跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭鍵勇
研究生(外文):Chien-Yung Cheng
論文名稱:單元釩至六元釩鈮鉬鉭鉻釕高熵合金微結構與成相行為之研究
論文名稱(外文):Microstructure and Phase Formation of Unitary V to Senary V-Nb-Mo-Ta-Cr-Ru High-entropy Alloys
指導教授:蔡銘洪張守一
指導教授(外文):Ming-Hong Tsai
口試委員:張銀祐
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:高熵合金釩鈮鉬鉭鉻釕晶粒細化
外文關鍵詞:V-Nb-Mo-Ta-Cr-Ru High-entropy AlloysSluggish Diffusion effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在現有的高熵合金研究設計上,大都是以固定四元或者五元元素
再添加一或兩種元素,來做實驗進行探討,藉以比較某合金系統在添
加不同元素之後的變化及影響。但是,這樣的研究往往過於侷限在某
個範圍內。也因此很難與傳統的合金進行一個有系統的討論。
因此,為避免與上述研究發生同樣的問題,本實驗便採用最基本
的方式,由單元素以等莫耳的方式依序增加合金元素至六元合金,即
是由V、Nb、Mo、Ta、Cr、Ru等六個元素,製作單元釩金屬塊材至
釩鈮鉬鉭鉻釕六元高熵合金,藉由研究其鑄造態的成相及微結構,來
討論單元金屬、傳統的二三元合金以及高熵合金之間的差異,以及添
加元素對於合金機械性質的影響。
經由研究發現,在單元釩及傳統二三元合金中,組成過冷為造成
晶粒細化的主因,當材料增加至四五六元時,高熵效應便成為了晶粒
細化的原因。同樣的,在硬度的表現上也有不同樣的機制,在單元釩
及傳統二三元合金中,固溶強化及添加元素的硬度為影響合金硬度的
主因,當合金元素增加至四五六元時,除了添加元素的硬度,元素之
間彼此複雜的鍵結能所造成的遲滯擴散,更成為了高熵合金硬度上升
的主要因素。

n the conventional high-entropy alloys in study design,mostly based
on fixed quaternary and quinary elements or add another element of
one or two elements and to do experiments to explore,in order to compare
changes in an alloy system and its influence after the addition of different
elements. But, such studies are often too limited within a certain
range.Therefore, it is difficult to compare with traditional alloys.
So, in order to avoid the same problem with above studies, we used
the most basic way in this study.To increase an element that in the same
atomic percent from unitary material to senary alloy. That used V、Nb、
Mo、Ta、Cr、Ru, to product unitary V to senary V-Nb-Mo-Ta-Cr-Ru
High-entropy Alloys. By observed the phase formation and
microstructure of casting state, to discuss the differents between unitary
V、binary or ternary alloy and High-Entropy alloy, and what the effect
of mechanical properties of alloy when add an element.
This study found the grain refinement that due to the unitary V and
traditional binary and ternary alloy constitutional supercooling, but the
grain refinement that due to High-Entropy effect when material is
quaternary 、quinary and senary alloy. And the same, there are not the
same mechanism to change hardness, the hardness value rise that due to
solid solution strengthening and the hardness of addition element when
material is unitary V and traditional binary and ternary alloy, but when
material is quaternary 、quinary and senary alloy, except caused the
hardness of addition element, the hardness value rise caused by the
Sluggish Diffusion effect of High-Entropy alloy that due to complicated
bond energy of elements.

