跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政豪
研究生(外文):Zheng-Hao Lin
論文名稱:垂直耦合砷化銦鎵量子點中間能帶太陽電池轉換效率優化之研究
論文名稱(外文):Efficiency Enhancement on Vertically Coupled InGaAs Quantum Dots Intermediate Band Solar Cells
指導教授:賴聰賢
指導教授(外文):Tsong-Sheng Lay
口試委員:林建中施閔雄
口試委員(外文):Jian-Chung LinMin-Hsiung Shih
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:中間能帶太陽電池砷化銦鎵量子點分子束磊晶原子層沉積技術高聚光I-V
外文關鍵詞:Intermediate band solar cellsInGaAs quantum dotsMBEAtomic layer depositionConcentration I-V
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用分子束磊晶(MBE)技術於n型砷化鎵(GaAs)基板成長InGaAs耦合量子點作為主動層,製作成高效率中間能帶太陽電池。元件主動層結構分別為九層耦合量子點至三十層耦合量子點、九層耦合量子點綴於井及二接面(Two-junction)太陽電池,並調變每層量子點層之間隔層之厚度(5nm~40nm)及量子點成長溫度(Ts=520oC~540oC),以探討磊晶中間能帶太陽電池之最佳參數。

研究發現:主動層結構為「十二層耦合量子點且間隔層為15奈米」之樣品(元件編號C529)具有最高轉換效率η=8.9%。透過EQE量測可以觀察到:相較於無量子點結構之GaAs-baseline 樣品(C610),具量子點結構的樣品可吸收波長900nm-1100nm的多出光子,提高元件短路電流,證明我們成功地實現中間能帶的結構。而「十二層耦合量子點且間隔層為15奈米」之樣品其轉換效率η=8.9%已超越GaAs-baseline樣品η=7.5%,證實了耦合量子點之結構能實現中間能帶太陽能電池。而二接面太陽電池(元件編號C493)由I-V曲線判斷可以視為兩個太陽電池正反相接的結果。

接著利用原子層沉積技術(ALD)將樣品鍍上50nm-Al2O3(n=1.6) /50nm-HfO2 (n=2.3)複合鈍化層並作為抗反射層,減少元件表面反射率,提升元件短路電流,使得樣品C529轉換效率由8.9%增加至12.3%,提升了原本效率的1.38倍。

最後,將樣品進行高聚光I-V量測,太陽數範圍從10個到100個,由於開路電壓與太陽數之對數成正比,最後可以探討出轉換效率在多倍太陽數下可以有所提升,皆可提升2.5%~3.2%之轉換效率。


Molecular beam epitaxy (MBE) is utilized for growing InGaAs coupled quantum dots on n-type GaAs substrates as the active layer to produce high-efficiency intermediate band solar cells. The structure of the component active layer is 9-layer to 30-layer coupled quantum dots (coupled QDs) and 9-layer coupled quantum dots in wells (coupled DWells) and two-junction solar cells. The spacer thickness (5nm~40nm) of each quantum dot layer and the quantum dot growing temperature (Ts=520oC~540oC) are controlled to discuss the optimal parameters for epitaxy intermediate band solar cells.

Research findings show that the sample (component No. C529) with the active layer structured “12-layer coupled quantum dots with the spacer 15nm” presents the highest conversion efficiency η=8.9%. It is observed that the samples which possess the quantum dot structure could absorb additional photons with the wavelength 900nm-1100nm by EQE measurement (comparing to the samples which was without quantum dot structure, component No. C610), so that the short-circuit current of the component will be enhanced. It proves the successful implementation of the intermediate band structure in this study. The conversion efficiency η=8.9% of the sample with the active layer structured “12-layer coupled quantum dots with the spacer 15nm” exceeds the GaAs-baseline sample η=7.5%, proving that the coupled quantum dot structure could implement intermediate band solar cells. On the other hands, the two-junction solar cell (component No. C493) could be regarded as the connection of positive and negative between two solar cells from the I-V curve.

Atomic layer deposition (ALD) is further utilized for coating 50nm-Al2O3 (n=1.6) /50nm-HfO2 (n=2.3) composite passivation layer on the sample as the anti-reflection layer to reduce the component surface reflectance and enhance the component short-circuit current. The conversion efficiency of the sample C529 therefore increases from 8.9% to 12.3%, about 1.38 times of the original efficiency (without coating any oxide layer).

Finally, the sample is proceeded the high-concentration I-V measurement (sun numbers are from 10suns to 100suns). Since the open-circuit voltage is proportional to the logarithm of solar cell number, the conversion efficiency would be enhanced about 2.5%~3.2% under multiple numbers of solar cells.


