(3.236.231.61) 您好!臺灣時間:2021/05/11 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林明坤
研究生(外文):Ming-Kun Lin
論文名稱:二氧化鈦奈米結構於有機發光二極體之取光效率研究
論文名稱(外文):Titanium Oxide Nano Structures for Light Out-coupling in Organic Light Emitting Diode
指導教授:裴靜偉
指導教授(外文):ZingWay Pei
口試委員:李敏鴻劉漢文
口試委員(外文):Min-Hung LeeHan-Wen Liu
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:液相沉積法二氧化鈦有機發光二極體外取光結構
外文關鍵詞:liquid phase depositiontitanium oxideorganic light-emitting diodesout-coupling structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以液相沉積( Liquid Phase Deposition, LPD )技術,將六氟鈦酸銨( (NH4)2TiF6 ) 混合硼酸( H3BO3 ),製備二氧化鈦奈米結構薄膜當作外取光散射結構,並應用於有機發光二極體 ( Organic Light-Emitting Diode, OLED ) 上,目的為利用此高折射率材料,將光從OLED元件內有效地導入外界,改善OLED取光效率不彰的問題,並藉由改變不同溶液沉積時間來控制二氧化鈦顆粒之粒徑大小與薄膜厚度。利用場發射掃描式電子顯微鏡 ( Field Emission Scanning Electron Microscope, FE-SEM ) 觀察所沉積二氧化鈦薄膜之表面形貌,並以紫外光/可見光吸收光譜儀 ( UV-Visible Spectroscopy ) 分析二氧化鈦薄膜之透光率。以二氧化鈦奈米結構薄膜應用於綠光OLED元件上,在沉積時間25分鐘時有最佳的取光效率,其光譜與流明值增益了3.1倍。

The purpose of this research is to fabricate a nano-scale thin film, titanium oxide deposited on Organic Light-Emitting Diodes as the out-coupling scattering structure by liquid phase deposition with the mixture of ammonium hexafluoro-titanate and boric acid. This high refractive index material would let the generated light emit efficiently to air and improve the light extraction efficiency of OLED. In this research, we controlled the particle size and film thickness of titanium oxide by changing the deposition time, then, the Field Emission Scanning Electron Microscope ( FE-SEM ) was used to observe the surface morphology of titanium oxide films. In the end, the UV-Visible Spectroscopy was used to analyze the transmittance of titanium oxide films. In green OLED, the optimal deposition time of nano-scale films, titanium oxide is 25 minutes, as the spectrum and lumen both gain 3.1 times.

目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 4
2.1 有機發光二極體之歷史發展 4
2.2 有機發光二極體之發光原理 7
2.3 有機發光二極體之元件結構 9
2.3.1 單層材料OLED元件 9
2.3.2 多層材料OLED元件 10
2.4 有機發光二極體電流限制 11
2.4.1 空間電荷限制電流 ( Space –Charge Limited Current ) 11
2.4.2 注入限制電流 ( Injection-Limited Current ) 12
2.4.3 能量傳遞機制 14
2.5 有機發光二極體的發光材料 16
2.6 有機發光二極體光譜及能量介紹 18
2.6.1人眼視覺與光譜 18
2.6.2光的單位與換算 19
2.7 有機發光二極體光譜及能量介紹 21
2.8 有機發光二極體之光色定義 23
2.8.1色溫 24
2.8.2 CIE 1931 標準色度學系統 25
2.9有機發光二極體之外取光結構文獻回顧 27
第三章 實驗設計與規劃 31
3.1 實驗架構與設計流程 31
3.2 有機發光二極體之使用材料介紹 32
3.3 玻璃基板清洗 34
3.4 LPD-TiOx製備 35
3.4.1 LPD- TiO2薄膜製程 35
3.4.2 LPD- TiO2薄膜製備方式 36
3.5高分子聚合物保護層 37
3.6有機發光二極體之元件製作 39
3.6.1實驗機檯 ( Thermal evaporation ) 39
3.6.2實驗原理 39
3.6.3有機材料之蒸鍍步驟 40
3.6.4金屬陰極之蒸鍍步驟 40
3.7實驗設備 41
3.7.1恆溫水槽 41
3.7.2高真空熱蒸鍍機 ( High-vacuum Thermal Evaporation, TE ) 42
3.7.3旋轉塗佈機 ( Spin Coater ) 42
3.8量測及分析儀器 43
3.8.1掌中光光譜量測儀 43
3.8.2場發射掃描式電子顯微鏡 ( Field Emission Scanning Electron Microscope, FE-SEM ) 44
3.8.3原子力顯微鏡 ( Atomic Force Microscope, AFM ) 45
3.8.4紫外光/可見光吸收光譜儀 ( UV-Visible Spectroscopy ) 46
第四章 結果與討論 48
4.1 LPD- TiO2薄膜SEM分析 48
4.2 LPD- TiO2薄膜AFM分析 56
4.3 LPD-TiO2薄膜 UV-Visible分析 58
4.4 LPD-TiO2薄膜之光學散射分析 61
4.5 LPD-TiO2薄膜於工研院OLED元件之量測分析 63
4.6 LPD-TiO2薄膜於綠光OLED元件之量測分析 74
第五章 結論 79
第六章 未來展望 80
參考文獻 81