摘要............................................................................................................. i
Abstract ...................................................................................................... ii
目錄........................................................................................................... iii
圖目錄....................................................................................................... vi
表目錄.....................................................................................................viii
壹、前言.................................................................................................... 1
貳、文獻回顧............................................................................................ 3
2.1 高熵合金的發展......................................................................... 3
2.1.1 高熵合金的四大效應..................................................... 3
2.2 高熵合金的特性及性能表現.................................................... 8
2.2.1 高熵合金的機械性質..................................................... 8
2.2.2 高熵合金的電化學性質............................................... 11
2.3 高熵合金的應用....................................................................... 12
2.3.1 擴散阻障層.................................................................... 12
2.3.1.1 傳統一元擴散阻障層...................................... 13
2.3.1.2 二元及以上過渡金屬化合物擴散阻障層...... 14
2.3.1.3 過渡金屬化合物疊層結構擴散阻障層.......... 16
2.3.1.4 高熵合金應用在擴散阻障層.......................... 18
iv
2.3.2 保護性硬膜.................................................................... 22
2.3.2.1 氮化物保護性硬膜.......................................... 22
2.3.2.2 碳化物與碳氮化物硬質合金保護性硬膜...... 25
2.3.2.3 硼化物與碳硼氮化物保護性硬膜.................. 26
2.3.2.4 矽化物與矽碳氮化物保護性硬膜.................. 27
2.3.2.5 多元化合物保護性硬膜.................................. 29
2.3.2.6 高熵合金應用在保護性硬膜.......................... 31
2.4 高熵合金成相法則................................................................... 38
2.4.1 成相法則的重要性........................................................ 38
2.4.2 成相法則整理................................................................ 38
2.5 研究目的................................................................................... 41
參、實驗步驟.......................................................................................... 42
3.1 實驗規劃................................................................................... 42
3.2 合金製備................................................................................... 43
3.3 研磨拋光................................................................................... 43
3.4 分析儀器................................................................................... 45
3.4.1 光學顯微鏡.................................................................... 45
3.4.2 掃描式電子顯微鏡........................................................ 45
3.4.3 維氏硬度機.................................................................... 46
v
3.4.4 高解析度X光繞射儀................................................... 46
肆、結果與討論...................................................................................... 47
4.1 OM與SEM觀察...................................................................... 47
4.2 EDS成份分析........................................................................... 49
4.3 EBSD分析................................................................................ 55
4.4 晶體結構分析........................................................................... 58
4.4.1 晶格常數理論值與實驗值之差異比較....................... 59
4.5 成相預測與實際情況比較....................................................... 63
4.5.1 混合熵ΔSmix ................................................................. 63
4.5.2 混合焓ΔHmix ................................................................. 63
4.5.3 原子大小差異δ............................................................ 64
4.5.4 價電子濃度VEC........................................................... 65
4.5.5 原子堆疊參數γ............................................................ 65
4.5.6 各參數與成相結果討論............................................... 67
4.6 硬度分析................................................................................... 68
伍、結論.................................................................................................. 71
陸、參考文獻.......................................................................................... 72

陸、參考文獻
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H.
Tsau, S.Y. Chang, Adv. Eng. Mater.6 (2004) 299-303.
[2] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H.
Tsau, S.Y. Chang, Metall. Mater. Trans. A 35 (2004) 2533-2536.
[3] 楊宗翰,“ZrTaTiNbSi 非晶質合金薄膜之結構演變及其機性、電
性研究”,國立清華大學材料工程研究所碩士論文,(2004)。
[4] M.H. Tsai, C.W. Wang, C.W. Tsai, W.J. Shen, J.W. Yeh, J.Y. Gan,
W.W. Wu, J. Electrochem. Soc. 158 (2011) H1161-H1165.
[5] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun,
et al., "Mechanical performance of the Al xCoCrCuFeNi high-entropy
alloy system with multiprincipal elements," Metallurgical and Materials
Transactions A, 36, (2005) 1263-1271.
[6] 葉均蔚,高熵合金的發展,華岡工程學報,2011(27)
[7] J. W. Yeh, Recent progress in high-entropy alloys, Ann. Chim.-Sci.
Mat. 31 (2006)633.
[8] Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in
Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 2013. 61(13):p.
4887-4897.
[9] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et
al., "Nanostructured High ‐ Entropy Alloys with Multiple Principal
Elements: Novel Alloy Design Concepts and Outcomes," Advanced
Engineering Materials, 6, (2004) 299-303.
[10] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C.
H. Tsau, and S. Y. Chang, “Nanostructured High-Entropy Alloys with
Multiple Principal Elements: Novel Alloy Design Concepts and
Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303.
73
[11] 辜文柏,(AlCrTaTiZr)(CN)薄膜結構及性質之研究,國立清華大
學材料工程研究所碩士論文,(2008)。
[12] 劉庭瑋,多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研
究,國立清華大學材料工程研究所碩士論文,(2009)。
[13] S. Y. Chang, and D. S. Chen, “10-nm-thick quinary (AlCrTaTiZr)N
film as effective diffusion barrier for Cu interconnects at 900°C”, Appl.
