陸、參考文獻
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H.
Tsau, S.Y. Chang, Adv. Eng. Mater.6 (2004) 299-303.
[2] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H.
Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533-2536.
[3] 楊宗翰,“ZrTaTiNbSi 非晶質合金薄膜之結構演變及其機性、電
性研究”,國立清華大學材料工程研究所碩士論文,(2004)。
[4] M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan,
W.W. Wu, J. Electrochem. Soc. 158 (2011) H1161-H1165.
[5] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun,
et al., "Mechanical performance of the Al xCoCrCuFeNi high-entropy
alloy system with multiprincipal elements," Metallurgical and Materials
Transactions A, 36, (2005) 1263-1271.
[6] 葉均蔚,高熵合金的發展,華岡工程學報,2011(27)[7] J. W. Yeh, Recent progress in high-entropy alloys, Ann. Chim.-Sci.
Mat. 31 (2006)633.
[8] Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in
Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 2013. 61(13):p.
4887-4897.
[9] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et
al., "Nanostructured High ‐ Entropy Alloys with Multiple Principal
Elements: Novel Alloy Design Concepts and Outcomes," Advanced
Engineering Materials, 6, (2004) 299-303.
[10] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C.
H. Tsau, and S. Y. Chang, “Nanostructured High-Entropy Alloys with
Multiple Principal Elements: Novel Alloy Design Concepts and
Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303.
73
[11] 辜文柏,(AlCrTaTiZr)(CN)薄膜結構及性質之研究,國立清華大
學材料工程研究所碩士論文,(2008)。
[12] 劉庭瑋,多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研
究,國立清華大學材料工程研究所碩士論文,(2009)。
[13] S. Y. Chang, and D. S. Chen, “10-nm-thick quinary (AlCrTaTiZr)N
film as effective diffusion barrier for Cu interconnects at 900°C”, Appl.
Phys. Lett., 94 (2009) 231909.
[14] S. Y. Chang, C. Y. Wang, M. K. Chen, and C. E Li, “Ru
incorporation on marked enhancement of diffusion resistance of
multi-component alloy barrier layers”, J. Alloy. Compd., 509 (2011)
L85-G89.
[15] 林彥宏,“利用射頻磁控濺鍍法共鍍Al x CrNbTaTiZr高熵合金氮化
物薄膜及其性質探討”,國立清華大學材料科學工程研究所碩士論文,
2007.
[16] 翁稚惠,“AlCrTaTiZr氮化物薄膜附著力與抗磨耗能力之研究”,國
立清華大學材料科學工程研究所碩士論文, 2007.
[17] 李承恩,多元高熵合金及其氮化物薄膜之擴散阻障能力與提昇機
制,國立國立中興大學材料工程研究所碩士論文,(2012)。
[18] 林少顗,多元高熵合金及氮化物鍍膜奈米機械性質與變形行為之
研究,國立國立中興大學材料工程研究所博士論文,(2015)。
[19] S. Kim, B. Kim, G. Kim, S. Lee, and B. Lee, "Evaluation of the
high temperature characteristics of the CrZrN coatings," Surface and
Coatings Technology, 202, (2008) 5521-5525.
[20] E. Silva, M. R. de Figueiredo, R. Franz, R. E. Galindo, C. Palacio, A.
Espinosa, et al., "Structure–property relations in ZrCN coatings for
tribological applications," Surface and Coatings Technology, 205, (2010)
2134-2141.
74
[21] R. Chen, J. Tu, D. Liu, Y. Mai, and C. Gu, "Microstructure,
mechanical and tribological properties of TiCN nanocomposite films
deposited by DC magnetron sputtering," Surface and Coatings
Technology, 205, (2011) 5228-5234.
[22] Y. Guo, S. Ma, and K. Xu, "Effects of carbon content and annealing
temperature on the microstructure and hardness of super hard Ti–Si–C–N
nanocomposite coatings prepared by pulsed dc PCVD," Surface and
Coatings Technology, 201, (2007) 5240-5243.
[23] F. H. Löffler, "Systematic approach to improve the performance of
PVD coatings for tool applications," Surface and Coatings Technology,
68, (1994) 729-740.
[24] T. Ikeda and H. Satoh, "Phase formation and characterization of hard
coatings in the Ti Al N system prepared by the cathodic arc ion
plating method," Thin Solid Films, 195, (1991) 99-110.
