|
[1]H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F. G. Akca, G. Aygun, L. Ozyuzer, Improvement of optical and electrical properties of ITO thin films by electro-annealing, Vacuum, 120 (2015) 8-13. [2]X. Yan, W. Li, A. G. Aberle, S. Venkataraj, Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications, Vacuum, 123 (2016) 151-159. [3]M. Zheng, J. Ni, F. Liang, M.C. Wang, X. Zhao, Effect of annealing temperature on the crystalline structure, growth behaviour and properties of SnO2:Sb thin films prepared by radio frequency (RF)-magnetron sputtering, J. Alloy. Compd. 663 (2016) 371-378. [4]H. Kawazoe, M.Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature, 389 (1997) 939-942. [5]S. Wu, Z. Deng, W. Dong, J. Shao, X. Fang, Effect of deposition atmosphere on the structure and properties of Mg doped CuCrO2 thin films prepared by direct current magnetron sputtering, Thin Solid Films, 595 (2015) 124-128. [6]M. Shimode, M. Sasaki, K. Mukaida, Synthesis of the delafossite-type CulnO2, J. Solid State Chem. 151 (2000) 16-20. [7]S.M. Thahab, A.H.O. Alkhayatt, I.A. Zgair, Influences of post-annealing temperature on the structural and electrical properties of mixed oxides (CuFeO2 and CuFe2O4) thin films prepared by spray pyrolysis technique, Mater. Sci. Semicond. Process, 41 (2016) 436-440. [8]O.T. Tambunan, H. Tukiman, Kadek J. Parwanta, D.W. Jeong, C.U. Jung, S.J. Rhee, C. Liu, Structural and optical properties of SrCu2O2 films deposited on sapphire substrates by pulsed laser deposition, Superlattices Microstruct. 52 (2012) 774-781. [9]L.F. Chen, Y.P. Wang, T.W. Chiu, W.C. Shih, M.S. Wu, Fabrication of transparent CuCrO2:Mg/ZnO p–n junctions prepared by magnetron sputtering on an indium tin oxide glass substrate, Jpn. J. Appl. Phys. 52 (2013) 05EC02. [10]D. Li, X. Fang, A. Zhao, Z. Deng, W. Dong, R. Tao, Physical properties of CuCrO2 films prepared by pulsed laser deposition, Vacuum, 84 (2010) 851-856. [11]R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, P-type conductivity in CuCr1-xMgxO2 films and powders. J. Appl. Phys. 89 (2001) 8022-8025. [12]R.S. Yu, C. P. Tasi, Structure, composition and properties of p-type CuCrO2 thin films, Ceramics International, 40 (2014) 8211-8217. [13]S. Mahapatra, S.A. Shivashankar, Low-pressure metal–organic chemical vapor deposition of transparent and p-type conducting CuCrO2 thin films with high conductivity, Chem. Vapor Depos. 9 (2003) 238-240. [14]R.S. Yu, D.H. Hu, Formation and characterization of p-type semiconductor CuCrO2 thin films prepared by a sol–gel method, Ceramics International, 41 (2015) 9383-9391. [15]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, X. Zhu, Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals. J. Cryst. Growth, 310 (2008) 5375-5379. [16]R.S. Yu, C.J. Lu, D.C. Tasi, S.C. Liang, F.S. Shieu, Phase transformation and optoelectronic properties of p-Type CuAlO2 thin films, J. Electrochem. Soc. 154 (2007) H838-H843. [17]R. D. Shannon, C. T. Prewitt, D. B. Rogers, Chemistry of noble metal oxides. ?. Crystal structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2, Inorg., Chem. 10 (1971) 719-723. [18]L. E. Orgel, An Introduction to Transition-Metal Chemistry:Ligand-Field. Wiley&Sons, NY, (1966). [19]A. Buljan, P. Alemany, E. Ruiz, Electronic structure and bonding in CuMO2 (M = Al, Ga, Y) delafossite-type oxides: An ab initio study, J. Phys. Chem. B 103 (1999) 8060-8066. [20]R. D. Shannon, D. B. Rogers, C. T. Prewitt, J. L. Gillson, Chemistry of noble metal oxides. ?. