跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昭逸
研究生(外文):Jhao-Yi Li
論文名稱:不同氨氣/乙烷比例對以射頻電漿輔助化學氣相沉積法製備p型非晶碳薄膜特性之影響
論文名稱(外文):The characteristics of p-type amorphous carbon thin films prepared by radio-frequency plasma enhanced chemical vapor deposition using different ammonia/ethane ratios
指導教授:薛顯宗
指導教授(外文):Sham-Tsong Shiue
口試委員:林昆明王垂堂
口試委員(外文):Kun-Ming LinChui-Tang Wang
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:125
中文關鍵詞:電漿輔助化學氣相沉積法非晶質碳薄膜氨氣乙烷
外文關鍵詞:PECVDamorphous carbon thin filmammoniaethane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以電漿輔助化學氣相沉積法沉積p型非晶質碳薄膜(a-C:H(N))於n型矽(n-Si)晶圓上,並探討不同NH3/C2H6比例對於碳薄膜性質以及a-C:H(N)/n-Si元件之影響。射頻功率、基材溫度和工作壓力分別設定為150 W、298 K和60 Pa。此外,碳薄膜厚度固定為40 nm。本實驗也針對製程中電漿之活性物種、碳薄膜微結構、光學以及電學性質進行量測和分析。結果顯示,當NH3/C2H6比例為2時,電漿中N-H以及C-N之特徵吸收峰強度、碳薄膜的N/C比例和介電常數具有最大值。碳薄膜中sp2 C=C相對含量和ID/IG比隨NH3/C2H6比例增加而增加,但光學能隙、電阻率以及內建電位隨NH3/C2H6比例增加而減少。本實驗中,也製備出a-C:H(N)/n-Si元件,並進行電流-電壓和電容-電壓量測。結果顯示,當NH3/C2H6比例為2時,a-C:H(N)/n-Si元件具有最佳的電學性質。此時,其理想因子、內建電位、串聯電阻和並聯電阻分別為1.26、0.21 eV、349 Ω和15.6 kΩ。

This study investigates the effects of different ammonia/ethane (NH3/C2H6) ratios on the properties of p-type amorphous carbon thin films (a-C:H(N)) deposited on n-type silicon (n-Si) substrate prepared by plasma enhanced chemical vapor deposition. The radio-frequency power, substrate temperature, and working pressure were kept at 150 W, 298 K, and 60 Pa, respectively. Especially, the thickness of carbon thin film was fixed at 40 nm. This experiment also measured the active species of plasma, and the microstructure, optical and electrical properties of carbon thin films. The experimental results indicate that as the NH3/C2H6 ratio is 2, the N-H and C-N species in the plasma, and the N/C ratio and permittivity of carbon films have the maximum value. The sp2 carbon fraction and ID/IG of carbon films increase with increasing the NH3/C2H6 ratio, but the optical gap, resistivity, and built-in voltage decreases. This indicates that the structure of carcon film shifts to graphite-like. This study also analyzed the current-voltage and capacitance-voltage characterics of the a-C:H(N)/n-Si device. As the NH3/C2H6 ratio is 2, the a-C:H(N)/n-Si device has the best electrical property. In this case, the ideality factor, built-in voltage, series resistance, and shunt resistance are 1.26, 0.21 eV, 349 Ω, and 15.6 kΩ, respectively.

