(35.175.212.130) 您好!臺灣時間:2021/05/17 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄧宇軒
研究生(外文):Yu-Shiuan Deng
論文名稱:磁控濺鍍鈦鋯鉿鋁合金氮化物薄膜之微結構與特性研究
論文名稱(外文):Microstructure and characteristics of (TiZrHfAl)N thin films by magnetron sputtering
指導教授:薛富盛薛富盛引用關係
口試委員:李志偉蔡銘洪
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:119
中文關鍵詞:氮化物濺鍍抗藍光節能
外文關鍵詞:Transition metal nitridesputterUV transmittancelow emissivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
TiN、ZrN、HfN等氮化物因具有優良的機械性質以及熱穩定性,被廣泛應用於機械加工產業或是裝飾薄膜。而AlN則是擁有優異的介電性質,經常被使用在電子元件或是光學薄膜的材料中。有文獻討論過將TiN中摻雜Al,形成TiAlN的三元系統去強化TiN的抗氧化能力,但鮮少有人將之運用在光學薄膜上。本研究分為兩大方向,分別為將(TiZrHf)N摻雜Al,以及用AlN摻雜TiZrHf,探討其微結構、機械性質的變化和光學性質的變化。
實驗的第一階段,將AlN為主的薄膜以共濺鍍的方式摻雜TiZrHf,並且改變TiZrHf靶材功率去研究成分變化所造成的影響。實驗顯示所有的薄膜都屬於HCP結構,不會因TiZrHf靶材功率改變出現相變化;當TiZrHf靶材功率上升至200 W時,晶粒尺寸變小到奈米晶等級;隨著功率繼續上升至 400 W時,晶粒尺寸則逐漸變大,因此在200 W時具有最高的硬度 38 GPa,此乃來自於細晶強化的效果。當TiZrHf靶材的功率越高,形成之薄膜會具有更低的穿透率、更窄的能隙以及較高的帶尾能量,同時也會出現明亮的金黃色。考慮其各項性質的比較,當TiZrHf靶材功率為200 W時硬度最高,而紫外光的穿透能夠降至0 %,且同時保有一定程度的可見光穿透率為55 %。
接著是利用控制濺鍍時間,觀察(TiZrHf)N的厚度對機械性質以及光學性質的影響。剛開始沉積時由於時間極短,薄膜呈現非晶狀態,隨著鍍膜時間增長,(TiZrHf)N會以FCC結構存在;電阻率在初期會隨著鍍膜時間大幅下降,再慢慢趨於穩定,這和載子濃度提升並達到平衡有關。載子濃度也會影響紅外光反射率,使反射率值隨厚度增加;相對的可見光穿透率隨厚度逐漸下降。考慮到作為節能鍍膜的性質比較,以鍍膜時間4 min的薄膜具有35 % 紅外光反射率以及20 % 可見光穿透率為最佳。
最後的實驗是在(TiZrHf)N中摻雜Al,並控制Al靶功率,研究Al成分改變所造成的性質變化。在Al靶材功率低於150 W時,薄膜結構為FCC結構,超過此功率則會轉變為非晶或是HCP結構。當Al靶材功率為150 W、180 W、200 W時,紅外光反射率分別為38 %、20 %、18 %,而可見光穿透率可達到35 %、57 %、60 %。這三種薄膜可以根據使用的環境以及條件分別當作不同性能的節能薄膜加以應用。

Transition metal nitride coatings has attracted increasing interest over the past decades for drilling, machining, and cutting tool applications because of their enhanced performance in hardness, thermal stability, wear, and oxidation/corrosion resistance. In addition, transition metal nitride coatings have been extensively studied for applications in semiconductor devices such as diffusion barriers and interconnections. Among the large family of transition metal nitrides, TiN, ZrN, and HfN coatings are found to have high potential for energy-saving applications. They reflect well in the infrared (IR) region, and their spectral energy varies between 0.1 and 6.2 eV. They also present distinctive gold colors for decorative applications. Besides, most literature on the addition of Al have good performance to enhance the oxidation resistance. This study is divided into two parts: one is TiZrHf-doped AlN, the other one is Al-doped (TiZrHf)N.