Phys. Lett., 94 (2009) 231909.
[14] S. Y. Chang, C. Y. Wang, M. K. Chen, and C. E Li, “Ru
incorporation on marked enhancement of diffusion resistance of
multi-component alloy barrier layers”, J. Alloy. Compd., 509 (2011)
L85-G89.
[15] 林彥宏,“利用射頻磁控濺鍍法共鍍Al x CrNbTaTiZr高熵合金氮化
物薄膜及其性質探討”,國立清華大學材料科學工程研究所碩士論文,
2007.
[16] 翁稚惠,“AlCrTaTiZr氮化物薄膜附著力與抗磨耗能力之研究”,國
立清華大學材料科學工程研究所碩士論文, 2007.
[17] 李承恩,多元高熵合金及其氮化物薄膜之擴散阻障能力與提昇機
制,國立國立中興大學材料工程研究所碩士論文,(2012)。
[18] 林少顗,多元高熵合金及氮化物鍍膜奈米機械性質與變形行為之
研究,國立國立中興大學材料工程研究所博士論文,(2015)。
[19] S. Kim, B. Kim, G. Kim, S. Lee, and B. Lee, "Evaluation of the
high temperature characteristics of the CrZrN coatings," Surface and
Coatings Technology, 202, (2008) 5521-5525.
[20] E. Silva, M. R. de Figueiredo, R. Franz, R. E. Galindo, C. Palacio, A.
Espinosa, et al., "Structure–property relations in ZrCN coatings for
tribological applications," Surface and Coatings Technology, 205, (2010)
2134-2141.
74
[21] R. Chen, J. Tu, D. Liu, Y. Mai, and C. Gu, "Microstructure,
mechanical and tribological properties of TiCN nanocomposite films
deposited by DC magnetron sputtering," Surface and Coatings
Technology, 205, (2011) 5228-5234.
[22] Y. Guo, S. Ma, and K. Xu, "Effects of carbon content and annealing
temperature on the microstructure and hardness of super hard Ti–Si–C–N
nanocomposite coatings prepared by pulsed dc PCVD," Surface and
Coatings Technology, 201, (2007) 5240-5243.
[23] F. H. Löffler, "Systematic approach to improve the performance of
PVD coatings for tool applications," Surface and Coatings Technology,
68, (1994) 729-740.
[24] T. Ikeda and H. Satoh, "Phase formation and characterization of hard
coatings in the Ti Al N system prepared by the cathodic arc ion
plating method," Thin Solid Films, 195, (1991) 99-110.
[25] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, "Preparation and
characterization of AlCrTaTiZr multi-element nitride coatings," Surface
and Coatings Technology, 201, (2006) 3275-3280
[26] C.-H. Lai, K.-H. Cheng, S.-J. Lin, and J.-W. Yeh, "Mechanical and
tribological properties of multi-element (AlCrTaTiZr) N coatings,"
Surface and Coatings Technology, 202, (2008) 3732-3738.
[27] H.-W. Chang, P.-K. Huang, A. Davison, J.-W. Yeh, C.-H. Tsau, and
C.-C. Yang, "Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti
alloy target by reactive direct current magnetron.
[28] H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, and
C.-C. Yang, "Influence of substrate bias, deposition temperature and
post-deposition annealing on the structure and properties of
multi-principal-component (AlCrMoSiTi) N coatings," Surface and
Coatings Technology, 202, (2008) 3360-3366.
[29] P.-K. Huang and J.-W. Yeh, "Effects of nitrogen content on structure
75
and mechanical properties of multi-element (AlCrNbSiTiV) N coating,"
Surface and Coatings Technology, 203, (2009) 1891-1896.
[30] P.-K. Huang and J.-W. Yeh, "Inhibition of grain coarsening up to
1000° C in (AlCrNbSiTiV) N superhard coatings," Scripta Materialia,
62, (2010) 105-108.