致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3中間能帶(intermediate band, IB)介紹與基本原則 4
1.4研究方法 7
第二章 理論基礎與文獻回顧 8
2.1太陽電池原理 8
2.1.1 太陽光光譜 8
2.1.2太陽電池基本工作原理 10
2.1.3太陽電池的電路模型 11
2.1.4 太陽電池重要參數 12
第三章 研究方法與儀器架構 15
3.1實驗樣品介紹-耦合量子點太陽電池結構 15
3.2太陽電池製程步驟(黃光製程) 24
3.2.1電極圖形製作 24
3.2.2表面濕蝕刻條件測試 26
3.2.3利用原子層沉積技術(ALD)沉積鈍化層(抗反射層) 27
3.2.4定義元件主體 29
3.3光激螢光量測(PL) 31
3.4外部量子效率量測(EQE) 33
第四章 實驗結果與分析 34
4.1主動層結構差異性之分析 34
4.1.1光激螢光光譜分析(PL) 34
4.1.2不同電極圖形分析 40
4.1.3元件I-V量測與外部量子效率(EQE)量測分析 42
4.2表面鈍化(Surface passivation)改善太陽電池效益 59
4.2.1 不同結構主動層表面成長複合鈍化層優化轉換效率 60
4.3高聚光太陽能 65
4.3.1高聚光太陽能公式 65
4.3.2高聚光太陽能分析 66
第五章 結論 75
參考文獻 77



[1] 林明獻, 太陽電池技術入門, 全華出版社(2007).
[2] Kurtz Steven R. , Allerman A.A. , Jones E.D. , Gee J.M. , Banas J.J. , Hammons B.E. ,“InGaAsN solar cells with 1.0 eV band gap lattice matched to GaAs”, Applied Physics Letters, Vol. 74, Issue: 5 (1999).
[3] Research Cell Efficiency Records, National Renewable Energy Laboratory (NREL), 9 March 2016.
[4] G.L. Rowland, T.J.C. Hosea, S. Malik, D. Childs, and R. Murray.“A photomodulated reflectance study of InAs/GaAs self-assembled quantum dots.” Appl. Phys. Lett.73, 3268 (1998).
[5] D.V. Alexis,“Detailed balance limit of the efficiency of tandem solar cells.”, Appl. Phys. Lett., 13, 839 (1980).
[6] A. Luque and A. Marti,“Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels.”,Phys. Rev. Lett. 78, 5014 (1997).
[7] A.J. Nozik,” Quantum dot solar cells.”, Physica E 14 (2002).
[8] M. Sugawara,“Self-assemble InGaAs/GaAs quantum dots.”, Semiconductors and Semimetals, 60, Academic press (1999).
[9] http://www.ccut.edu.tw/teachers/wentse/downloads/laser0-2.ppt,半導體能帶的形成和意義,中洲科技大學.
[10] Donald A. Neamen, An Introduction to semiconductor Device, 3rd ed, McGraw Hill Higher Education, p41-p42 (2006)
[11] Yoshitaka Okada, nature photonics Technology Conference, 19‐21/10/2010.
[12] 曾凱迪, “InGaAs耦合量子點太陽電池研究”,碩士論文,國立中山大學光電工程學系碩士班,頁4(2011)。
[13] L. Cuadra*, A. Marti, and A. Luque, “Present status of intermediate band solar cell research.”, Thin Solid Films 451-452 (2004).
[14] A. Martı, L. Cuadra, A. Luque, “Partial filling of a quantum dot intermediate band for solar cells.”, IEEE Trans. Electron Dev. 48(2001).
[15] Y. Okada, T. Morioka, K.Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita, ” Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell.”,Appl. Phys.Lett.109, 024301 (2011).
[16] Dmcdevit, Solar Radiation Spectrum, https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png?uselang=gan-hant, 9 June 2007.
[17] K.C. Chen, “Conversion Efficiency Optimization on Broadband Quantum Dots Solar Cells”, Master Thesis, Department of Photonics National Sun Yat-sen University, p8 (2013)
[18] 蔡進譯,超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊(27卷五期)2005.
[19] Solar cell I-V, https://stuff.mit.edu/afs/athena.mit.edu/course/3/3.082/www/team2_f02/Pages/solarIV.jpg
[20] K.Y. Chuang, C.Y. Chen, T.E. Tzeng, J.Y. Feng, T.S. Lay *, “Optical polarization in vertically coupled InGaAs quantum dots of p-type modulation doping” , Physica E 40 (2008)
[21] K.D, Tzeng, “Photovoltaic response of coupled InGaAs quantum dots”, Master Thesis, Department of Photonics National Sun Yat-sen University, pp.11(2011)
[22] K.C. Chen, “Conversion Efficiency Optimization on Broadband Quantum Dots Solar Cells”, Master Thesis, Department of Photonics National Sun Yat-sen University, p.18 (2013)
[23] Plasticphotovoltaics.org, Incident photon-to-current efficiency (IPCE), http://plasticphotovoltaics.org/lc/characterization/lc-advanced-c/lc-ipce.html.
[24] S.M. Hubbard, C. D. Cress, C. G. Bailey, R. P. ERaffaelle, S.G. Bailey, and D.M. Wilt, ”Effect of strain compensation on quantum dot enhanced GaAs solar cells. ”,Appl. Phys. Lett. 92, 123512 (2008).
[25] Martin Otto, Matthias Kroll, Thomas Kasebier, Roland Salzer, Andreas Tunnermann, Ralf Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition”, Applied Physics Letters100, 191603(2012).
[26] C.H. Chang, Y.K. Chiou, Y.C. Chang, K.Y. Lee, T.D. Lin, T.B. Wu, a and M. Hong J. Kwo, Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As, Appl. Phys. Lett. 89, 242911(2006).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