In the first experimental, TiZrHf-doped AlN coatings were prepared on Si and quartz substrates through a co-sputtering system to methodically investigate the effects of TiZrHf contents by varying TiZrHf target discharge powers (0-400 W). All the coatings exhibit HCP structure, regardless of TiZrHf-target power. As the TiZrHf-target power increases to 200 W, the grain size decreases to nano-sized level. By increasing TiZrHf-target power to 400 W further, slight grain growth occurs. Accordingly, the coating deposited at TiZrHf-target power of 200 W achieves the highest hardness of 38 GPa due to the grain refinement strengthening. The coatings deposited at higher TiZrHf-target power cause lower light transmittance, narrower band gap, and higher Urbach energy. Meanwhile, the golden-yellow color can be observed. It is noteworthy that when the TiZrHf-target power is 200 W, the UV transmittance of coating lower to nearly 0 % but the visible light transmittance still has acceptable value of 55 %.
The second experimental aimed to investigate the effects of thickness on the microstructural, and electro-optical properties of (TiZrHf)N coatings by varying depositing time (0.5 min-30 min). At short depositing time, amorphous structures were produced during the initial sputtering period, and then the columnar structure with FCC phase developed with increasing depositing time. The electrical resistivity rapid decrease first and then gradually became approximately constant, which is related to the increase of carrier concentration. The NIR reflectivity of coatings increased and visible light transmittance decreased simultaneously. When the depositing time is 4 min, the NIR light reflectivity and visible light transmittance is about 35 % and 20 %, respectively, having high potential for the low emissivity coating.
At the last experimental, the (TiZrHf)N coatings doping Al by co-sputtering to investigate the structure and properties. The coatings were deposited at varying Al-target powers (0–200 W). The coatings deposited at Al-target power is lower than 150 W have a FCC structure. Further increasing Al-target power cause the formation of amorphous structure or even HCP phase. When Al-target power is 150 W, 180 W, and 200W, the NIR light reflectivity of coatings is about 38 %, 20 %, and 18 %, respectively. The corresponding visible light transmittance is nearly 35 %, 57 %, and 60 %, respectively. The three coatings can potentially be low emissivity coatings and used in many different fields of application.

摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiii
第一章:緒論 1
1.1前言 1
1.2研究動機 2
第二章:文獻回顧 3
2.1薄膜發展與應用 3
2.1.1硬質薄膜 3
2.1.2抗藍光(藍盾)薄膜 6
2.1.3節能(Low-E)薄膜 7
2.2氮化鈦、氮化鋯、氮化鉿、氮化鋁結構與特性 9
2.2.1氮化鈦(TiN) 9
2.2.2氮化鋯(ZrN) 10
2.2.3氮化鉿(HfN) 12