[31] H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, and J.-W. Yeh, "Effect of
nitrogen content and substrate bias on mechanical and corrosion
properties of high-entropy films (AlCrSiTiZr) 100− x N x," Surface and
Coatings Technology, 206, (2012) 4106-4112.
[32] C. Lin, J. Duh, and J. Yeh, "Multi-component nitride coatings
derived from Ti–Al–Cr–Si–V target in RF magnetron sputter," Surface
and Coatings Technology, 201, (2007) 6304-6308.
[33] K.-H. Cheng, C.-W. Tsai, S.-J. Lin, and J.-W. Yeh, "Effects of silicon
content on the structure and mechanical properties of
(AlCrTaTiZr)–Si x –N coatings by reactive RF magnetron sputtering,"
Journal of Physics D: Applied Physics, 44, (2011) 205405.
[34] S.-C. Liang, D.-C. Tsai, Z.-C. Chang, H.-S. Sung, Y.-C. Lin, Y.-J.
Yeh, et al., "Structural and mechanical properties of multi-element
(TiVCrZrHf) N coatings by reactive magnetron sputtering," Applied
Surface Science, 258, (2011) 399-403.
[35] S.-C. Liang, Z.-C. Chang, D.-C. Tsai, Y.-C. Lin, H.-S. Sung, M.-J.
Deng, et al., "Effects of substrate temperature on the structure and
mechanical properties of (TiVCrZrHf) N coatings," Applied Surface
Science, 257, (2011) 7709-7713.
[36] M.-H. Tsai, C.-H. Lai, J.-W. Yeh, and J.-Y. Gan, "Effects of nitrogen
flow ratio on the structure and properties of reactively sputtered
(AlMoNbSiTaTiVZr) N x coatings," Journal of Physics D: Applied
Physics, 41, (2008) 235402.
76
[37] M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, "Structure and
properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings,"
Surface and Coatings Technology, 221, (2013) 118-123.
[38] M.-I. Lin, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, "Evolution of
structure and properties of multi-component (AlCrTaTiZr) Ox films,"
Thin Solid Films, 518, (2010) 2732-2737.
[39] R.-S. Yu, C.-J. Huang, R.-H. Huang, C.-H. Sun, and F.-S. Shieu,
"Structure and optoelectronic properties of multi-element oxide thin
film," Applied Surface Science, 257, (2011) 6073-6078.
[40] V. Braic, A. Parau, I. Pana, M. Braic, and M. Balaceanu, "Effects of
substrate temperature and carbon content on the structure and properties
of (CrCuNbTiY) C multicomponent coatings," Surface and Coatings
Technology, 258, (2014) 996-1005.
[41] V. Braic, A. Vladescu, M. Balaceanu, C. Luculescu, and M. Braic,
"Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C
hard coatings," Surface and Coatings Technology, 211, (2012)
117-121.
[42] M. Braic, V. Braic, M. Balaceanu, C. Zoita, A. Vladescu, and E.
Grigore, "Characteristics of (TiAlCrNbY) C films deposited by reactive
magnetron sputtering," Surface and Coatings Technology, 204, (2010).
[43] C. Huang, Y. Z. Zhang, and R. Vilar, "Microstructure
characterization of laser clad TiVCrAlSi high entropy alloy coating on
Ti-6Al-4V substrate," in Advanced Materials Research, 2011, pp.
621-625.
[44] H. Holleck and V. Schier, “Multilayer PVD coatings for wear
protection”, Surface and Coatings technology 76(1995)328-336.
[45] H. O. Pierson, Handbook of Refractory Carbides & Nitrides:
Properties, Characteristics, Processing and Apps: William Andrew,
(1996).
77
[46] S. Veprek and M. J. Veprek-Heijman, "Industrial applications of
superhard nanocomposite coatings," Surface and Coatings Technology,
202, (2008) 5063-5073.
[47] H. A. Jehn, S. Hofmann, V. E. Rückborn, and W. D. Münz,
"Morphology and properties of sputtered (Ti, Al) N layers on high speed
steel substrates as a function of deposition temperature and sputtering
atmosphere," Journal of Vacuum Science & Technology A, 4, (1986)
2701-2705.