摘要 i
總目錄 iii
圖目錄 vi
表目錄 ix
第1章 緒論 1
1-1 碳元素之簡介 1
1-2 碳元素之同素異形體特性 2
1-3 n型與p型碳薄膜 11
1-4 p-n接面二極體之基本結構及原理 13
1-5 電漿輔助化學氣相沉積法之簡介 17
1-6 電漿輔助化學氣相沉積之機制 20
1-7 本研究之動機與目的 26
1-8 論文概述 28
第2章 實驗步驟 29
2-1 試片之準備與前處理 31
2-2 實驗製程參數設定 34
2-3 p型非晶質碳薄膜及元件製備 36
2-3-1 射頻電漿輔助化學氣相沉積系統 36
2-3-2 射頻電漿濺鍍沉積系統 39
2-3-3 自動型濺鍍鍍膜系統 42
2-4 電漿診斷 44
2-5 非晶質碳薄膜厚度量測 47
2-6 非晶質碳薄膜微觀結構量測 49
2-6-1 拉曼散射光譜儀 49
2-6-2 傅立葉轉換紅外光光譜儀 55
2-6-3 X光光電子能譜儀 57
2-7 非晶質碳薄膜之光學性質量測 60
2-8 非晶質碳薄膜電性量測 65
2-8-1 電阻率量測 65
2-8-2 介電常數量測 68
2-9 p-n接面二極體特性量測 73
2-9-1 電流電壓特性曲線量測 73
2-9-2 電容電壓特性曲線量測 74
第3章 結果與討論 75
3-1電漿物種診斷分析 75
3-2 SEM量測結果 81
3-3碳薄膜微觀結構之影響 86
3-3-1 傅立葉轉換紅外光光譜儀分析 86
3-3-2 X光光電子能譜儀分析 89
3-3-3 拉曼散射光譜儀分析 94
3-4碳薄膜光學性質之影響 98
3-5碳薄膜電學性質之影響 100
3-5-1 電阻率分析 100
3-5-2 介電常數分析 102
3-6 p-n接面性質之影響 104
3-6-1 電流電壓特性曲線分析 104
3-6-2 電容電壓特性曲線分析 109
3-7 本實驗與先前之實驗結果比較 112
第4章 結論 115
參考文獻 116

[1]J. Robertson, Adv. Phys., 35 (1986) 317.
[2]I.N. Remediakis, M.G. Fyta, C. Mathioudakis, G. Kopidakis, and P.C. Kelires, Diam. Relat. Mater., 16 (2007) 1835.
[3]R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, Prog. Polym. Sci., 36 (2011) 638.
[4]D.R. Haag and H.H. Kung, Top. Catal. , 36 (2015) 762.
[5]A. Astefanei, O. Núñez, and M.T. Galceran, Anal. Chim. Acta, 882 (2015) 1.
[6]H. Zhu, J. Wei, K. Wang, and De. Wu, Sol. Energy Mater. Sol. Cells, 93 (2009) 1461.
[7]R.J. King, Geology Today, 22 (2006) 71.
[8]A. Modabber, P. Kameli, M. Ranjbar, H. Salamati, and M. Jannesari, Superlattices Microstruct., 81 (2015) 65.
[9]J. Wang, C. Wang, Y. Liu, L. Cheng, W. Li, Q. Zhang, and X. Yang, Appl. Surf. Sci., 340 (2015) 50.
[10]H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162.
[11]R.E. Smalley, R.F. Curl, Jr., and H.W. Kroto, Chemical Heritage Foundation, Philadelphia (2000).
[12]W. Krätschmer, K. Fostiropoulos, and D.R. Huffman, Chem. Phys. Lett., 170 (1990) 167.
[13]R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, and S.J. Duclos, Nature, 350 (1991) 320.
[14]Y. Kawazoe, T. Kondow, and K. Ohno, Clusters and Nanomaterials, Springer, Germany (2002).
[15]S. Iijima, Nature, 354 (1991) 56.
[16]A. Merkoci, Mikrochim. Acta, 152 (2006) 157.
[17]V.S. Muralidharan and A. Subramania, Nanoscience and Technology, New Delhi, India (2009).
[18]V. Kohlschütter and P. Haenni, Z. Anorg. Allg. Chem., 105 (1918) 121.
[19]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. jing, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666.
[20]X. Lia, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H.S. Chen, W. Yin, H. Zhong, and S. Lin, Nano Energy, 16 (2005) 310.
[21]J.V. Anguita, S.R.P. Silva, and W. Young, J. Appl. Phys., 88 (2000) 5175.
[22]R.C. Barklie, Diam. Relat. Mater., 10 (2001) 174.
