(3.238.96.184) 您好!臺灣時間:2021/05/12 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:曾耀霆
研究生(外文):Yao-Ting Tzeng
論文名稱:以射頻磁控濺鍍法沉積氧化鋅摻雜氟化鎂薄膜之製備及特性研究
論文名稱(外文):Fabrication and characterization of MgF2-doped zinc oxide thin films by radio-frequency magnetron sputtering
指導教授:汪芳興
口試委員:劉漢文施能夫
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:射頻磁控濺鍍法氧化鋅薄膜
外文關鍵詞:radio-frequency magnetron sputteringZnOThin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
利用射頻磁控濺鍍法沉積鎂與氟共摻雜氧化鋅(MFZO)薄膜於康寧Eagle XG玻璃上,本研究自行壓製四種不同MgF2摻雜量(0 at%、1.5 at%、3 at%、5 at%)的氧化鋅靶材,分別命名為ZnO、M1.5FZO、M3FZO與M5FZO。
本實驗所有系列的薄膜皆是以氬氣(Ar)作為背景氣體,改變沉積功率(50 W、75 W、100 W),固定其他參數包括背景壓力、工作壓力、薄膜厚度及工作距離,分別為5×10-6 Torr、5×10-3 Torr、330 nm及8 cm。在完成薄膜的製備後,將其中四種不同摻雜濃度且在沉積功率為100 W下沉積的薄膜使用高溫爐管做後退火處理,進行3種不同溫度的熱退火處理(200 °C、300 °C、400 °C) ,退火時間60分鐘,並透過各種分析來探討其光電特性與結構特性的變化。
所有系列的薄膜中,在可見光範圍的穿透率皆達90%以上,其中在摻雜濃度為3 at%且沉積功率為100 W時有最佳的電阻率為1.497x10-2 Ω-cm及FOM值為1.021x10-3 Ω-1。
經由後退火處理的ZnO及MFZO薄膜,由於結晶性的改善,使得光學及電性獲得改善,穿透率則是有1~6%的提升。其中在摻雜濃度為3 at%且退火溫度為400oC時有最佳的電阻率為2.996×10-3 Ω-cm及FOM值為6.55x10-3Ω-1,穿透率則是為94.13%。

In this study, magnesium and fluoride co-doped zinc oxide (MFZO) were deposited on Corning EagleXG glass substrate by RF magnetron sputtering system.We used four different ZnO targets having distinct MgF2 doping(contents 0at%, 1.5at%, 3at%, and 5at%), named ZnO, M1.5FZO, M3FZO , and M5FZO respectively.
We use Ar as ambient gas and vary RF power(50 W,75 W, and 100 W) in this experiments. Base pressure, working pressure, film thickness, and working distance were fixed at 5x10-6 Torr, 5x10-3 Torr, 330 nm and 8 cm respectively. After the thin film deposition, the samples deposited at 100 W were annealed at the temperature of 200, 300, and 400oC, respectively for 1 hour, and the electrical, optical, and structural properties of thin films were explored.
In all films, the transmittance in the visible range was over than 90%. The lowest resistivity of 1.497x10-2 Ω-cm and the highest FOM of 1.021x10-3Ω-1 were obtained with M3FZO sample deposited at 100 W.
After annealing treatment, the crystallinity of all thin films was improved, hence causing improved Hall mobility and conductivity, and the average transmittance (400~700 nm) increased by 1~6%. The lowest resistivity of 2.996×10-3 Ω-cm and the highest FOM of 6.55x10-3 Ω-1 were obtained with M3FZO at an annealing temperature of 400oC, and the average tramittance is 94.13%.