2.2.4氮化鋁(AlN) 12
2.3多元合金氮化物結構與特性 14
2.3.1鈦鋯鉿氮化物(TiZrHf)N 14
2.3.2鈦鋁氮系統(Ti-Al-N) 15
2.4薄膜光學 16
2.4.1光學薄膜 16
2.4.2光學理論 16
2.4.2 CIE L*a*b色度空間 22
第三章:實驗方法與步驟 26
3.1試片前處理 26
3.2實驗設計與流程 26
3.2.1磁控濺鍍氮化鋁摻雜鈦鋯鉿薄膜 27
3.2.2磁控濺鍍鈦鋯鉿氮化物薄膜厚度變化 28
3.2.3磁控濺鍍鈦鋯鉿氮化物摻雜鋁薄膜 29
3.3實驗材料 30
3.3.1靶材 30
3.3.2基板 30
3.3.3氣體 30
3.3.4實驗耗材 30
3.4製程設備 31
3.5分析儀器 33
高解析X光繞射儀(High Resolution X-ray Diffractometer, HRXRD) 33
場發射掃描式電子顯微鏡 (FE-SEM) 33
穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 34
原子力顯微鏡(Atomic Force Microscope, AFM) 34
奈米壓痕測試儀(Nanoindenter) 34
紫外/可見/近紅外光光譜儀(UV-VIS-NIR Spectrophotometer) 35
橢圓偏光儀(Ellipsometer) 35
霍爾效應量測系統(Hall measurement system) 35
第四章:結果與討論 37
4.1磁控濺鍍氮化鋁摻雜鈦鋯鉿薄膜 37
4.1.1薄膜鍍率分析 37
4.1.2晶體結構分析 39
4.1.3成分分析 43
4.1.4橫截面及表面形貌分析 45
4.1.5穿透式電子顯微鏡影像分析 51
4.1.6硬度及彈性模數分析 53
4.1.7薄膜光學分析 55
4.2磁控濺鍍鈦鋯鉿氮化物薄膜厚度變化 69
4.2.1薄膜鍍率分析 69
4.2.2晶體結構分析 70
4.2.3成分分析 73
4.2.4橫截面及表面形貌分析 75
4.2.5穿透式電子顯微鏡影像分析 78
4.2.6薄膜光學分析 79
4.2.7薄膜電性分析 87
4.3磁控濺鍍鈦鋯鉿氮化物摻雜鋁薄膜 91
4.3.1晶體結構分析 91
4.3.2成分分析 93
4.3.3橫截面及表面形貌分析 94
4.3.4穿透式電子顯微鏡影像分析 99
4.3.5薄膜光學分析 101
4.3.6薄膜電性分析 108
第五章:結論 110
參考文獻 112

[1] J. Musil, Hard and superhard nanocomposite coatings, Surface and Coatings Technology, 125 (2000) 322-330.
[2] R. Riedel, Handbook of ceramic hard materials, WILEY-VCH, (2004).
[3] M. Zhou, Y. Makino, M. Nose, K. Nogi, Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering, Thin Solid Films, 339 (1999) 203-208.
[4] J. Musil, H. Hruby, Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering, Thin Solid Films, 365 (2000) 104-109.
[5] L. Chen, J. Paulitsch, Y. Du, P.H. Mayrhofer, Thermal stability and oxidation resistance of Ti–Al–N coatings, Surface & Coatings Technology, 206-318 (2012) 2954-2960.
[6] M. Nose, M. Zhou, E. Honbo, M. Yokota, S. Saji, Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering, Surface and Coatings Technology, 142–144 (2001) 211-217.
[7] K.K. Shih, D.B. Dove, Ti/Ti‐N Hf/Hf‐N and W/W‐N multilayer films with high mechanical hardness, Applied Physics Letters, 61 (1992) 654-656.
[8] X. Chu, M.S. Wong, W.D. Sproul, S.A. Barnett, Mechanical properties and microstructures of polycrystalline ceramic/metal superlattices: TiN/Ni and TiN/Ni0.9Cr0.1, Surface and Coatings Technology, 61 (1993) 251-256.
[9] A. Madan, X. Chu, S.A. Barnett, Growth and characterization of epitaxial Mo/NbN superlattices, Applied Physics Letters, 68 (1996) 2198-2200.
[10] A. Madan, Y.-y. Wang, S.A. Barnett, C. Engström, H. Ljungcrantz, L. Hultman, M. Grimsditch, Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices, Journal of Applied Physics, 84 (1998) 776-785.
[11] D. Li, X.W. Lin, S.C. Cheng, V.P. Dravid, Y.W. Chung, M.S. Wong, W.D. Sproul, Structure and hardness studies of CNx/TiN nanocomposite coatings, Applied Physics Letters, 68 (1996) 1211-1213.