[23]R.U.A. Khan and S.R.P. Silva, Diam. Relat. Mater., 10 (2001) 1036.
[24]J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, J. Appl. Phys., 82 (1997) 6024.
[25]S. Aisrnberg and R. Chabot, J. Appl. Phys., 42 (1971) 2953.
[26]L. Holland and S. M. Ojha, Thin Solid Films, 38 (1976) 17.
[27]J. Robertson, Mater. Sci. Eng., R, 37 (2002) 129.
[28]J. Yang, A. Banerjee, and S. Guha, Sol. Energy Mater. Sol. Cells, 78 (2003) 597.
[29]X.J. Su, Q. Zhao, S. Wang, and A. Bendavid, Surf. Coat. Technol., 204 (2010) 2454.
[30]M. Rusop, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells, 90 (2006) 3214.
[31]A. Liu, H. Wu, J. Zhu, J. Han, and L. Niu, Diam. Relat. Mater., 17 (2008) 1927.
[32]M. Hakovirta, R. Verda, X.M. He, and M. Nastasi, Diam. Relat. Mater., 10 (2001) 1486.
[33]P. Peng, X.D. Li, G.F. Yuan, W.Q. She, F. Cao, D.M. Yang, Y. Zhuo, J. Liao, S.L. Yang, and M.J. Yue, Mater. Lett., 47 (2001) 171.
[34]G.Y. Chen, J.S. Chen, Z. Sun, Y.J. Li, S.P. Lau, B.K. Tay, and J.W. Chai, Appl. Surf. Sci., 180 (2001) 185
[35]V.I. Ivanov-Omskii, L.K. Panina, and S.G. Yastrebov, Carbon, 38 (2000) 495
[36]Y.B Zhang, S.P. Lau, L. Huang, and B.K. Tay, Diam. Relat. Mater., 15 (2006) 171.
[37]A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys., 87 (2000) 789.
[38]V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Timbs, W.I. Milne, and D.R. Mackenzie, J. Phys. Condens. Matter, 5 (1993) L169.
[39]S. Adhikari, S. Adhikary, A.M.M Omer, M. Rusop, H. Uchida, T. Soga, and M. Umeno, Diam. Relat. Mater., 15 (2006) 188.
[40]B. Gupta, P.K. Shishodia, A. Kapoor, R.M. Mehra, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 73 (2002) 261.
[41]J.C. Han, M.L. Tan, J.Q. Zhu, S.H. Meng, B.S. Wang, S.J. Mu, and D.W. Cao, Appl. Phys. Lett., 90 (2007) 083508.
[42]W.S. Choi, K. Kim, J. Yi, and B. Hong, Mater. Lett., 62 (2008) 577.
[43]S. Adhikari, H.R. Aryal, D.C. Ghimire, A.M.M. Omer, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater., 15 (2006) 1894.
[44]A.M.M. Omer, M. Rusop, S. Adhikari, S. Adhikary, H. Uchida, and M. Umeno, Diam. Relat. Mater., 14 (2005) 1084.
[45]C.H. Lee and K.S. Lim, Appl. Phys. Lett., 72 (1998) 106.
[46]K.M Krishna, T. Soga, T. Jimbo, and M. Umeno, Carbon, 37 (1999) 531.
[47]K.M Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Appl. Phys. Lett., 77 (2000) 1472.
[48]K.L. Narayanan, O. Goetzgberger, A. Khan, N. Kojima, and M. Yamaguchi, Sol. Energy Mater. Sol. Cells, 65 (2001) 29.
[49]N. Konofaos, E. Evangelou, and C.B. Thomas, J. Appl. Phys., 84 (1998) 4634.
[50]N.A. Hastas, C.A. Dimitriadis, D.H. Tassis, and S. Logothetidis, Appl. Phys. Lett., 79 (2001) 638.
[51]L.Z. Hao, Q.Z. Xue, X.L. Gao, Q. Li, Q.B. Zheng, and K.Y. Yan, J. Appl. Phys., 101 (2007) 053718.