[25] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, "Preparation and
characterization of AlCrTaTiZr multi-element nitride coatings," Surface
and Coatings Technology, 201, (2006) 3275-3280
[26] C.-H. Lai, K.-H. Cheng, S.-J. Lin, and J.-W. Yeh, "Mechanical and
tribological properties of multi-element (AlCrTaTiZr) N coatings,"
Surface and Coatings Technology, 202, (2008) 3732-3738.
[27] H.-W. Chang, P.-K. Huang, A. Davison, J.-W. Yeh, C.-H. Tsau, and
C.-C. Yang, "Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti
alloy target by reactive direct current magnetron.
[28] H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, and
C.-C. Yang, "Influence of substrate bias, deposition temperature and
post-deposition annealing on the structure and properties of
multi-principal-component (AlCrMoSiTi) N coatings," Surface and
Coatings Technology, 202, (2008) 3360-3366.
[29] P.-K. Huang and J.-W. Yeh, "Effects of nitrogen content on structure
75
and mechanical properties of multi-element (AlCrNbSiTiV) N coating,"
Surface and Coatings Technology, 203, (2009) 1891-1896.
[30] P.-K. Huang and J.-W. Yeh, "Inhibition of grain coarsening up to
1000° C in (AlCrNbSiTiV) N superhard coatings," Scripta Materialia,
62, (2010) 105-108.
[31] H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, and J.-W. Yeh, "Effect of
nitrogen content and substrate bias on mechanical and corrosion
properties of high-entropy films (AlCrSiTiZr) 100− x N x," Surface and
Coatings Technology, 206, (2012) 4106-4112.
[32] C. Lin, J. Duh, and J. Yeh, "Multi-component nitride coatings
derived from Ti–Al–Cr–Si–V target in RF magnetron sputter," Surface
and Coatings Technology, 201, (2007) 6304-6308.
[33] K.-H. Cheng, C.-W. Tsai, S.-J. Lin, and J.-W. Yeh, "Effects of silicon
content on the structure and mechanical properties of
(AlCrTaTiZr)–Si x –N coatings by reactive RF magnetron sputtering,"
Journal of Physics D: Applied Physics, 44, (2011) 205405.
[34] S.-C. Liang, D.-C. Tsai, Z.-C. Chang, H.-S. Sung, Y.-C. Lin, Y.-J.
Yeh, et al., "Structural and mechanical properties of multi-element
(TiVCrZrHf) N coatings by reactive magnetron sputtering," Applied
Surface Science, 258, (2011) 399-403.
[35] S.-C. Liang, Z.-C. Chang, D.-C. Tsai, Y.-C. Lin, H.-S. Sung, M.-J.
Deng, et al., "Effects of substrate temperature on the structure and
mechanical properties of (TiVCrZrHf) N coatings," Applied Surface
Science, 257, (2011) 7709-7713.
[36] M.-H. Tsai, C.-H. Lai, J.-W. Yeh, and J.-Y. Gan, "Effects of nitrogen
flow ratio on the structure and properties of reactively sputtered
(AlMoNbSiTaTiVZr) N x coatings," Journal of Physics D: Applied
Physics, 41, (2008) 235402.
76
[37] M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, "Structure and
properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings,"
Surface and Coatings Technology, 221, (2013) 118-123.
[38] M.-I. Lin, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, "Evolution of
structure and properties of multi-component (AlCrTaTiZr) Ox films,"
Thin Solid Films, 518, (2010) 2732-2737.
[39] R.-S. Yu, C.-J. Huang, R.-H. Huang, C.-H. Sun, and F.-S. Shieu,
"Structure and optoelectronic properties of multi-element oxide thin
film," Applied Surface Science, 257, (2011) 6073-6078.
[40] V. Braic, A. Parau, I. Pana, M. Braic, and M. Balaceanu, "Effects of
substrate temperature and carbon content on the structure and properties
of (CrCuNbTiY) C multicomponent coatings," Surface and Coatings
Technology, 258, (2014) 996-1005.
[41] V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, and M. Braic,
"Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C
hard coatings," Surface and Coatings Technology, 211, (2012)
117-121.
[42] M. Braic, V. Braic, M. Balaceanu, C. Zoita, A. Vladescu, and E.
Grigore, "Characteristics of (TiAlCrNbY) C films deposited by reactive
magnetron sputtering," Surface and Coatings Technology, 204, (2010).
[43] C. Huang, Y. Z. Zhang, and R. Vilar, "Microstructure
characterization of laser clad TiVCrAlSi high entropy alloy coating on
Ti-6Al-4V substrate," in Advanced Materials Research, 2011, pp.
621-625.
[44] H. Holleck and V. Schier, “Multilayer PVD coatings for wear
protection”, Surface and Coatings technology 76(1995)328-336.