摘要 i
Abstract i
目錄 iii
圖目錄 v
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 1
第二章 基礎理論與文獻回顧 3
2.1氧化鋅晶體結構與特性 3
2.2 共摻雜鎂氟之氧化鋅(MFZO)薄膜 5
2.2.1 電學性質 5
2.2.2 光學性質 5
2.3電漿基礎原理 6
2.4射頻磁控濺鍍 8
2.4.1 濺鍍原理 8
2.4.2 直流與射頻濺鍍 9
2.4.3 磁控濺鍍 10
第三章 實驗步驟與方法 11
3.1實驗製程與流程分析 11
3.2靶材製作流程 11
3.3基板切割與清洗流程 13
3.4薄膜沉積 14
3.4.1 薄膜沉積設備 14
3.4.2 共摻雜鋁氟之氧化鋅(MFZO)薄膜製程參數 14
3.4.3 後退火處理參數 16
3.5薄膜量測分析 17
3.5.1 薄膜結構分析 17
3.5.2 薄膜電性量測 18
3.5.3 薄膜光學量測 19
3.5.4 元素成分分析 20
第四章 結果與討論 21
4.1摻雜MgF2含量及濺鍍功率對薄膜的影響 21
4.1.1 薄膜沉積速率 21
4.1.2 薄膜XRD分析 22
4.1.3 薄膜SEM分析 25
4.1.4 薄膜電性分析 30
4.1.5 薄膜光學分析 33
4.1.6 薄膜XPS分析 41
4.2 後退火處理對於MFZO薄膜之影響 46
4.2.1 後退火處理之薄膜XRD分析 46
4.2.2 後退火處理之薄膜SEM分析 48
4.2.3 後退火處理之薄膜電性分析 53
4.2.4 後退火處理之薄膜光學分析 55
4.2.5 後退火處理薄膜之XPS分析 62
4.2.6 後退火處理薄膜之二次離子質譜儀分析 67
第五章 結論 68
參考文獻70

[1] C. Becker, E.Conrad, P.Doga, F.Fenske, B.Gorka, T.Hanel, K.Y.Lee, B.Rau, F.Ruske, T.Weber, M.Berginski, J.Hu pkes, S.Gall, B.Rech, “Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells”, Solar Energy Materials & Solar Cells, 2009. 93: p. 855-858.
[2] H. Zhu, J. Hupkes, E. Bunte, S.M. Huang, “Study of ZnO:Al films for silicon thin film solar cells”, Applied Surface Science, 2012. 261: p. 268-275.
[3] S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, “Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells:temperature-induced morphological changes”, Solar Energy Materials & Solar Cells, 2005. 86: p. 385-397.
[4] T.S. Fahlen, S. Morozumi, G. Parsons, C. Seager, C-C. Tsai, “Characterization of Transparent Conductors in Indium Zinc Oxide and Their Application to Thin-Film Transistor Liquid-Crystal Displays”, Materials Research Society, 1998.
[5] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi, D.B. Chrisey, “Doped ZnO thin films as anode materials for organic light-emitting diodes”, Thin Solid Films, 2002: p. 539-543.
[6] Junqing Zhao, Shijie Xie, Shenghao Han, Zhiwei Yang, Lina Ye, Tianlin Yang, “Organic light-emitting diodes with AZO films as electrodes”, Synthetic Metals, 2000. 114: p. 251-254.
[7] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G. Kiriakidis, “ZnO transparent thin films for gas sensor applications”, Thin Solid Films, 2006. 515: p. 551-554.
[8] Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Shenghao Han, “Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering”, Applied Surface Science, 2006. 252: p. 5687-5692.
[9] A. Azens A C.G. Granqvist, “Electrochromic smart windows: energy efficiency and device aspects”, J Solid State Electrochem, 2003. 7: p. 64-68.
[10] 姜辛, 孙超, 洪瑞江, 戴达煌, “透明导电氧化物薄膜. 高等教育出版社”, 2008年.
[11] L. Raniero, I. Ferreira, A. Pimentel, A. Gonc¸alves, P. Canhola, E. Fortunato, R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings”, Thin Solid Films, 2006. 511-512: p. 295-298.
[12] Hanfa Liu, Chengxin Lei, “Low-temperature deposited Titanium-doped zinc oxide thin films on the flexible PET substrate by DC magnetron sputtering”, Vacuum, 2011. 86: p. 483-486.
