA. Thus, a unique circuit of feedback regulation exists in Glc-mediated ABA signaling. Exogenous addition of 10μM ABA, the induction of ABA- and stress-responsive genes in rh57 mutants was correlated with the repressed expression of these genes in 35S::AtRH57 lines when compared with WT, suggesting that AtRH57 could alter expression of ABA- and stress-responsive genes. The rh57 mutants exhibited more accumulation of 45S/35S pre-rRNA and abnormal pre-rRNA precursors than WT. The polysome profile analysis showed that both mutation of AtRH57 and high Glc additively impaired small ribosomal subunit (40S) formation, indicating that ribosomes biogenesis may be affected by rh57 mutants and high Glc. In the presence of streptomycin and spectinomycin, either mutation of AtRH57 in rh57-1 or high Glc only caused better seedling growth than that of WT without Glc, suggesting that a possible conformation change in the binding site between ribosome and antibiotics. rh57-1 also showed increased sensitivity to cycloheximide which is a protein synthesis inhibitor, indicating that a reduced activity of protein synthesis may be caused by the aberrant occurrence of ribosome. These results showed that AtRH57 not only plays an important role in Glc-mediated ABA signaling pathway but also participates in rRNA biogenesis during seed germination and seedling growth in Arabidopsis.

中文摘要…………………………………………………………………i
Abstract..……………………………………………………………...... ii
Introduction…………………………………………………………..…1
Materials and methods………………………………………………...13
Results…………………………………………………………………..21
Discussion………………………………………………………………33
References………………………………………………………………38
Table………………………….…………………………………………50
Figures………………………………………………………………….51
Supplementary tables………………………………………………….76
Appendix figures……………………………………………………….81



Abbasi N, Kim HB, Park NI, Kim HS, Kim YK, Park YI et al. (2010). APUM23, a nucleolar Puf domain protein, is involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. Plant J. 64, 960–976.
Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ (2012). Chloroplast RH3 DEAD-box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 159, 961–974.
Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085–2096.
Arroyo A, Bossi F, Finkelstein RR, Le’on P (2003). Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol. 133, 231–242.
Baena-González E, Rolland F, Thevelein J, Sheen J (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938−942.
Bossi F, Cordoba E, Dupre P, Mendoza MS, Roman CS, Leon P (2009). The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J. 59, 359–374.
Boschetti A, Bogdanov S (1973). Binding of dihydrostreptomycin to ribosomes and ribosomal subunits from streptomycin-resistant mutants of Chlamydomonas reinhardi. FEBS Lett. 38, 19–22.
Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A (2001). Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res. 11, 2101–2114.
Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004). The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16, 406–421.
Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC (2011).
Organelle–nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc Natl Acad Sci USA. 108, 1451-1460.
Burge CB, Tuschl T, Sharp PA (1999). Splicing of precursorsto mRNAs by the spliceosomes. In The RNA World, 2nd ed,R.F. Geste-land, T.R. Cech, and J.F. Atkins, eds (Cold Spring Harbor,NY: Cold Spring Harbor Laboratory Press), 525–560.
Bush MS, Crowe N, Zheng T, Doonan JH (2015). The RNA helicase, eIF4A-1, is required for ovule development and cell size homeostasis in Arabidopsis. Plant J. 84, 989–1004.
Byrne ME (2009). A role for the ribosome in development. Trends Plant Science. 14, 512–519.
Carvalho RF, Carvalho SD, Duque P (2010). The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis. Plant Physiol. 154, 772–783.
Caruthers JM, McKay DB (2002). Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133.
Chen J, Wan S, Liu H, Fan S, Zhang Y, Wang W et al. (2016). Overexpression of an Apocynum venetum DEAD-box helicase gene (AvDH1) in cotton confers salinity tolerance and increases yield in a saline field. Front Plant Sci. 6, 1227.
Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A et al. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723–2743.
Chi W, He B, Mao J, Li Q, Ma J, Ji D et al. (2012). The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol. 158, 693–707.
Cho YH, Yoo SD, Sheen J (2006). Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127, 579–589.
Choi H, Hong J, Ha J, Kang J, Kim SY (2000). ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 275, 1723–1730.
Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW et al. (2009). Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443, 91–99.
Claeyssen E, Rivoal J (2007). Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68, 709–731
Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.
Cordin O, Banroques J, Tanner NK, Linder P (2006). The DEAD-box protein family of RNA helicases. Gene, 367, 17–37.
Dekkers BJ, Schuurmans JA, Smeekens SC (2008). Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol. Biol. 67, 151–167.
Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011). Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 62, 4875–4887.
Fairman-Williams ME, Guenther UP, Jankowsky E (2010). SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324.
Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043–1054.
Finkelstein R (2013). Abscisic Acid synthesis and response. Arabidopsis Book. 11:e0166. doi: 10.1199/tab.0166. eCollection
Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M et al. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39, 863–876.
Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC et al. (2001). The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol. Cell 8, 181–188.
Galimand M, Gerbaud G, Courvalin P (2000). Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob. Agents Chemother. 44, 1365–1366.
Gibson SI, Laby RJ, Kim D (2001). The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280, 196–203.
Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B., Zhu JK (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507–11512.
Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong DM et al. (2005). A DEAD-box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256–267.
Gorbalenya AE, Koonin EV (1993). Helicases: amino acid comparisons and structure-function relationships. Curr Opin Struct Biol. 3, 419–429.
Granot D (2007). Role of tomato hexose kinases. Functional Plant Biology 34, 564-570.
Gu L, Xu T, Lee K, Lee KH, Kang H (2014). A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol. Biochem. 82, 309-318.
Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C et al. (2013). A DEAD-box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25, 342–356.
Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF et al. (2011). Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol. 155, 370–383.
Gupta A, Singh M, Laxmi A (2015). Multiple interactions between glucose and brassinosteroid signal transduction pathways in Arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol. 168, 1091–1105.
Hardin JW, Hu YX, McKay DB (2010). Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J. Mol. Biol. 402, 412–427.
Henras AK, Plisson-Chastang C, O''Donohue MF, Chakraborty A, Gleizes PE (2015). An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev. RNA 6, 225–242.
Honore N, Cole ST (1994). Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother. 38, 238–242.
Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH et al. (2014) AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. Plant J. 77, 119–135.
Huang CK, Huang LF, Huang JJ, Wu SJ, Yeh CH, Lu CA (2010a). A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol. 51, 694–706.
Huang CK, Shen YL, Huang LF, Wu SJ, Yeh CH, Lu CA (2015). The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant Cell Physiol. 57,174–191.
Huang TS, Wei T, Laliberté JF, Wang A (2010b). A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol. 152, 255–266.
Jankowsky E (2011). RNA Helicases at work: binding and rearranging. Trends Biochem Sci. 36, 19–29.
Johnson PR, Ecker JR (1998). The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 32, 227–254.
Kammel C, Thomaier M, S?rensen BB, Schubert T, Längst G, Grasser M et al. (2013). Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 8, e60644.
Kant P, Kant S, Gordon M, Shaked R, Barak S (2007). STRESS
RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2,
two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145, 814–830.
Karve A, Rauh BL, Xiaoxia X, Muthugapatti K, Meagher RB, Sheen J et al. (2008). Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228, 411–425.
Keene JD (2003). Organizing mRNA export. Nat. Genet. 33, 111–112.
Kemp C, ImLer JL (2009). Antiviral immunity in drosophila. Curr. Opin. Immunol. 21, 3–9.
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T et al. (2014).
The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo
stress-mediated relocalization and are involved in epigenetic gene silencing. Plant J. 79, 28-43.
Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004). ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40, 75–87.
Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008). Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 49, 1563–1571.
Kim MH, Sonoda Y, Sasaki K, Kaminaka H, Imai R (2013). Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress Chaperones 18, 517–525.
Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M et al. (2007). Signals from chloroplasts converge to regulate nuclear gene expression. Science 316, 715–719.
Köhler D, Schmidt-Gattung S, Binder S (2010).The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Mol Biol. 72, 459-467.
Kressler D, Linder P, de La Cruz J (1999). Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7897–7912.
Laby RJ, Kincaid MS, Kim D, Gibson SI (2000). The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23, 587-596.
Laxmi A, Paul LK, Peters JL, Khurana JP (2004). Arabidopsis constitutive photomorphogenic mutant, bls1, displays altered brassinosteroid response and sugar sensitivity. Plant Mol. Biol. 56, 185-201.
Lee SA, Yoon EK, Heo JO, Lee MH, Hwang I, Cheong H et al. (2012). Analysis of Arabidopsis glucose-insensitive growth mutants reveals the involvement of the plastidial copper transporter PAA1 in glucose-induced intracellular signaling. Plant Physiol.159, 1001–1012.
Leon P, Sheen J (2003). Sugar and hormone connections. Trends Plant Sci. 8, 110–116.
Li D, Liu H, Zhang H, Wang X, Song F (2008). OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot. 59, 2133–2146.