[48] W. D. Münz, "Oxidation resistance of hard wear resistant Ti0, 5Al0,
5N coatings grown by magnetron sputter deposition," Materials
[49] H. C. Barshilia, B. Deepthi, A. A. Prabhu, and K. Rajam, "Superhard
nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current
unbalanced magnetron sputtering," Surface and Coatings Technology,
201, (2006) 329-337.
[50] R. Bunshah, A. Shabaik, R. Nimmagadda, and J. Covy, "Machining
studies on coated high speed steel tools," Thin Solid Films, 45, (1977)
453-462.
[51] K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, and C.M. Lee,
Thin Solid Films 406 (2002) 159–163
[52] A. Neiderhofer, P. Nesladek, H. Mannling, K. Moto, S. Veprek, and
M. Jilek, Surf. Coat.Technol. 120-121 (1999) 173.
[53] S. Christiansen, M. Albrecht, H. P. Strunk, S. and J. Veprek, Vac.
Sci. Technol., 16 (1998) 19.
[54] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, Surf. Coat.
Technol. 898 (1999) 116-119.
[55] S.J. Bull, D.G. Bhat, and M.H. Staia, "Properties and performance of
commercial TiCN coatings. Part 2: tribological performance". Surface &
Coatings Technology, 163(2003): pp. 507-514.
[56] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok,
78
"Microstructural characterization of binary and ternary hard coating
systems for wear protection Part II: Ti(CN) PACVD coatings". Surface &
Coatings Technology, 116(1999): p. 898-905.
[57] J. Takadoum, H. H. Bennani, and M. Allouard, Surf.
Coat.Technol.23(1996)32-38.
[58] A. Mathews, Coat. Tribology, Press,(1994).
[59] 張奇龍,雙極脈衝磁控濺射沉積氮化鉻硼薄膜在光學模造玻璃模
仁之應用研究-高溫之特性研究及實物測試破損分析,行政院國家科
學研究委員會專題研究計畫,(2011)
[60] S. Vepřek and S. Reiprich, "A concept for the design of novel
superhard coatings," Thin Solid Films, 268, (1995) 64-71.
[61] M. Diserens, J. Patscheider, and F. Levy, "Mechanical properties and
oxidationresistance of nanocomposite TiN–SiN x
physical-vapor-deposited thin films," Surface and Coatings Technology,
120, (1999) 158-165.
[62] A. Flink, T. Larsson,J.Sjolen, L. Karlsson, L. Hultman, “Influence
of Si on the microstructure of arc evaporated (Ti,Si)N thin films;evidece
for cubic solid solutions and their thermal stability”, Surface and
Coatings Technology, 200(2005)1535-1542.
[63] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E.
Alves, “Microstructure and machanical properties of nanocomposite
(Ti,Si,Al)N coatings”, Thin Solid Films 398-399(2001) 391-396.
[64] 張家榮,鋁鉻鉭鈦鋯多元合金矽氮化物薄膜製備與機械性質之研
究,國立國立中興大學材料工程研究所碩士論文,(2012)。
[65] R. S. Muller, T. I. Kamins, and M. Chan, “Device electronics for
integrated circuits”, 2nd ed., John Wiley & Sons, New York, (1986) 1-56.
[66] A. Noya, and K. Sasaki, “Auger electron spectroscopy study on the
characterization and stability of the Cu9 Al 4 /TiN/Si system”, Jpn. J. Appl.
79
Phys., 30 (1991) 1760-1763.
[67] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure
on diffusion barrier properties in Cu metallization”, J. Electrochem. Soc.,
145 (1998) 2164-2167.
[68] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study
of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”,
Microelectron. Eng., 33 (1997) 269-275.
[69] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of
tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for
Cu metallization”, J. Vac. Sci. Technol. B, 14 (1996) 3263-3269.
[70] J. S. Fang, J. H. Lin, B. Y. Chen, and T. S. Chin, “Ultrathin Ru–Ta–C
barriers for Cu metallization”, J. Electrochem.Soc., 158 (2011)
H97-H102.
[71] J. S. Fang, C. F. Chiu, J. H. Lin, T. Y. Lin, and T. S. Chin, “Failure
mechanism of 5 nm thick Ta-Si-C barrier layers against Cu penetration at
700-800 degress C”, J. Electrochem. Soc., 156 (2009) H147-H152.