[13] Jun Kwan Kim, Sun Jin Yun, Jae Min Lee, Jung Wook Lim, “Effect of rf-power density on the resistivity of Ga-doped ZnO film deposited by rf-magnetron sputter deposition technique”, Current Applied Physics, 2010. 10: p. 451-454.
[14] Qian Shi, KesongZhou, MinjiangDai, HuijunHou, SongshengLin, ChunbeiWei, Fang Hu, “Room temperature preparation of high performance AZO films by MF sputtering”, Ceramics International, 2013. 39: p. 1135-1141.
[15] Yu-Zen Tsai, Na-Fu Wang, Chun-Lung Tsai, “Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering”, Thin Solid Films, 2010. 518: p. 4955-4959.
[16] Hua-fu Zhang, Rui-jin Liu, Han-fa Liu, Cheng-xin Lei, Dong-tai Feng, Chang-Kun Yuan, “Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering”, Materials Letters, 2010. 64: p. 605-607.
[17] Jen-Po Lin and Jenn-Ming Wu, “The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films”, Applied Physics Letters, 2008. 92: p. 134103.
[18] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, “Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method”, Journal of Crystal Growth, 2000. 221: p. 431-434.
[19] Akio Suzukia,, Tatsuhiko Matsushita, Takanori Aoki, Akihito Mori, Masahiro Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, 2002. 411: p. 23-27.
[20] Yutaka Sawada, Chikako Kobayashi, Shigeyuki Seki, Hiroshi Funakubo, “Highly-conducting indium–tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium (III) chloride and tin (II) chloride”, Thin Solid Films, 2002. 409: p. 46-50.
[21] Weifeng Yang, Zhuguang Liu, Dong-Liang Peng, Feng Zhang, Huolin Huang,Yannan Xie, Zhengyun Wu, “Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method”, Applied Surface Science, 2009. 255: p. 5669-5673.
[22] Prof. Dr. Hadis Morkoç, Ümit Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology”, John Wiley & Sons Inc, 2009.
[23] 陸嘯程、莊晉東、李再成、張瑞慶、葉甄佩、林鈞偉, “以射頻磁控法沉積氧化鋅薄膜之機械性質研究” 聖約翰科技大學, 2008. 2008 機光電技術與應用研討會 中華民國九十七年十一月廿六日
[24] Jingbiao Cui, “Zinc oxide nanowires”, Materials Characterization, 2012. 64: p. 43-52.
[25] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 2005. 50: p. 293-340.
[26] Jin-Bock Lee, Hye-Jung Lee, Soo-Hyung Seo, Jin-Seok Park, “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications”, Thin Solid Films 398 –399 (2001) 641–646
[27] Y.C. Lin , C.R.H., H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Applied Surface Science, 2008. 254: p. 3780-3786.
[28] Donald A.Neamen, “Fundamentals of Semiconductor Physics and Device”, McGraw-Hill, 2005.
[29] Sernelius, B.E., et al., “band-gap tailoring of ZnO by means of heavy Al doping”, Physical review. B, Condensed matter 1988. 37: p. 10244-10248.
[30] ELIAS BURSTEIN, “Anoma1ous Optical Absorption Limit in InSb”, Physical review, 1954. 93: p. 632.
[31] T. S. MOSS, “The Interpretation of the Properties of Indium Antimonide”, Proc. Phys. Soc. B 1954. 67: p. 775.
[32] Hyeongsik Park, Kyungsoo Jang, Krishna Kumar, Shihyun Ahn, Jaehyun Cho, Juyeon Jang, Kyungjun Ahn, Jeonghoon Yeom, Dongseok Kim, Junsin Yi, “Electrical mechanism analysis of Al2O3 doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering”, Thin Solid Films, 2011. 519: p. 6910-6915.
[33] Xiao, H., “Introduction to semiconductor manufacturing technology”, Pearson Education Taiwan Ltd., 2001.
[34] Campbell, S.A., “The Science and Engineering of Microelectronic Fabrication”, Oxford University Press, 2001. 2nd edition.