[45] H. O. Pierson, Handbook of Refractory Carbides & Nitrides:
Properties, Characteristics, Processing and Apps: William Andrew,
(1996).
77
[46] S. Veprek and M. J. Veprek-Heijman, "Industrial applications of
superhard nanocomposite coatings," Surface and Coatings Technology,
202, (2008) 5063-5073.
[47] H. A. Jehn, S. Hofmann, V. E. Rückborn, and W. D. Münz,
"Morphology and properties of sputtered (Ti, Al) N layers on high speed
steel substrates as a function of deposition temperature and sputtering
atmosphere," Journal of Vacuum Science & Technology A, 4, (1986)
2701-2705.
[48] W. D. Münz, "Oxidation resistance of hard wear resistant Ti0, 5Al0,
5N coatings grown by magnetron sputter deposition," Materials
[49] H. C. Barshilia, B. Deepthi, A. A. Prabhu, and K. Rajam, "Superhard
nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current
unbalanced magnetron sputtering," Surface and Coatings Technology,
201, (2006) 329-337.
[50] R. Bunshah, A. Shabaik, R. Nimmagadda, and J. Covy, "Machining
studies on coated high speed steel tools," Thin Solid Films, 45, (1977)
453-462.
[51] K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, and C.M. Lee,
Thin Solid Films 406 (2002) 159–163
[52] A. Neiderhofer, P. Nesladek, H. Mannling, K. Moto, S. Veprek, and
M. Jilek, Surf. Coat.Technol. 120-121 (1999) 173.
[53] S. Christiansen, M. Albrecht, H. P. Strunk, S. and J. Veprek, Vac.
Sci. Technol., 16 (1998) 19.
[54] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, Surf. Coat.
Technol. 898 (1999) 116-119.
[55] S.J. Bull, D.G. Bhat, and M.H. Staia, "Properties and performance of
commercial TiCN coatings. Part 2: tribological performance". Surface &
Coatings Technology, 163(2003): pp. 507-514.
[56] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok,
78
"Microstructural characterization of binary and ternary hard coating
systems for wear protection Part II: Ti(CN) PACVD coatings". Surface &
Coatings Technology, 116(1999): p. 898-905.
[57] J. Takadoum, H. H. Bennani, and M. Allouard, Surf.
Coat.Technol.23(1996)32-38.
[58] A. Mathews, Coat. Tribology, Press,(1994).
[59] 張奇龍,雙極脈衝磁控濺射沉積氮化鉻硼薄膜在光學模造玻璃模
仁之應用研究-高溫之特性研究及實物測試破損分析,行政院國家科
學研究委員會專題研究計畫,(2011)
[60] S. Vepřek and S. Reiprich, "A concept for the design of novel
superhard coatings," Thin Solid Films, 268, (1995) 64-71.
[61] M. Diserens, J. Patscheider, and F. Levy, "Mechanical properties and
oxidationresistance of nanocomposite TiN–SiN x
physical-vapor-deposited thin films," Surface and Coatings Technology,
120, (1999) 158-165.
[62] A. Flink, T. Larsson,J.Sjolen, L. Karlsson, L. Hultman, “Influence
of Si on the microstructure of arc evaporated (Ti,Si)N thin films;evidece
for cubic solid solutions and their thermal stability”, Surface and
Coatings Technology, 200(2005)1535-1542.
[63] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E.
Alves, “Microstructure and machanical properties of nanocomposite
(Ti,Si,Al)N coatings”, Thin Solid Films 398-399(2001) 391-396.
[64] 張家榮,鋁鉻鉭鈦鋯多元合金矽氮化物薄膜製備與機械性質之研
究,國立國立中興大學材料工程研究所碩士論文,(2012)。
[65] R. S. Muller, T. I. Kamins, and M. Chan, “Device electronics for
integrated circuits”, 2nd ed., John Wiley & Sons, New York, (1986) 1-56.
[66] A. Noya, and K. Sasaki, “Auger electron spectroscopy study on the
characterization and stability of the Cu9 Al 4 /TiN/Si system”, Jpn. J. Appl.
79
Phys., 30 (1991) 1760-1763.
[67] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure
on diffusion barrier properties in Cu metallization”, J. Electrochem. Soc.,
145 (1998) 2164-2167.
[68] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study
of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”,
Microelectron. Eng., 33 (1997) 269-275.
[69] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of
tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for
Cu metallization”, J. Vac. Sci. Technol. B, 14 (1996) 3263-3269.
