(3.236.222.124) 您好!臺灣時間:2021/05/11 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:孫鍾興
研究生(外文):Chung-Hsing Sun
論文名稱:P-型銅鉻氧化物薄膜之製備、結構與光電性質研究
論文名稱(外文):Preparation, Structure and Optoelectronic Properties of p-Type Copper Chromium Oxides Thin Films.
指導教授:薛富盛薛富盛引用關係
口試委員:陳家富黃嘉宏喻冀平張守一游瑞松
口試日期:2016-07-01
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:76
中文關鍵詞:赤銅鐵礦結構電洞型透明導電氧化物銅鉻氧化物二氧化銅鉻
外文關鍵詞:delafossite structurep-type transparent conducting oxidecopper chromium oxideCuCrO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用直流磁控式雙靶共濺鍍法以及於氬氣氣氛下退火處理製備P-型銅鉻氧化物薄膜,藉以研究其結構、光學與電學性質。
首先為瞭解化學計量比與不同化學成份下,退火銅鉻氧化物薄膜結構與光電性質之變化。藉由固定鉻靶功率為150W,並將銅靶功率由10W增加至52W,銅/鉻比率從0.59增至2.02。並將退火溫度維持在700 °C,於控制氬氣氣氛下退火2小時,不同成分之退火銅鉻氧化物薄膜之初鍍膜皆為非晶型結構,經退火處理後表現出顯著的結構變化與光電性質。當銅/鉻比率為0.59時,可得到尖晶石結構之CuCr2O4單相;隨銅/鉻比率將近為1時,將形成赤銅鐵礦結構CuCrO2單相;再增加銅/鉻比率,則出現單斜晶結構之氧化銅(CuO)。在銅/鉻比率將近為1時可得CuCrO2單相。
為進一步瞭解銅/鉻比率將近為1之初鍍薄膜於不同退火溫度下之結構與光電性質,於400 °C 至 900 °C溫度區間施行氬氣氣氛退火處理。400 °C以下退火薄膜為非晶型結構。隨著退火溫度增至500 °C時,銅鉻氧化物薄膜出現CuO 及CuCr2O4相,退火溫度高於600 °C時生成CuCrO2;退火溫度高於700 °C時則生成赤銅鐵礦結構之CuCrO2單相,結晶性與晶粒大小隨著溫度進一步上升而增加。退火生成CuCrO2相之趨勢與熱力學自由能相符。700 °C退火處理的二氧化銅鋁薄膜具有較佳光電性質,最佳導電率為5.13 Ω-cm,可見光平均穿透率達58.31%。
為探討溫度變化對於CuCrO2相之影響,將銅鉻氧化物初鍍薄膜退火溫度固定於800 °C,退火時間為30 至 240分鐘區間,結果發現非晶型之銅鉻氧化物初鍍薄膜轉變成結晶型赤銅鐵礦結構CuCrO2相,薄膜的晶粒大小、表面粗糙度與穿透率隨之增加;電阻率、直接能隙及殘留壓應力則減少。最大光學穿透性在740 nm之可見光波長區間達80 %。在退火時間從30至120分鐘時,電阻率從34.72 Ω-cm減少至14.73 Ω-cm,於240分鐘時其電阻則趨於飽和狀態,並皆呈現p型導電性。
由上述結果顯示,透過直流反應雙靶共濺鍍技術與退火處理,在適當的退火溫度、退火時間、控制氣氛及氧分壓條件下,可得到具有較佳光電性質之CuCrO2薄膜。