[52]X.M. Tian, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 77 (2003) 105.
[53]M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, Sol. Energy Mater. Sol. Cells, 90 (2006) 3205.
[54]G.A.J. Amaratunga, D.E. Segal, and D.R. McKenzie, Appl. Phys. Lett., 59 (1991) 69.
[55]W.D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, New York (2007).
[56]A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications, IEEE, New York, 1994.
[57]M.L. Hitchman and K.F. Jensen, Chemical Vapor Deposition, Springer, San Diego (1993).
[58]A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921.
[59]H. Tahara, K.I. Minami, A. Murai, T. Yasui, and T. Yoshikawa., J. Appl. Phys., 34 (1995) 4A:1972.
[60]M. Alaluf, J. Appelbaum, L. Kliba, D. Brinkerb, D. Scheimanb, and N. Croitroru, Thin Solid Films, 256 (1995) 1.
[61]M.A. Alaluf, J. Appelbaum, M. Maharizi, A. Seidman, and N. Croitroru, Thin Solid Films, 303 (1997) 273.
[62]T.S. Chen, Y.C. Hsueh, S.E. Chiou, and S.T. Shiue, Sol. Energy Mater. Sol. Cells, 137 (2015) 185.
[63]http://hitech-projects.com/dts/docs/pecvd.htm
[64]M. Ohring, Materials Science of thin films, Academic Press, San Diego (2002).
[65]V. Baranauskas, S.F. Durrant, M.C. Tosin, A.F. Peterlevitz, B.B. Li, and S.G. Castro, Thin Solid Films, 335 (1999) 157.
[66]W.Y. Huang, Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan (2013).
[67]H.C. Hsueh, Y.K. Wang, and S.B. Lee, Surf. Coat. Technol., 231 (2013) 353.
[68]J.L. Huang, Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan (2015).
[69]R.M. Silverstein, F.X. Webster, and D.J. Kiemle, Spectrometric Identification of Organic Compounds, Wiley, New Jersey (2005).
[70]E.C. Ru and P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, New Zealand (2009).
[71]R.W. Wood, Nature, 122 (1928) 349.
[72]C.D Matrino, F. Demichelis, and A. Tagliaferro, Diam. Relat. Mater., 4 (1995) 1210.
[73]M. Lejeune, M. Benlahsen, and R. Bouzerar, Appl. Phys. Lett., 84 (2004) 34.
[74]G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B, 73 (2006) 125427.
[75]L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio, Phys. Rev. Lett., 93 (2004) 247401.
[76]R.C. Denny and R. Sindair, Visible and Ultraviolet Spectroscopy, John Wiley & Sons, New Jersey (1991).
[77]D.F. Swinehart, J. Chem. Educ., 39 (1962) 333.
[78]Z. Ning, S. Cheng, and S. Yang, J. Appl. Phys., 2 (2002) 439.
[79]C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, Diam. Relat. Mater., 13 (2004) 191.
[80]J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status solidi B, 15 (1966) 627.
[81]J. Robertson, J. Non-Cryst. Solids, 198 (1996) 615.
[82]Rusil, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys., 80 (1996) 2998.
[83]H. David, R. Resnick, and J. Walker, Fundamental of Physics 7th, Wiley, Dover (2005).
[84]H.C. Hsueh, H.C. Li, D. Chiang, and S.B. Lee, J. Electrochem. Soc., 159 (2012) D77.
[85]S.P. Louh, I.C. Leu, and M.H. Hon, Diam. Relat. Mater., 14 (2005) 1001.
[86]I.S. Grant and W.R. Phillips, Electromagnetism, 2nd ed., Wiley, Germany (2008).
[87]H. Benson, University Physics, Wiley, New York (1995).
[88]D.L. Chen and V.K. Varadan, Microwave electronics: measurement and materials characterization, Wiley, New York (2004).
[89]M.J. Chiang and M.H. Hon, Thin Solid Films, 516 (2008) 4765.
