[1] 林明獻, 太陽電池技術入門, 全華出版社(2007).
[2] Kurtz Steven R. , Allerman A.A. , Jones E.D. , Gee J.M. , Banas J.J. , Hammons B.E. ,“InGaAsN solar cells with 1.0 eV band gap lattice matched to GaAs”, Applied Physics Letters, Vol. 74, Issue: 5 (1999).
[3] Research Cell Efficiency Records, National Renewable Energy Laboratory (NREL), 9 March 2016.
[4] G.L. Rowland, T.J.C. Hosea, S. Malik, D. Childs, and R. Murray.“A photomodulated reflectance study of InAs/GaAs self-assembled quantum dots.” Appl. Phys. Lett.73, 3268 (1998).
[5] D.V. Alexis,“Detailed balance limit of the efficiency of tandem solar cells.”, Appl. Phys. Lett., 13, 839 (1980).
[6] A. Luque and A. Marti,“Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.”,Phys. Rev. Lett. 78, 5014 (1997).
[7] A.J. Nozik,” Quantum dot solar cells.”, Physica E 14 (2002).
[8] M. Sugawara,“Self-assemble InGaAs/GaAs quantum dots.”, Semiconductors and Semimetals, 60, Academic press (1999).
[9] http://www.ccut.edu.tw/teachers/wentse/downloads/laser0-2.ppt,半導體能帶的形成和意義,中洲科技大學.
[10] Donald A. Neamen, An Introduction to semiconductor Device, 3rd ed, McGraw Hill Higher Education, p41-p42 (2006)
[11] Yoshitaka Okada, nature photonics Technology Conference, 19‐21/10/2010.
[12] 曾凱迪, “InGaAs耦合量子點太陽電池研究”,碩士論文,國立中山大學光電工程學系碩士班,頁4(2011)。[13] L. Cuadra*, A. Marti, and A. Luque, “Present status of intermediate band solar cell research.”, Thin Solid Films 451-452 (2004).
[14] A. Martı, L. Cuadra, A. Luque, “Partial filling of a quantum dot intermediate band for solar cells.”, IEEE Trans. Electron Dev. 48(2001).
[15] Y. Okada, T. Morioka, K.Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita, ” Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell.”,Appl. Phys.Lett.109, 024301 (2011).
[16] Dmcdevit, Solar Radiation Spectrum, https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png?uselang=gan-hant, 9 June 2007.
[17] K.C. Chen, “Conversion Efficiency Optimization on Broadband Quantum Dots Solar Cells”, Master Thesis, Department of Photonics National Sun Yat-sen University, p8 (2013)
[18] 蔡進譯,超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊(27卷五期)2005.
[19] Solar cell I-V, https://stuff.mit.edu/afs/athena.mit.edu/course/3/3.082/www/team2_f02/Pages/solarIV.jpg
[20] K.Y. Chuang, C.Y. Chen, T.E. Tzeng, J.Y. Feng, T.S. Lay *, “Optical polarization in vertically coupled InGaAs quantum dots of p-type modulation doping” , Physica E 40 (2008)
[21] K.D, Tzeng, “Photovoltaic response of coupled InGaAs quantum dots”, Master Thesis, Department of Photonics National Sun Yat-sen University, pp.11(2011)
[22] K.C. Chen, “Conversion Efficiency Optimization on Broadband Quantum Dots Solar Cells”, Master Thesis, Department of Photonics National Sun Yat-sen University, p.18 (2013)
[23] Plasticphotovoltaics.org, Incident photon-to-current efficiency (IPCE), http://plasticphotovoltaics.org/lc/characterization/lc-advanced-c/lc-ipce.html.
[24] S.M. Hubbard, C. D. Cress, C. G. Bailey, R. P. ERaffaelle, S.G. Bailey, and D.M. Wilt, ”Effect of strain compensation on quantum dot enhanced GaAs solar cells. ”,Appl. Phys. Lett. 92, 123512 (2008).
[25] Martin Otto, Matthias Kroll, Thomas Kasebier, Roland Salzer, Andreas Tunnermann, Ralf Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition”, Applied Physics Letters100, 191603(2012).
[26] C.H. Chang, Y.K. Chiou, Y.C. Chang, K.Y. Lee, T.D. Lin, T.B. Wu, a and M. Hong J. Kwo, Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As, Appl. Phys. Lett. 89, 242911(2006).