P-type Cu–Cr–O films were deposited by DC magnetron co-sputtering using Cu and Cr targets on quartz and annealing under controlled atmosphere. The structural, optical, and electrical properties of the Cu-Cr-O films were studied.
Firstly, we tried to understand the structural changes and different optoelectronic properties of annealed Cu-Cr-O films with stoichiometric and varying chemical composition. The Cr-target power was fixed at 150 W, and the Cu-target power was set within the range from 10 W to 52 W, [Cu]/[Cr] ratio was increased from 0.59 to 2.02, then the films were annealed at 700 °C for 2 h under controlled Ar atmosphere. When the film [Cu]/[Cr] ratio was 0.59, a pure spinel CuCr2O4 phase was formed in the film. As the [Cu]/[Cr] ratio was increased approximately 1, which caused the film to exhibit pure delafossite CuCrO2 phase. Further increase of [Cu]/[Cr] ratio resulted in the appearance of an additional monoclinic CuO phase. Accordingly, optimum conductivity and transparency were achieved for the pure CuCrO2 film deposited at [Cu]/[Cr] ratio approximately 1 with optimum optoelectronic properties.
Further study of structural and optoelectronic properties of the [Cu]/[Cr] ratio approximately 1 of the as-deposited Cu-Cr-O films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The 400 °C-annealed films were amorphous. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing temperature was further increased to above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing process was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%.
Finally, we tried to evaluate the structure and properties of Cu-Cr-O thin films after annealing at various holding times, 800 °C-annealed for 30 to 240 min on Cu-Cr-O thin films, The as-deposited amorphous Cu-Cr-O films crystallized to the delafossite structure of the CuCrO2 phase. The grain size, surface roughness and optical transmittance of the resultant films increased, but their electrical resistivity, direct optical band gap (Eg) values, and compressive residual stress decreased. The maximum optical transmittance of the films was as high as 80% at a visible wavelength of 740 nm. In addition, the electrical resistivity of the films decreased from 34.72 Ω-cm to 14.73 Ω-cm as annealing time increased from 30 min to 120 min but became saturated after 240 min and all showed p-type conductivity.
These results indicate that the CuCrO2 films obtained in this work have promising optoelectronic properties by DC magnetron co-sputtering and post-annealing treatment under a suitable annealing temperature, annealing time, controlled atmosphere and oxygen partial pressure.


Table of Contents

Abstract (Chinese) i
Abstract (English) iii
Table of Contents v
List of Tables vii
List of Figures viii

Chapter 1 Introduction 1
1.1. Why Cu-Cr-O thin film 1
1.2. Research motivation 2

Chapter 2 Theoretical Basics 6
2.1. Structural overview 6
2.2. Electrical conductivity 7
2.3. Optical properties 8
2.4. Thermodynamic factors 9

Chapter 3 Experimental Details 14
3.1. Experimental flowchart 14
3.2. Cu-Cr-O films deposition 14
3.3. Post-annealing 17
3.4. Characterization 19
3.4.1. X-ray diffraction (XRD) 19
3.4.2. Field-emission scanning microscope (FESEM) 20
3.4.3. High-resolution transmission electron microscope (HRTEM) 20
3.4.4. X-ray photoelectron spectroscopy (XPS) 21
3.4.5. UV-VIS spectroscopy 22
3.4.6. Hall effect measurement 22
3.4.7. Atomic Force Microscopy (AFM) 23
3.4.8. Residual stress measurement 23

Chapter 4 Results and Discussion 25
4.1. Influence of chemical composition on structure and optoelectronic properties 25
4.2. Post-annealing temperature on microstructure and optoelectronic properties of Cu-Cr-O films 39
4.3. Effects of annealing time on the structural and optoelectronic properties 54