Linder P, Jankowsky E (2011). From unwinding to clamping – the DEAD-box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516.
Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F et al. (2008). Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J. Exp. Bot. 59, 633–644.
Liu M, Shi DQ, Yuan L, Liu J, Yang WC (2010). SLOW WALKER3, encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Integr. Plant Biol. 52, 817–828.
Liu Y, Tabata D, Imai R (2016). A cold-inducible DEAD-box RNA helicase from Arabidopsis thaliana regulates plant growth and development under low temperature. PLoS ONE 11, e0154040. doi:10.1371/journal.pone.0154040
Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH
(2002). ABI5 acts downstream of ABI3 to execute an ABA-dependent
growth arrest during germination. Plant J. 32, 317–328.
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, Perata P (2008). Gibberellins, jasmonate and abscisic acid modulate the sucroseinduced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist, 179, 1004–1016.
Lucier T, Heitzman K, Liu SK, Hu PC (1995). Transition mutations in the 23S rRNA of erythromycin resistant isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 39, 2770–2773.
Marion-Poll A, Leung J (2006). Abscisic acid synthesis, metabolism and signal transduction. Plant Hormone Signaling, Annual Plant Reviews 24, 1–35.
Mankin AS, Garrett RA (1991). Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium. J Bacteriol 173, 3559-3563.
Martin R, Straub AU, Doebele C, Bohnsack MT (2013). DExD/H box RNA helicases in ribosome biogenesis. RNA Biol. 10, 4–18.
Mccurdy RD, Mcgrath JJ, Mackay-sim A (2008). Validation of the comparative quantification method of real-time PCR analysis and a cautionary tale of housekeeping gene selection. Gene Ther Mol Biol. 12, 15–24.
McIntosh KB, Bonham-Smith PC (2006). Ribosomal protein gene regulation: what about plants? Can. J. Bot. 84, 342–362.
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25, 295–303.
Mingam A, Toffano-Nioche C, Brunaud V, Boudet N, Kreis M, Lecharny A (2004). DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure andevolution of a family of genes. Plant Biotechnol. J. 2, 401–415.
Msanne J, Lin J, Stone JM, Awada T (2011).Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta. 234, 97–107.
Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco. Physiol. Plant. 15, 473–497.
Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX et al. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332–336.
Nishimura K, Ashida H, Ogawa T, Yokota A (2010). A DEAD-box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Plant J. 63, 766–777.
Ohtani M, Demura T, Sugiyama M (2013). Arabidopsis root initiation defective 1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell. 25, 2056–2069.
Oleinick NL (1977). Initiation and elongation of protein synthesis in growing
cells: differential inhibition by cycloheximide and emetine. Arch. Biochem. Biophys. 182, 171–180.
Olsson T, Thelander M, Ronne H (2003). A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzymein the moss Physcomitrella patens. J. Biol. Chem. 278, 44439–44447.
Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006). Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18, 1887–1899.
Perata P, Matsukura C, Vernieri P, Yamaguchi J (1997). Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9, 2197–2208.
Pham XH, Reddy MK, Ehtesham NZ, Matta B, Tuteja N (2000). A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase 1 activity. Plant J. 24, 219–229.
Price J, Laxmi A, St Martin SK, Jang JC (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell. 16, 2128–2150.
Qiu Y, Yu D (2009). Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65, 35–47.
Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D et al. (2004). The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol. 134, 1598–1613.
Ramon M, Rolland F, Sheen J (2008). Sugar sensing and signaling in Arabidopsis. The Arabidopsis Book. doi: 10.1199/tab.0117
Rani TS, Durgeshwar P, Podile AR (2015). Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction. J Plant Physiol. 184, 20−27.
Rocak S, Linder P (2004). DEAD-box proteins:  the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232−241.
Rodriguez-Galan O, Garcia-Gomez JJ, de la Cruz J (2013). Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim. Biophys. Acta. 1829, 775–790.
Rolland F, Moore B, Sheen J (2002). Sugar sensing and signaling in plants. Plant Cell, 14, Suppl: S185−S205.
Rolland F, Baena-Gonzalez E, Sheen J (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant. Biol. 57, 675−709.
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M et al.(2009). Soluble sugars—Metabolism, sensing and abiotic stress. Plant Signal Behav. 4, 388–393.
Rosado A, Sohn EJ, Drakakaki G, Pan S, Swidergal A, Xiong Y et al. (2010). Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. Plant Cell, 22, 143–158.