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure, Inorg. Chem. 10 (1971) 723-727. [21]H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure, Solid State.Comm. 121 (2001) 15-18. [22]H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publications, Philadelphia, PA, (1995). [23]N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semicoductor Optics, Prentice Hall, NJ, (1993). [24]K.T. Jacob, G.M. Kale, G.N.K. Iyengar, Oxygen potentials, Gibbs’ energies and phase relate ions in the copper-chromium-oxygen system, J. Mater. Sci. 21 (1986) 2753-2758. [25]R. Schmid, A thermodynamic analysis of the Cu-O system with an associated solution model Metall. Trans. B 14 (1983) 473-481. [26]J. Sun, T. Stirner, A. Matthews, Calculation of native defect energies in α-A12O3 and α-Cr2O3 using a modified Matsui potential, Surf. Coat. Technol. 201 (2006) 4201-4204. [27]J. Hu, H. Li, X. Huang, L. Chen, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries, Solid state Ionics, 177 (2006) 2791-2799. [28]K.J.W. Atkinson, R.W. Grimes, M. R.Levy, Z. L. Coull, T. English, Accommodation of impurities in α-Al2O3, α-Cr2O3 and α-Fe2O3, J. Eur. Ceram. Soc. 23 (2003) 3059-3070. [29]E.M. Alkoy, P.J. Kelly, The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets, Vacuum, 79 (2005) 221-230. [30]S.C. Ray, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties, Sol. Energy Mater. Sol. Cells, 68 (2001) 307-312. [31]S. Saadi, A. Bouguelia, M. Trari, Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co), Renewable Energy, 31 (2006) 2245-2256. [32]N.W. Grimes, The spinels : versatile materials, Phys. Technol. 6 (1975) 22-27. [33]S. Boumaza, R. Bouarab, M. Trari, A. Bouguelia, Hydrogen photo-evolution over the spinel CuCr2O4, Energy Convers. Manage. 50 (2009) 62-68. [34]W. Li, H. Cheng, Bi2O3/CuCr2O4–CuO core/shell structured nanocomposites : Facile synthesis and catalysis characterization, J. Alloys Compd. 448 (2008) 287-292. [35]B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Boston, (1978). [36]H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York (1974). [37]S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, V. Ganesan, T. Shripathi, U.P. Deshpande, High-energy heavy-ion induced physical and surface-chemical modifications in polycrystalline cadmium sulfide thin films, Appl. Phys. A 94 (2009) 703-714. [38]D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Plenum Press, New York, (1996). [39]L. C. Feldman, J.W. Mayer, Fundamentals of the Surface and Thin Film Analysis, North-Holland, New York, (1986). [40]J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall. Inc., Englewood Cliffs, NJ, (1971). [41]G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. Royal. Society. Lond. A 82 (1909) 172-175. [42]C. Sarioglu, The effect of anisotropy on residual stress values and modification of Serruys approach to residual stress calculations for coatings such as TiN, ZrN and HfN, Surf. Coat. Technol. 201 (2006) 707-717. [43]U. kroll, J. Meier, H. Keppner, A. Shah, S.D. Littlewood, I.E. kelly, P. Giannoul?s, Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70 MHz) glow discharge, J. Vac. Sci. Technol. A 13 (1995) 2742–2746. [44]T.K. Lea, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan, The electronic structure of the CuRh1−xMgxO2 thermoelectric materials: An X-ray photoelectron spectroscopy study, J. Solid State Electrochem. 