[70] J. S. Fang, J. H. Lin, B. Y. Chen, and T. S. Chin, “Ultrathin Ru–Ta–C
barriers for Cu metallization”, J. Electrochem.Soc., 158 (2011)
H97-H102.
[71] J. S. Fang, C. F. Chiu, J. H. Lin, T. Y. Lin, and T. S. Chin, “Failure
mechanism of 5 nm thick Ta-Si-C barrier layers against Cu penetration at
700-800 degress C”, J. Electrochem. Soc., 156 (2009) H147-H152.
[72] W. Sari, T. K. Eom, S. H. Choi, and S. H. Kim, “Ru/WNx Bilayers
as Diffusion Barriers for Cu Interconnects”, Jpn. J. Appl. Phys., 50 (2011)
05EA08.
[73] S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim, K.
B. Kim, and H. Sohn,“A bilayer diffusion barrier of ALD-Ru/ALD-TaCN
for direct plating of Cu”, J. Electrochem. Soc., 155 (2008) H589-H594.
[74] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson,
“Ir/TaN as a bilayer diffusion barrier for advanced Cu
interconnects”,Appl. Phys. Lett., 92(2008)111917.
[75] 趙家夆,濺鍍銅(鉻鉬鈮釕鉭釩)合金薄膜自形成多元擴散阻障層
之研究,國立國立中興大學材料工程研究所碩士論文,(2012)。
[76] 林哲敏,濺鍍銅合金薄膜自形成超薄鉻鉬鈮釕鉭釩多元擴散阻障
80
層之研究,國立國立中興大學材料工程研究所碩士論文,(2014)。
[77] P. M. Martin, Handbook of deposition technologies for films and
coatings: science, applications and technology: WilliamAndrew, (2009).
[78] F. R. de Boer and D. G. Pettifor, “Cohesion in metals transition metal
alloys”, North-Holland, New York.
[79] Chan, R. W. and P. Haasen, Physical metallurgy. Vol. 1. 1996:
North-Holland.
[80] Wang, Z., et al., Atomic-Size effect and solid solubility of
multicomponent alloys. Scripta Materialia, 2015. 94:p. 28-31.
[81] Guo, S. and C. T. Liu, phase stability in high entropy alloys:
Formation of solid-solution phase or amorphous phase .Progress in
Natural Science-Materials International, 2011. 21(6):p. 433-446.
[82] Guo, S., et al., More than entropy in high-entropy alloys:Forming
solid solutions or amorphous phase. Intermetallics, 2013. 41:p. 96-103.
[83] Guo, S., et al., Effect of valence electron concentration stability of
fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011.
109(10):p. 103505.
[84] L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y.Xue, L. Zhou, Effect
of aging temperature on microstructureand
propertiesofAlCoCrCuFeNihigh-entropyalloy, Intermetallics 17
(2009)266.
[85] C. W. Tsai, M. H. Tsai, J. W. Yeh, C. C. Yang,Effect of
temperature on mechanical propertiesof Al 0.5 CoCrCuFeNi wrought
alloy, J. AlloysCompd. 490 (2010) 160.
[86] J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang,H. Li, Z. Q. Hu,
Microstructures and compressive properties of multicomponent
AlCoCrCuFeNiMo(x) under-bar alloys, J. Alloys Compd. 497 (2010) 52.
[87] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen,J. W. Yeh,
81
Microstructure and Mechanical Properties of New AlCo xCrFeMo0.5 Ni
High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44.
[88] C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, H. C.Shih, The effect
of boron on the corrosion resistance of the high entropy alloys
Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 154 (2007) C424.
[89] Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh,H.C. Shih,
Microstructureand electrochemical properties of high entropy alloys—a
comparison with type-304 stainless steel, Corros. Sci. 47 (2005) 2257.
[90] Y. Y. Chen, U. T.Hong, J. W. Yeh, H. C. Shih,Selected corrosion
behaviors of a Cu 0.5 NiAlCoCrFeSi bulkglassyalloy in 288 ℃
high-purity water, Scr. Mater. 54 (2006)1997.
[91] O.N. Senkov ,, G.B. Wilks ., J.M. Scott ., D.B. Miracle , Mechanical
properties of Nb25Mo25 Ta 25W25 and V20 Nb20Mo20 Ta 20W20 refractory
high entropy alloys. Intermetallics 19 (2011) 698-706.
[92] Inconel_ Alloy 718,
http://www.specialmetals.com/documents/Inconelalloy718.pdf.
[93] Haynes_230_ Alloy, www.haynesintl.com/pdf/h3060.pdf.