[12] P.E. Hovsepian, W.D. Münz, Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings, Vacuum, 69 (2002) 27-36.
[13] S. Vepřek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, 268 (1995) 64-71.
[14] S. Vepřek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating materials, Surface and Coatings Technology, 86–87, Part 1 (1996) 394-401.
[15] S. Vepřek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W2N/amorphous Si3N4 composite materials, Journal of Vacuum Science & Technology A, 14 (1996) 46-51.
[16] S. Vepřek, S. Reiprich, S.Z. Li, Superhard nanocrystalline composite materials: The TiN/Si3N4 system, Applied Physics Letters, 66 (1995) 2640-2642.
[17] 梁仕昌, 材料科學與工程學系所, 國立中興大學, 2012, pp. 1-123.
[18] S. Vepřek, New development in superhard coatings: the superhard nanocrystalline-amorphous composites, Thin Solid Films, 317 (1998) 449-454.
[19] S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jı́lek, M. Šı́ma, Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness1, Surface and Coatings Technology, 108–109 (1998) 138-147.
[20] S. Vepřek, Electronic and mechanical properties of nanocrystalline composites when approaching molecular size, Thin Solid Films, 297 (1997) 145-153.
[21] C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlček, Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings, Surface and Coatings Technology, 120–121 (1999) 405-411.
[22] J. Musil, P. Zeman, H. Hrubý, P.H. Mayrhofer, ZrN/Cu nanocomposite film—a novel superhard material, Surface and Coatings Technology, 120–121 (1999) 179-183.
[23] A. Cavaleiro, B. Trindade, M.T. Vieira, Deposition and characterization of fine-grained W–Ni–C/N ternary films, Surface and Coatings Technology, 116–119 (1999) 944-948.
[24] C. Louro, A. Cavaleiro, Hardness versus structure in W–Si–N sputtered coatings, Surface and Coatings Technology, 116–119 (1999) 74-80.
[25] M. Benda, J. Musil, Plasma nitriding enhanced by hollow cathode discharge – a new method for formation of superhard nanocomposite coatings on steel surfaces, Vacuum, 55 (1999) 171-175.
[26] J. Musil, H. Poláková, Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure, Surface and Coatings Technology, 127 (2000) 99-106.
[27] F. Regent, J. Musil, Magnetron sputtered Cr/Ni/N and Ti/Mo/N films: comparison of mechanical properties, Surface and Coatings Technology, 142–144 (2001) 146-151.
[28] J. Musil, H. Jankovcova, V. Cibulka, Formation of Ti1-xSix and Ti1-xSixN films by magnetron co-sputtering, Czech J Phys, 49 (1999) 359-372.
[29] A.A. Voevodin, J.S. Zabinski, Load-adaptive crystalline–amorphous nanocomposites, Journal of Materials Science, 33 (1998) 319-327.
[30] O. Knotek, T. Leyendecker, F. Jungblut, On the properties of physically vapour-deposited Ti-Al-V-N coatings, Thin Solid Films, 153 (1987) 83-90.
[31] D.B. Lewis, I. Wadsworth, W.D. Münz, R. Kuzel Jr, V. Valvoda, Structure and stress of TiAlN/CrN superlattice coatings as a function of CrN layer thickness, Surface and Coatings Technology, 116–119 (1999) 284-291.
[32] F. Huang, G. Wei, J.A. Barnard, M.L. Weaver, Microstructure and stress development in magnetron sputtered TiAlCr(N) films, Surface and Coatings Technology, 146–147 (2001) 391-397.
[33] S.-l. Zhao, J. Zhang, Z. Zhang, S.-h. Wang, Z.-g. Zhang, Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates, International Journal of Minerals, Metallurgy, and Materials, 21 (2014) 77-81.
[34] Y. Makino, Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method, Surface and Coatings Technology, 193 (2005) 185-191.