[72] W. Sari, T. K. Eom, S. H. Choi, and S. H. Kim, “Ru/WNx Bilayers
as Diffusion Barriers for Cu Interconnects”, Jpn. J. Appl. Phys., 50 (2011)
05EA08.
[73] S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim, K.
B. Kim, and H. Sohn,“A bilayer diffusion barrier of ALD-Ru/ALD-TaCN
for direct plating of Cu”, J. Electrochem. Soc., 155 (2008) H589-H594.
[74] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson,
“Ir/TaN as a bilayer diffusion barrier for advanced Cu
interconnects”,Appl. Phys. Lett., 92(2008)111917.
[75] 趙家夆,濺鍍銅(鉻鉬鈮釕鉭釩)合金薄膜自形成多元擴散阻障層
之研究,國立國立中興大學材料工程研究所碩士論文,(2012)。
[76] 林哲敏,濺鍍銅合金薄膜自形成超薄鉻鉬鈮釕鉭釩多元擴散阻障
80
層之研究,國立國立中興大學材料工程研究所碩士論文,(2014)。
[77] P. M. Martin, Handbook of deposition technologies for films and
coatings: science, applications and technology: WilliamAndrew, (2009).
[78] F. R. de Boer and D. G. Pettifor, “Cohesion in metals transition metal
alloys”, North-Holland, New York.
[79] Chan, R. W. and P. Haasen, Physical metallurgy. Vol. 1. 1996:
North-Holland.
[80] Wang, Z., et al., Atomic-Size effect and solid solubility of
multicomponent alloys. Scripta Materialia, 2015. 94:p. 28-31.
[81] Guo, S. and C. T. Liu, phase stability in high entropy alloys:
Formation of solid-solution phase or amorphous phase .Progress in
Natural Science-Materials International, 2011. 21(6):p. 433-446.
[82] Guo, S., et al., More than entropy in high-entropy alloys:Forming
solid solutions or amorphous phase. Intermetallics, 2013. 41:p. 96-103.
[83] Guo, S., et al., Effect of valence electron concentration stability of
fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011.
109(10):p. 103505.
[84] L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y.Xue, L. Zhou, Effect
of aging temperature on microstructureand
propertiesofAlCoCrCuFeNihigh-entropyalloy, Intermetallics 17
(2009)266.
[85] C. W. Tsai, M. H. Tsai, J. W. Yeh, C. C. Yang,Effect of
temperature on mechanical propertiesof Al 0.5 CoCrCuFeNi wrought
alloy, J. AlloysCompd. 490 (2010) 160.
[86] J. M. Zhu, H. F. Zhang, H. M. Fu, A. M. Wang,H. Li, Z. Q. Hu,
Microstructures and compressive properties of multicomponent
AlCoCrCuFeNiMo(x) under-bar alloys, J. Alloys Compd. 497 (2010) 52.
[87] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen,J. W. Yeh,
81
Microstructure and Mechanical Properties of New AlCo xCrFeMo0.5 Ni
High-Entropy Alloys, Adv. Eng. Mater. 12 (2010) 44.
[88] C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh, H. C.Shih, The effect
of boron on the corrosion resistance of the high entropy alloys
Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 154 (2007) C424.
[89] Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh,H.C. Shih,
Microstructureand electrochemical properties of high entropy alloys—a
comparison with type-304 stainless steel, Corros. Sci. 47 (2005) 2257.
[90] Y. Y. Chen, U. T.Hong, J. W. Yeh, H. C. Shih,Selected corrosion
behaviors of a Cu 0.5 NiAlCoCrFeSi bulkglassyalloy in 288 ℃
high-purity water, Scr. Mater. 54 (2006)1997.
[91] O.N. Senkov ,, G.B. Wilks ., J.M. Scott ., D.B. Miracle , Mechanical
properties of Nb25Mo25 Ta 25W25 and V20 Nb20Mo20 Ta 20W20 refractory
high entropy alloys. Intermetallics 19 (2011) 698-706.
[92] Inconel_ Alloy 718,
http://www.specialmetals.com/documents/Inconelalloy718.pdf.
[93] Haynes_230_ Alloy, www.haynesintl.com/pdf/h3060.pdf.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top