Chapter 5 Conclusions 65

References 68


[1]H. Koseoglu, F. Turkoglu, M. Kurt, M.D. Yaman, F. G. Akca, G. Aygun, L. Ozyuzer, Improvement of optical and electrical properties of ITO thin films by electro-annealing, Vacuum, 120 (2015) 8-13.
[2]X. Yan, W. Li, A. G. Aberle, S. Venkataraj, Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications, Vacuum, 123 (2016) 151-159.
[3]M. Zheng, J. Ni, F. Liang, M.C. Wang, X. Zhao, Effect of annealing temperature on the crystalline structure, growth behaviour and properties of SnO2:Sb thin films prepared by radio frequency (RF)-magnetron sputtering, J. Alloy. Compd. 663 (2016) 371-378.
[4]H. Kawazoe, M.Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2, Nature, 389 (1997) 939-942.
[5]S. Wu, Z. Deng, W. Dong, J. Shao, X. Fang, Effect of deposition atmosphere on the structure and properties of Mg doped CuCrO2 thin films prepared by direct current magnetron sputtering, Thin Solid Films, 595 (2015) 124-128.
[6]M. Shimode, M. Sasaki, K. Mukaida, Synthesis of the delafossite-type CulnO2, J. Solid State Chem. 151 (2000) 16-20.
[7]S.M. Thahab, A.H.O. Alkhayatt, I.A. Zgair, Influences of post-annealing temperature on the structural and electrical properties of mixed oxides (CuFeO2 and CuFe2O4) thin films prepared by spray pyrolysis technique, Mater. Sci. Semicond. Process, 41 (2016) 436-440.
[8]O.T. Tambunan, H. Tukiman, Kadek J. Parwanta, D.W. Jeong, C.U. Jung, S.J. Rhee, C. Liu, Structural and optical properties of SrCu2O2 films deposited on sapphire substrates by pulsed laser deposition, Superlattices Microstruct. 52 (2012) 774-781.
[9]L.F. Chen, Y.P. Wang, T.W. Chiu, W.C. Shih, M.S. Wu, Fabrication of transparent CuCrO2:Mg/ZnO p–n junctions prepared by magnetron sputtering on an indium tin oxide glass substrate, Jpn. J. Appl. Phys. 52 (2013) 05EC02.
[10]D. Li, X. Fang, A. Zhao, Z. Deng, W. Dong, R. Tao, Physical properties of CuCrO2 films prepared by pulsed laser deposition, Vacuum, 84 (2010) 851-856.
[11]R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, P-type conductivity in CuCr1-xMgxO2 films and powders. J. Appl. Phys. 89 (2001) 8022-8025.
[12]R.S. Yu, C. P. Tasi, Structure, composition and properties of p-type CuCrO2 thin films, Ceramics International, 40 (2014) 8211-8217.
[13]S. Mahapatra, S.A. Shivashankar, Low-pressure metal–organic chemical vapor deposition of transparent and p-type conducting CuCrO2 thin films with high conductivity, Chem. Vapor Depos. 9 (2003) 238-240.
[14]R.S. Yu, D.H. Hu, Formation and characterization of p-type semiconductor CuCrO2 thin films prepared by a sol–gel method, Ceramics International, 41 (2015) 9383-9391.
[15]S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, X. Zhu, Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals. J. Cryst. Growth, 310 (2008) 5375-5379.
[16]R.S. Yu, C.J. Lu, D.C. Tasi, S.C. Liang, F.S. Shieu, Phase transformation and optoelectronic properties of p-Type CuAlO2 thin films, J. Electrochem. Soc. 154 (2007) H838-H843.
[17]R. D. Shannon, C. T. Prewitt, D. B. Rogers, Chemistry of noble metal oxides. ?. Crystal structures of PtCoO2, PdCoO2, CuFeO2, and AgFeO2, Inorg., Chem. 10 (1971) 719-723.
[18]L. E. Orgel, An Introduction to Transition-Metal Chemistry:Ligand-Field. Wiley&Sons, NY, (1966).
[19]A. Buljan, P. Alemany, E. Ruiz, Electronic structure and bonding in CuMO2 (M = Al, Ga, Y) delafossite-type oxides: An ab initio study, J. Phys. Chem. B 103 (1999) 8060-8066.
[20]R. D. Shannon, D. B. Rogers, C. T. Prewitt, J. L. Gillson, Chemistry of noble metal oxides. ?. Electrical transport properties and crystal chemistry of ABO2 compounds with the delafossite structure, Inorg. Chem. 10 (1971) 723-727.
[21]H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure, Solid State.Comm. 121 (2001) 15-18.