184 (2011) 2387-2392. [45]A.C. Rastogi, S.H. Lim, S.B. Desu, Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films, J. Appl. Phys. 104 (2008) 023712. [46]X. Sang, P. Wang, L. Ai, Y. Li, J. Bu, Preparation and photoelectric properties of CuCr2O4 nanopowders, Adv. Mater. Res. 284 (2011) 974-979. [47]Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans, Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD, AIP Advances, 4 (2014) 057122. [48]Y. An, Z. Li, J. Shen, Enhanced visible light response of CuO nanoparticle-modified sodium titanate nanotube heterojunction thin films, Mater. Lett. 74 (2012) 65-67. [49]H.Y. Chen, W.J. Yang, K.P. Chang, Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch, Appl. Surf. Sci. 258 (2012) 8775-8779. [50]K.S. De, J. Ghose, K.S.R.C. Murthy, Electrical properties of the CuCr2O4 spinel catalyst, J. Solid State Chem. 43 (1982) 261-266. [51]P.G. Slade, Electrical Contacts: Principles and Applications, Marcel Dekker, New York, (1999). [52]A.A. Ogwu, T.H. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering, J. Achiev. Mater. Manuf. Eng. 24 (2007) 172-177. [53]A.N. Banerjee, K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films, Prog. Cryst. Growth Charact. Mater. 50 (2005) 52-105. [54]G. Haacke. New figure of merit for transparent conductors, J. Appl. Phys. 47 (1976) 4086-4089. [55]D. Ursu, M. Miclau, I. Grozescu, In situ variable temperature X-ray diffraction studies on size scale of CuCrO2 polytypes with delafossite structure, J. Optoelectron. Adv. Mater. 15 (2013) 768-773. [56]Y.H. Kim, J.K. Park, D.K. Lim, H.B. Kang, Light-transmissive polycrystalline alumina ceramics, U.S. Pat. 5,376,606 (1994). [57]A. Mosbah, M.S. Aida, Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films, J. Alloy. Compd. 515 (2012) 149-153. [58]S. Agilan, D. Mangalaraj, S.K. Narayandass, G.M. Rao, Effect of thickness and substrate temperature on structure and optical band gap of hot wall-deposited CuInSe2 polycrystalline thin films, Physica B 365 (2005) 93-101. [59]D.S. Kim, S.Y. Choi, Phys. Wet-oxidation effect on p-type transparent conducting CuAlO2 thin film, Phys. Status Solidi A-Appl. Mat. 202 (2005) R167-R169. [60]L. Obulapathi, A.G.S. Kumar, T.S. Sarmash, D.J. Rani, G.V.V. Rao, T.S. Rao, Effect of film thickness on physical properties of CuCrO2 thin films, J. Aust. Ceram. Soc. 52 (2016) 102-105. [61]H.K. Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase, Engineering of nested Fermi surface and transparent conducting p-type Delafossite CuAlO2: possible lattice instability or transparent superconductivity, Solid State Commun. 126 (2003) 135-139. [62]H.K. Yoshida, K. Sato, H. Kizaki, H. Funashima, I. Hamada, T. Fukushima, V.A. Dinh, M. Toyoda, Ab initio materials design for transparent-conducting-oxide-based new-functional materials, Appl. Phys. A 89 (2007) 19-27. [63]A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films, Sol. Energy Mater. Sol. Cells, 89 (2005) 75-83. [64]K.T. Jacob, C.B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3, J. Am. Ceram. Soc. 58 (1975) 192. [65]G.V. Tendeloo, O. Garlea, C. Darie, C.B. Chaillout, P. Bordet, The fine structure of YCuO2+x delafossite determined by synchrotron powder diffraction and electron microscopy, J. Solid State Chem. 156 (2001) 428-436. [66]H.Y. Chen, K.P. Chang, Influence of post-annealing conditions on the formation of delafossite-CuCrO2 films, ECS J. Solid State Sci. Technol. 2 (2013) 76-80. [67]N. F. Mott, E. A. Davis, Electronic Processes in Non-crystalline Materials, Oxford, New York, (1979). [68]Y. Zhang, Z. Liu, D. Zang, L. Feng, X. Che, Y. Li, Optical and electrical properties of magnetron sputtering deposited Cu–Al–O thin films, Int. J. Antennas Propag. 2012 (2012) 1-7. [69]A. W. Metz, J. R. Ireland, J. G. Zheng, R. S. M. Lobo, Y. Y. Jun, J. Ni, C. L. Stern, V. P. Dravid, N. Bontemps, C. R. Kannewurf, K. R. Poeppelmeier, T. J. Marks, Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-Derived CdO thin films grown with a thermally stable, low-melting precursor, J. Am. Chem. Soc. 126 (2004) 8477-8492.
|