Sahni A, Wang N, Alexis JD (2010). UAP56 is an important regulator of protein synthesis and growth in cardiomyocytes. Biochem. Biophys. Res. Commun. 393, 106–110.
Sanford JC, Smith FD, Russell JA (1993). Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.
Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005). Pea
DNA helicase 45 over-expression in tobacco confers high salinity
tolerance without affecting yield. Proc. Natl Acad. Sci. USA, 102, 509–514.
Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P et al. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.
Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300.
Seo M, Koshiba T (2002). Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41–48.
Sheen J (2014). Master Regulators in Plant Glucose Signaling Networks. J. Plant Biol. 57, 67–79.
Singleton MR, Dillingham MS, Wigley DB (2007). Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 76, 23–50.
Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M,
Zambryski P (2009). Loss of the plant DEAD-box protein ISE1 leads to
defective mitochondria and increased cell-to-cell transport via plasmodesmata.
Proc. Natl Acad. Sci. USA, 106, 17229–17234.
Tanner NK, Cordin O, Banroques J, Doère M, Linder P (2003). The Q Motif. A newly identified motif in DEAD-box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138.
Tai CL, Chi WK, Chen DS, Hwang LH (1996). The helicase activity
associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol.
70, 8477–8484.
Thibaud MC, Gineste S, Nussaume L, Robaglia C (2004). Sucrose
increases pathogenesis-related PR-2 gene expression in Arabidopsis
thaliana through an SA-dependent but NPR1-independent signaling pathway. Plant Physiol. Biochem. 42, 81–88.
Ullah H, Chen JG, Wang S, Jones AM (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol. 129, 897–907.
Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 97, 11632–11637.
Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Hohne M, Gunther M et al. (2008). Global transcript levels respond to small changes of the carbon status during a progressive exhaustion of carbohydrates in Arabidopsis Rosettes. Plant Physiol. 146, 1834−1861.
Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005). Cold- and salinity
stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis
and stimulated by phosphorylation with protein kinase C. Plant J. 44, 76–87.
Vashisht AA, Tuteja N (2006). Stress-responsive DEAD-box helicases, a new pathway to engineer plant stress tolerance. J. Photochem. Photobiol. B, 84, 150–160.
Verslues PE, Bray EA (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J. Exp. Bot. 57, 201–212.
Wang KL, Li H, Ecker JR (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151.
Wang WX, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1–14.
Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z (2016). Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genet. 12:e1005844. doi: 10.1371/ journal.pgen.1005844.
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C et al. (2008). An update on abscisic acid signaling in plants and more. Molecular Plant 1, 198–217.
Weis BL, Kovacevic J, Missbach S, Schleiff E (2015). Plant-specific features of ribosome biogenesis. Trends Plant Sci. 20,729–740.
Will CL, Lührmann R (2011). Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707.
Xiao W, Sheen J, Jang JC (2000). The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44, 451–461.
Xiong L, Ishitani M, Lee H, Zhu JK (2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 13, 2063–2083.
Xiong Y, Sheen J (2013). Moving beyond translation: glucose-TOR signaling in the transcriptional control of cell cycle. Cell Cycle, 12, 1989−1990.
Xiong Y, Sheen J (2014). The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol, 164, 499−512.
Xu J, Liu C, Li M, Hu J, Zhu L, Zeng D et al. (2015). A rice DEAD-box RNA helicase protein, OsRH17, suppresses 16S ribosomal RNA maturation in Escherichia coli. Gene 555, 318–328.
Yanagisawa S, Yoo SD, Sheen J (2003). Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature, 425, 521-525.
Yang CY, Chen YC, Jauh GY, Wang CS (2005). A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 139, 836–846.
Yoine M, Ohto MA, Onai K, Mita S, Nakamura K (2006). The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signaling in Arabidopsis. Plant J. 47, 49–62.
Yu E, Owttrim GW (2000). Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucleic Acids Res. 28, 3926–3934.
Yuan K, Wysocka-Diller J (2006). Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J. Exp. Bot. 57, 3359−3367.
Zanetti ME, Chang IF, Gong F, Galbraith DW, Bailey-Serres J (2005). Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression. Plant Physiol. 138, 624–635.
Zhang Y, Zhen L, Tan X, Li L, Wang X (2014). The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol Biol Rep.41, 7899–7910.
Zeevaart JAD, Creelman RA (1988). Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 39, 439–473
Zhou L, Jang JC, Jones TL, Sheen J (1998). Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose insensitive mutant. Proc. Natl. Acad. Sci. USA, 95, 10294–10299.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