[22]H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publications, Philadelphia, PA, (1995).
[23]N. Peyghambarian, S. Koch, A. Mysyrowicz, Introduction to Semicoductor Optics, Prentice Hall, NJ, (1993).
[24]K.T. Jacob, G.M. Kale, G.N.K. Iyengar, Oxygen potentials, Gibbs’ energies and phase relate ions in the copper-chromium-oxygen system, J. Mater. Sci. 21 (1986) 2753-2758.
[25]R. Schmid, A thermodynamic analysis of the Cu-O system with an associated solution model Metall. Trans. B 14 (1983) 473-481.
[26]J. Sun, T. Stirner, A. Matthews, Calculation of native defect energies in α-A12O3 and α-Cr2O3 using a modified Matsui potential, Surf. Coat. Technol. 201 (2006) 4201-4204.
[27]J. Hu, H. Li, X. Huang, L. Chen, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries, Solid state Ionics, 177 (2006) 2791-2799.
[28]K.J.W. Atkinson, R.W. Grimes, M. R.Levy, Z. L. Coull, T. English, Accommodation of impurities in α-Al2O3, α-Cr2O3 and α-Fe2O3, J. Eur. Ceram. Soc. 23 (2003) 3059-3070.
[29]E.M. Alkoy, P.J. Kelly, The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets, Vacuum, 79 (2005) 221-230.
[30]S.C. Ray, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties, Sol. Energy Mater. Sol. Cells, 68 (2001) 307-312.
[31]S. Saadi, A. Bouguelia, M. Trari, Photoassisted hydrogen evolution over spinel CuM2O4 (M = Al, Cr, Mn, Fe and Co), Renewable Energy, 31 (2006) 2245-2256.
[32]N.W. Grimes, The spinels : versatile materials, Phys. Technol. 6 (1975) 22-27.
[33]S. Boumaza, R. Bouarab, M. Trari, A. Bouguelia, Hydrogen photo-evolution over the spinel CuCr2O4, Energy Convers. Manage. 50 (2009) 62-68.
[34]W. Li, H. Cheng, Bi2O3/CuCr2O4–CuO core/shell structured nanocomposites : Facile synthesis and catalysis characterization, J. Alloys Compd. 448 (2008) 287-292.
[35]B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Boston, (1978).
[36]H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley&Sons, New York (1974).
[37]S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, V. Ganesan, T. Shripathi, U.P. Deshpande, High-energy heavy-ion induced physical and surface-chemical modifications in polycrystalline cadmium sulfide thin films, Appl. Phys. A 94 (2009) 703-714.
[38]D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Plenum Press, New York, (1996).
[39]L. C. Feldman, J.W. Mayer, Fundamentals of the Surface and Thin Film Analysis, North-Holland, New York, (1986).
[40]J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall. Inc., Englewood Cliffs, NJ, (1971).
[41]G. G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. Royal. Society. Lond. A 82 (1909) 172-175.
[42]C. Sarioglu, The effect of anisotropy on residual stress values and modification of Serruys approach to residual stress calculations for coatings such as TiN, ZrN and HfN, Surf. Coat. Technol. 201 (2006) 707-717.
[43]U. kroll, J. Meier, H. Keppner, A. Shah, S.D. Littlewood, I.E. kelly, P. Giannoul?s, Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70 MHz) glow discharge, J. Vac. Sci. Technol. A 13 (1995) 2742–2746.
[44]T.K. Lea, D. Flahaut, H. Martinez, N. Andreu, D. Gonbeau, E. Pachoud, D. Pelloquin, A. Maignan, The electronic structure of the CuRh1−xMgxO2 thermoelectric materials: An X-ray photoelectron spectroscopy study, J. Solid State Electrochem. 184 (2011) 2387-2392.
[45]A.C. Rastogi, S.H. Lim, S.B. Desu, Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films, J. Appl. Phys. 104 (2008) 023712.
[46]X. Sang, P. Wang, L. Ai, Y. Li, J. Bu, Preparation and photoelectric properties of CuCr2O4 nanopowders, Adv. Mater. Res. 284 (2011) 974-979.
[47]Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans, Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD, AIP Advances, 4 (2014) 057122.