參考文獻
[1]Q. Yue, W. Li, F. Kong and K. Li, “Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures,” Advances in Materials Science and Engineering, Article ID 985762, 9 pages, 2012.

[2]A. Bernanose, M. Conet, P. Vouauzx, “A new method of emission of light by certain organic compounds,” Journal of Chemical Physics, Vol. 50, pp. 64-68, 1953.

[3]M. Pope, P Magnante and H. P. Kallmann, “Electroluminescence in Organic Crystals,” Journal of Chemical Physics, Vol. 38, pp. 2042-2043, 1963.

[4]C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Applied Physics Letters, Vol. 51, pp. 913-915, 1987.

[5]C. W. Tang and S. A. Vanslyke, “Electroluminescence of doped organic thin films,” Journal of Applied Physics, Vol. 65, pp. 3610-3616, 1989.

[6]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mark, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polmers,” Nature, Vol. 347, pp. 539, 1990.

[7]L. S. Hung, C. W. Tang and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Applied Physics Letters, Vol. 70, pp. 152-154, 1997.

[8]M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibly, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, Vol. 395, pp. 151-154, 1998.

[9]Dodabalapur, Bell Lab, “Organic light emitting diodes,” Solid State Communications, Vol. 102, pp. 259-267, 1997.

[10]G. Y. Jung, C. Pearson, M. Kilitiziraki, L. E. Horsburgh, A. P. Monkman, I. D. W. Samuel and M. C. Petty, “Dual-layer light emitting devices based on polymeric Langmuir-Blodgett films, “ Journal of Materials Chemistry, Vol. 10, pp. 163-167, 2000.

[11]D. D. C. Bradley, “Conjugated polymer electroluminescence,” Synthetic Metals, Vol. 54, pp. 401-415, 1993.

[12]J. C. Scott, S. A. Carter, S. Karg and M. Angelopoulos, “Polymeric anodes for organic light-emitting diodes,” Synthetic Metals, Vol. 85, pp. 1197-1200, 1997.

[13]S. Karg, J. C. Scott, J. R. Salem and M. Angelopoulos, “Increased brightness and lifetime of polymer light-emitting diodes with polyaniline anodes,” Synthetic Meatals, Vol. 80, pp. 111-117, 1996.

[14]G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrel, B. Kippelen and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Applied Physics Letters, Vol. 71, pp. 1762-1764, 1997.

[15]S. F. Chen and C. W. Wang, “Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes,” Applied Physics Letters, Vol. 85, pp. 765-767, 2004.

[16]M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki and Y. Tega, “Highly efficient phosphorescence from organic light-emitting devices with exciton-block layer,” Applied Physics Letters, Vol. 79, pp. 156-158, 2010.

[17]V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D’Andrade and S. R. Forrest, “New charge-carrier blocking materials for high efficiency OLEDs,” Organic Eectronics, Vol. 4, pp. 77-87, 2003.