[35] Y. Feng, J. Zhang, J. He, J. Zhang, Transparent cellulose/polyhedral oligomeric silsesquioxane nanocomposites with enhanced UV-shielding properties, Carbohydrate Polymers, 147 (2016) 171-177.
[36] X. Jiang, Y.-L. Guo, Z. Geng, P.-F. Huo, Y.-L. Du, Y. Liu, S.-L. Zhang, G.-B. Wang, Transparent CdTe/Py-PAEK microspheres/SPEEK nanocomposite films with UV-Full-Shielding property, Mater Lett, 89 (2012) 305-308.
[37] K.-Q. Liu, C.-X. Kuang, M.-Q. Zhong, Y.-Q. Shi, F. Chen, Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles, Optical Materials, 35 (2013) 2710-2715.
[38] Y. Zhang, S. Zhuang, X. Xu, J. Hu, Transparent and UV-shielding ZnO@PMMA nanocomposite films, Optical Materials, 36 (2013) 169-172.
[39] X. Li, L. Wang, Y. Pei, J. Jiang, Layer-by-layer assembled TiO2 films with high ultraviolet light-shielding property, Thin Solid Films, 571, Part 1 (2014) 127-133.
[40] C.-H. Hsu, T.-X. Liu, I.-C. Hsieh, P. Han, S.-Y. Lien, Blue-light shielding, hard and hydrophobic inorganic and organic silicon stack-films prepared on flexible substrates, Thin Solid Films.
[41] K. Nallis, K.-i. Katsumata, T. Isobe, K. Okada, P. Bone, R. Othman, Preparation and UV-shielding property of Zr0.7Ce0.3O2–kaolinite nanocomposites, Applied Clay Science, 80–81 (2013) 147-153.
[42] M. Lämmle, T. Kroyer, S. Fortuin, M. Wiese, M. Hermann, Development and modelling of highly-efficient PVT collectors with low-emissivity coatings, Solar Energy, 130 (2016) 161-173.
[43] C. Loka, K.R. Park, K.-S. Lee, Multi-functional TiO2/Si/Ag(Cr)/TiNx coatings for low-emissivity and hydrophilic applications, Applied Surface Science, 363 (2016) 439-444.
[44] M. Yuste, R.E. Galindo, S. Carvalho, J.M. Albella, O. Sánchez, Improving the visible transmittance of low-e titanium nitride based coatings for solar thermal applications, Applied Surface Science, 258 (2011) 1784-1788.
[45] B. Karlsson, C.G. Ribbing, 1982, pp. 52-57.
[46] P. Zheng, G. Zhao, T. Zhang, L. Wu, J. Wang, G. Han, Study of titanium nitride for low-e coating application, Chinese Science Bulletin, 52 (2007) 1860-1863.
[47] H.J. Glaser, History of the development and industrial production of low thermal emissivity coatings for high heat insulating glass units, Appl Optics, 47 (2008) C193-C199.
[48] L. Zhang, H. Yang, X. Pang, K. Gao, A.A. Volinsky, Microstructure, residual stress, and fracture of sputtered TiN films, Surface and Coatings Technology, 224 (2013) 120-125.
[49] L. Krusin-Elbaum, M. Wittmer, Oxidation kinetics of ZrN thin films, Thin Solid Films, 107 (1983) 111-116.
[50] H. Randhawa, Hard coatings for decorative applications, Surface and Coatings Technology, 36 (1988) 829-836.
[51] H.N. Al-Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon, Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications, Thin Solid Films, 280 (1996) 265-270.
[52] R.A. Andrievski, I.A. Anisimova, V.P. Anisimov, V.P. Makarov, V.P. Popova, Grain size and recrystallization of TiN, ZrN, NbN, and CrN alloyed and multilayer films, Thin Solid Films, 261 (1995) 83-86.
[53] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of Zr/N and Ti/N films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237.