[35] Klaus Ellmer, “Magnetron sputtering of transparent conductive zinc oxide : relation between the sputtering parameters and the electronic properties”, J. Phys. D: Appl. Phys., 2000. 33: p. R17–R32.
[36] Cullity, B.D. and S.R. Stock, “Elements of XRD”, Prentice Hall, 2001. Chap. 5-2: p. 167-171.
[37] 张 丽,于 威,许贺菊,张锦川,傅生, “氮化温度对ZnO薄膜结构特性的影响”, 河北大学学报(自然科学版), 2009. 29: p. 150-152.
[38] Fang-Hsing Wang, Hung-Peng Chang, Chih-Chung Tseng, Chia-Cheng Huang, “Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering”, Surface & Coatings Technology, 2011. 205: p. 5269–5277.
[39] 李芳紜, “超音波輔助化學水浴法製備AgInS2薄膜之電化學阻抗頻譜分析”, 國立中央大學化學工程與材料工程研究所碩士論文, 民國102年六月: p. 51.
[40] Boen Houng, Han Bin Chen, “Investigation of AlF3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International, 2012. 38: p. 801-809.
[41] Weimin Li, Huiying Hao, “Effect of temperature on the properties of Al:ZnO films deposited by magnetron sputtering with inborn surface texture”, J Mater Sci, 2012. 47: p. 3516-3521.
[42] Jyh-Ming Ting, B.S. Tsai, “DC reactive sputter deposition of ZnO:Al thin film on glass”, Materials Chemistry and Physics 2001. 72 p. 273–277.
[43] Boen Houng, Han Bin Chen, “Investigation of AlF3 doped ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 2012. 38: p. 801-809.
[44] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices”, JOURNAL OF APPLIED PHYSICS, 2005. 98(041301).
[45] Y.H. Kim, J. Jeong, K.S. Lee, J.K. Park, Y.J. Baik, T.-Y. Seong, W.M. Kim, “Characteristics of ZnOAl thin films co-doped with hydrogen and fluorine”, Applied Surface Science 2010. 256 p. 5102-5107.
[46] L. Cao, L.P. Zhu, W.F. Chen, Z.Z. Ye, “Preparation and thermal stability of F-doped ZnO transparent conducting thin films”, Optical Materials, 2013. 35: p. 1293-1296.
[47] H.S. Yoon, K.S. Lee a, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim, “Properties of fluorine doped ZnO thin films deposited by magnetron sputtering”, Solar Energy Materials and Solar Cells 2008. 92: p. 1366-1372.
[48] Tien-Chai Lin, Wen-Chang Huang, Chin-Hung Liu, Shy-Chou Chang, “Structural electrical and optical properties of ZnO_AlF3 thin films deposited by RF magnetron sputtering”, Applied Surface Science, 2012. 258: p. 3302-3308.
[49] R.A. Viscarra Rossel, D.J.J. Walvoort, A.B. McBratney, L.J. Janik, J.O. Skjemstad, “Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties”, Geoderma, 2006. 131: p. 59-75.
[50] Deok Kyu Kim, Hong Bae Kim, “Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure”, Journal of Alloys and Compounds 2011. 509: p. 421-425.
[51] G. Haacke, “New figure of merit for transparent conductors”, J. Appl. Phys., 1976. 47: p. 4087.
[52] Deok-Kyu Kim, Hong-Bae Kim, “Dependence of the properties of sputter deposited Al-doped ZnO thin films on base pressure”, Journal of Alloys and Compounds 2012. 522: p. 69-73.
[53] Byeong-Yun Oh, Min-Chang Jeong, Jae-Min Myoung, “Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films”, Applied Surface Science, 2007. 253: p. 7157-7161.
[54] Mayer, R., “The Artist''s Handbook of Materials and Techniques: Fifth Edition”, Faber, 1991: p. 784.