[18]M. A. Lampert and P. Mark, “Current Injection in Solids,” New York: Academic Press, 1970.

[19]Murgatro. Pn, “Theory of space-charge-limited current enhanced by Frenkel effect,” Journal of Physics D:Applied. Physics, Vol. 3, pp. 151-156, 1970.

[20]W. D. Gill, ”Drift mobilities in amorphous charge-transfer complexes of trinitroflourenone and poly-n-vinylcarbazole,” Journal of Applied Physics, Vol. 43, pp. 5033-5040, 1972.

[21]U. Wolf, V. I. Arkhipov and H. Bassler, “Current injection from a metal to a disordered hopping system, 1:Monte Carlo simulation,” Physical Review B, Vol. 59, pp. 7507-7513, 1999.

[22]S. Barth, U. Wolf, H. Bassler, P. Muller, H. Vestweber, P. E. Seidler and W. Riess, “Current injection from a metal to a disordered hopping system. Ⅲ. Comparison between experiment and Monte Carlo simulation,” Physical Review B, Vol. 60, pp. 8791-8797, 1990.

[23]T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annalen Der Physik,, Vol. 6, pp. 55-75, 1948.

[24]L. Dexter, “A Theory of Sensitized Luminescence in Solids,” Journal of Chemical Physics, Vol. 21, pp. 836-850, 1953.

[25]http://chemwiki.ucdavis.edu/Core/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer
[26]https://commons.wikimedia.org/wiki/File:Diagramme_de_Jablonski.png

[27]L. G. Thompon and S. E. Webber, “External Heavy Atom Effort on Phosphorescence Spectra of Some Halonaphthalenes,” Journal of Physical Chemistry, Vol. 76, pp. 221-224, 1972.

[28]http://www.uni-regensburg.de/Fakultaeten/nat_Fak_IV/Physikalische_Chemie/Yersin/OLEDvde.htm

[29]https://zh.wikipedia.org/wiki/%E5%BD%A9%E8%89%B2%E8%A7%86%E8%A7%89

[30]陳金鑫, 陳錦地, 吳忠幟。白光OLED照明White OLED for Lighting, 五南圖書出版有限公司, 2009。

[31]http://www.ledtronics.com/html/1931ChromaticityDiagram.htm

[32]http://www.aliva.com.tw/tech_36.html

[33]https://zh.wikipedia.org/wiki/%E8%89%B2%E6%B8%A9

[34]https://zh.wikipedia.org/wiki/CIE1931%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4

[35]R. Meerheim, M. Furno, S. Hofmann, B. Lüssem and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes, “Applied Physics Letters, Vol. 97, 253305, 2010.

[36]S. Möller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays, “ Journal of Applied Physics, Vol. 91, 5, 2002.

[37]S. Chen and H. S. Kwok, “Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates, “Optics Express 37, Vol. 18, 1, 2010.

[38]H. W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. M. Meskamp, B. Lüssem, C. C. Wu, K. Leo and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells, “ Journal of Applied Physics, Vol. 113, 204502, 2013.

[39]C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer, “Organic Electronics, Vol. 13, pp. 1073-1080, 2012.

[40]J. B. Kim, J. H. Lee, C. K. Moon, S. Y. Kim, J. J. Kim, “Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Light-Emitting Diodes, “ Advanced Materials, Vol. 25, pp. 3571-3577, 2013.

[41]D. H. Kim, J. Y. Kim, D. Y. Kim, J. H. Han, K. C. Choi, “Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes, “ Organic Electronic, Vol. 15, pp. 3183-3190, 2014.

[42]J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang and S. Shen, “Light out-coupling enhancement of organic light-emitting devices with microlens array, “ Applied Physics Letters, Vol. 97, 223303, 2010.

[43]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem and K. Leo, “White organic light-emitting diodes with florescent tube efficiency, “ Nature, Vol. 459, 2009.

[44]J. H. Kim, L. M Do, J. H. Choi, J. Park and H. Lee, “Enhancement of outcoupling efficiency of organic light-emitting diodes using a planarized moth-eye structure on glass substrate, “ Optics Letters, Vol. 38, 19, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