[54] I. Penttinen, J.M. Molarius, A.S. Korhonen, R. Lappalainen, Structure and composition of ZrN and (Ti,Al)N coatings, Journal of Vacuum Science & Technology A, 6 (1988) 2158-2161.
[55] R. Armitage, Q. Yang, H. Feick, J. Gebauer, E.R. Weber, S. Shinkai, K. Sasaki, Lattice-matched HfN buffer layers for epitaxy of GaN on Si, Applied Physics Letters, 81 (2002) 1450-1452.
[56] I.L. Farrell, R.J. Reeves, A.R.H. Preston, B.M. Ludbrook, J.E. Downes, B.J. Ruck, S.M. Durbin, Tunable electrical and optical properties of hafnium nitride thin films, Applied Physics Letters, 96 (2010) 071914.
[57] A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, J.M. Wills, Optical properties of the group-IV extit{B} refractory metal compounds, Physical Review B, 54 (1996) 1673-1681.
[58] D. Li, J. Chen, C. Zou, J. Ma, P. Li, Y. Li, Effects of Al concentrations on the microstructure and mechanical properties of Ti–Al–N films deposited by RF-ICPIS enhanced magnetron sputtering, Journal of Alloys and Compounds, 609 (2014) 239-243.
[59] E. Lugscheider, H.D. Geiler, M. Lake, H. Zimmermann, Investigation of thermophysical properties of AIP coated cutting tools for dry machining, Surface and Coatings Technology, 86 (1996) 803-808.
[60] C. Morosanu, T.A. Stoica, T.F. Stoica, D. Necsoiu, M. Popescu, Semiconductor Conference, 1995. CAS''95 Proceedings., 1995 International, 1995, pp. 183-186.
[61] G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN, Journal of Physics and Chemistry of Solids, 48 (1987) 641-647.
[62] G. Abadias, L.E. Koutsokeras, A. Siozios, P. Patsalas, Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me = Zr, Ta) hard coatings, Thin Solid Films, 538 (2013) 56-70.
[63] J.G. Ryan, S. Roberts, G.J. Slusser, E.D. Adams, The preparation and characterization of titanium boride films, Thin Solid Films, 153 (1987) 329-339.
[64] P.W. Black, J. Wales, Materials for use in the fabrication of infrared interference filters, Infrared Physics, 8 (1968) 209-222.
[65] H.K. Pulker, Characterization of optical thin films, Appl. Opt., 18 (1979) 1969-1977.
[66] 李秉璋, 王正和, 粉末冶金會刊, (2008) 253.
[67] 羅光耀, 固態光學實習二, 反射光譜量測原理及實驗, (2006).
[68] J. Guild, The Colorimetric Properties of the Spectrum, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 230 (1932) 149-187.
[69] W.D. Wright, A re-determination of the trichromatic coefficients of the spectral colours, Transactions of the Optical Society, 30 (1929) 141.
[70] D.-C. Tsai, Z.-C. Chang, B.-H. Kuo, C.-T. Tsao, E.-C. Chen, F.-S. Shieu, Influence of discharge power on the structural, electro-optical, and mechanical properties of (TiZrHf)N coatings, Journal of Alloys and Compounds, 622 (2015) 446-457.
[71] B.A. Movchan, A.V. Demchishin, STRUCTURE AND PROPERTIES OF THICK CONDENSATES OF NICKEL, TITANIUM, TUNGSTEN, ALUMINUM OXIDES, AND ZIRCONIUM DIOXIDE IN VACUUM, Journal Name: Fiz. Metal. Metalloved. 28: 653-60 (Oct 1969).; Other Information: Orig. Receipt Date: 31-DEC-70, (1969) Medium: X.
[72] J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science & Technology, 11 (1974) 666-670.
[73] S. Suzuki, S. Nakashima, In-situ IR measurements of OH species in quartz at high temperatures, Physics and Chemistry of Minerals, 26 (1999) 217-225.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top