[55] A. TRESSAUD, F. MOGUET, S. FLANDROISS, M. CHAMBON, C. GUIMON,G. NANSE, E. PAPIRER, V. GUPTA and 0. P. BAHL, “On the nature of C-F bonds in various fluorinated carbon materials: XPS and TEM investigations”, J. Phw. Chew Solids Vol 57, Nos 6-8. pp 745-751. 1996
[56] A. Tressaud, C. Guimon, V. Gupta, F. Moguet, “Fluorine-intercalated carbon fibers: II: An X-ray photoelectron spectroscopy study”, Materials Science and Engineering B30 (1995) 61-68
[57] Inho Kim, Kyeong-Seok Lee, Taek Seong Lee, Jeung-hyun Jeong, Byeong-ki Cheong, Young-Joon Baik, and Won Mok Kim, “Effect of fluorine addition on transparent and conducting Al doped ZnO films”, Journal of Applied Physics, 2006. 100: p. 063701.
[58] Hao Tong, Zhonghua Deng, Zhuguang Liu, Changgang Huang,Jiquan Huang, Hai Lan, Chong Wang, Yongge Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films”, Applied Surface Science, 2011. 257: p. 4906-4911.
[59] Shou-Yi Kuo, Kou-Chen Liu, Fang-I Lai, Jui-Fu Yang, Wei-Chun Chen, Ming-Yang Hsieh, Hsin-I Lin, Woei-Tyng Lin, “Effects of RF power on the structural, optical and electrical properties of Al-doped zinc oxide films”, Microelectronics Reliability, 2010. 50: p. 730-733.
[60] Yasuhiro Igasaki, Hirokazu Kanma, “Argon gas pressure dependence of the properties of transparent conducting ZnO:Al films deposited on glass substrates”, Applied Surface Science, 2001. 169-170: p. 508-511.
[61] Dong-Joo Kwak, Ji-Hoon Kim, Byung-Wook Park, Youl-Moon Sung, Min-Woo Park, Young-Bae Choo, “Growth of ZnO:Al transparent conducting layer on polymer substrate for flexible film typed dye-sensitized solar cell”, Current Applied Physics, 2010. 10: p. S282-S285.
[62] Jinhua Huang, Ruiqin Tan, Yulong Zhang, Jia Li, Ye Yang, Xianpeng Zhang, Weijie Song, “Effects of substrate temperatures on the thermal stability of Al-doped ZnO thin films grown by DC magnetron sputtering”, J Mater Sci: Mater Electron, 2012. 23: p. 356-360.
[63] M.T. Mohammad, A.A. Hashim, M.H. Al-Maamory, “Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique”, Materials Chemistry and Physics 2006. 99: p. 382-387.
[64] T. Minami, H. Sato, K. Ohashi, T. Tomofuji and S. Takata, “Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering”, Journal of Crystal Growth 117(1992) 370—374
[65] I. Olefjord, H. J. Mathied and P. Marcus, “Intercomparison of Surface Analysis of Thin Aluminium films”, SURFACE AND INTERFACE ANALYSIS, 1990. 15: p. 681492.
[66] J.P. Kar, S. Kim, B. Shin, K.I. Park, K.J. Ahn, W. Lee, J.H. Cho, J.M. Myoung, “Influence of sputtering pressure on morphological, mechanical and electrical properties of Al-doped ZnO films”, Solid-State Electronics 2010. 54: p. 1447-1450.
[67] Jian-Rui Liu , Hu-Kui Chen , Lun Zhao , Wei-Dong Huang “Oxidation behaviour of molten magnesium and AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/air atmospheres”, Corrosion Science 51 (2009) 129–134
[68] H. Y. Xu, Y. C. Liu, R. Mu, C. L. Shao, Y. M. Lu, D. Z. Shen, and X. W. Fan, “F-doping effects on electrical and optical properties of ZnO nanocrystalline films”, Applied Physics Letters · April 2005
[69] Takashi Minemoto, Takayuki Negami, Shiro Nishiwaki, Hideyuki Takakura, Yoshihiro Hamakawa, “Preparation of Zn1-xMgO films by radio frequency mafnetron sputtering” Thin Solid Films 372 (2000) 173-176


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