[90]M. Kral, A. Ogino, K. Narushima, N. Inagaki, M. Yamashita, and M. Nagatsu, J. Appl. Phys., 46 (2007) 7470.
[91]K.J. Clay, S.P. Speakman, G.A.J. Amaratunga and S.R.P. Silva, J. Appl. Phys., 79 (1996) 7227.
[92]M.M. Larijani, F. Le Normand, and O. Crégut, Appl. Surf. Sci., 253 (2007) 4051.
[93]Q. Shen, Y. Miyata, T. Suzuki, S. Morita, and K. Kitagawa, Phys. Plasmas, 15 (2008) 073502.
[94]K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D: Appl. Phys., 17 (1984) 1727.
[95]C.I. Butoi, M.L. Steen, J.R.D. Peers, and E.R. Fisher, J. Phys. Chem. B, 105 (2001) 5957.
[96]J.C. Legrand, A.M. Diamy, R. Hrach, and V. Hrachovä, Vacuum, 50 (1998) 492-494.
[97]A.M. Diamy, R. Hrach, V. Hrachovä, and J.C. Legrand, Vacuum, 61 (2001) 405-406.
[98]H.C. Thejaswini, A. Majumdar, T.M. Tun, and R. Hippler, Adv. Space Res., 48 (2011) 857.
[99]F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, and J. Amouroux, Surf. Coat. Technol., 142 (2001) 437.
[100]M. Othman, R. Ritikos, N.H. Khanis, N.M.A. Rashid, S.M.A. Gani, and S.A. Rahman, Thin Solid Films, 529 (2013) 440.
[101]K. Nakanishi and P.H. Solomon, Infrared Absorption Spectroscopy, Holden Day, San Francisco (1977).
[102]A. Majumdar, G. Scholz, and R. Hippler, Surf. Coat. Technol., 203 (2009) 2015.
[103]L.H. Lai, D.Y. Wu, H.C. Hsueh, and S.T. Shiue, ECS J. Solid State Sci. Technol., 3 (2014) M49.
[104]P. M´erel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105.
[105]G.L. Dˆu, N. Celini, F. Bergaya, and F.P. Epaillard, Surf. Coat. Technol., 201 (2007) 5815.
[106]S. Kaciulius, Surf. Interface Anal., 44 (2012) 1155.
[107]J. Sobol-Antosiak and W.S. Ptak, Mater. Lett., 56 (2002) 842.
[108]N. Shimodaria and A. Masui, J. Appl. Phys., 92 (2002) 902.
[109]A.C. Ferrari and J. Robertson, Phys. Rev. B, 61 (2000) 14095.
[110]J.K. Shin, C.S. Lee, K.R. Lee, and K.Y. Eun, Appl. Phys. Lett., 78 (2001) 631.
[111]D. Papadimitriou, G. Roupakas, C.A. Dimitriadis, and S. Longothetidis, J. Appl. Phys., 92 (2002) 870.
[112]A.C. Ferrari, S.E. Rodil, and J. Robertson, Phys. Rev. B, 67 (2003) 155306.
[113]A. Majumdar, R. Bogdanowicz, S. Mukherjee, and R. Hippler, Thin Solid Films, 527 (2013) 151.
[114]A. Majumdar, S.C. Das, T. Shripathi, and R. Hippler, Chem. Phys. Lett., 524 (2012) 62.
[115]M.A. Green, Solar Cells: Operating Principles Technology and System Applications, Englewood Cliffs, New Jersey (1982).
[116]D. Song, E.C. Cho, G. Conibeer, C. Flynn, Y. Huang, and M.A. Green, Sol. Energy Mater. Sol. Cells, 92 (2008) 474.
[117]A. Straub, R. Gebs, H. Habenicht, S. Trunk, R.A. Bardos, A.B. Sproul, and A.G. Aberle, J. Appl. Phys., 97 (2005) 083703.
[118]S.M. Sze, Physics of Semiconductor Device, 2nd ed., John Wiley & Sons, New York (1981).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top