[48]Y. An, Z. Li, J. Shen, Enhanced visible light response of CuO nanoparticle-modified sodium titanate nanotube heterojunction thin films, Mater. Lett. 74 (2012) 65-67.
[49]H.Y. Chen, W.J. Yang, K.P. Chang, Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch, Appl. Surf. Sci. 258 (2012) 8775-8779.
[50]K.S. De, J. Ghose, K.S.R.C. Murthy, Electrical properties of the CuCr2O4 spinel catalyst, J. Solid State Chem. 43 (1982) 261-266.
[51]P.G. Slade, Electrical Contacts: Principles and Applications, Marcel Dekker, New York, (1999).
[52]A.A. Ogwu, T.H. Darma, E. Bouquerel, Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering, J. Achiev. Mater. Manuf. Eng. 24 (2007) 172-177.
[53]A.N. Banerjee, K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films, Prog. Cryst. Growth Charact. Mater. 50 (2005) 52-105.
[54]G. Haacke. New figure of merit for transparent conductors, J. Appl. Phys. 47 (1976) 4086-4089.
[55]D. Ursu, M. Miclau, I. Grozescu, In situ variable temperature X-ray diffraction studies on size scale of CuCrO2 polytypes with delafossite structure, J. Optoelectron. Adv. Mater. 15 (2013) 768-773.
[56]Y.H. Kim, J.K. Park, D.K. Lim, H.B. Kang, Light-transmissive polycrystalline alumina ceramics, U.S. Pat. 5,376,606 (1994).
[57]A. Mosbah, M.S. Aida, Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films, J. Alloy. Compd. 515 (2012) 149-153.
[58]S. Agilan, D. Mangalaraj, S.K. Narayandass, G.M. Rao, Effect of thickness and substrate temperature on structure and optical band gap of hot wall-deposited CuInSe2 polycrystalline thin films, Physica B 365 (2005) 93-101.
[59]D.S. Kim, S.Y. Choi, Phys. Wet-oxidation effect on p-type transparent conducting CuAlO2 thin film, Phys. Status Solidi A-Appl. Mat. 202 (2005) R167-R169.
[60]L. Obulapathi, A.G.S. Kumar, T.S. Sarmash, D.J. Rani, G.V.V. Rao, T.S. Rao, Effect of film thickness on physical properties of CuCrO2 thin films, J. Aust. Ceram. Soc. 52 (2016) 102-105.
[61]H.K. Yoshida, T. Koyanagi, H. Funashima, H. Harima, A. Yanase, Engineering of nested Fermi surface and transparent conducting p-type Delafossite CuAlO2: possible lattice instability or transparent superconductivity, Solid State Commun. 126 (2003) 135-139.
[62]H.K. Yoshida, K. Sato, H. Kizaki, H. Funashima, I. Hamada, T. Fukushima, V.A. Dinh, M. Toyoda, Ab initio materials design for transparent-conducting-oxide-based new-functional materials, Appl. Phys. A 89 (2007) 19-27.
[63]A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films, Sol. Energy Mater. Sol. Cells, 89 (2005) 75-83.
[64]K.T. Jacob, C.B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3, J. Am. Ceram. Soc. 58 (1975) 192.
[65]G.V. Tendeloo, O. Garlea, C. Darie, C.B. Chaillout, P. Bordet, The fine structure of YCuO2+x delafossite determined by synchrotron powder diffraction and electron microscopy, J. Solid State Chem. 156 (2001) 428-436.
[66]H.Y. Chen, K.P. Chang, Influence of post-annealing conditions on the formation of delafossite-CuCrO2 films, ECS J. Solid State Sci. Technol. 2 (2013) 76-80.
[67]N. F. Mott, E. A. Davis, Electronic Processes in Non-crystalline Materials, Oxford, New York, (1979).
[68]Y. Zhang, Z. Liu, D. Zang, L. Feng, X. Che, Y. Li, Optical and electrical properties of magnetron sputtering deposited Cu–Al–O thin films, Int. J. Antennas Propag. 2012 (2012) 1-7.
[69]A. W. Metz, J. R. Ireland, J. G. Zheng, R. S. M. Lobo, Y. Y. Jun, J. Ni, C. L. Stern, V. P. Dravid, N. Bontemps, C. R. Kannewurf, K. R. Poeppelmeier, T. J. Marks, Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-Derived CdO thin films grown with a thermally stable, low-melting precursor, J. Am. Chem. Soc. 126 (2004) 8477-8492.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