跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅唯榕
研究生(外文):Wei-Rong Luo
論文名稱:不同氧含量之鎳鐵/氧化鉻雙層膜之結構與磁性質研究
論文名稱(外文):The studies of structures and magnetic properties of Ni80Fe20/Cr-oxide bilayers
指導教授:林克偉林克偉引用關係
口試委員:張晃暐孫安正
口試日期:2016-05-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:103
中文關鍵詞:雙離子束濺鍍交換偏壓矯頑磁力
外文關鍵詞:Ion Beam Assisted DepositionExchange biasCoercivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究以雙離子束濺鍍系統(Ion Beam Assisted Deposition)製備鎳鐵(NiFe)/氧化鉻(Cr-oxide, X% O2/Ar)雙層薄膜,研究此雙層薄膜之交換偏壓現象。第一部分藉由改變氧含量(8、15、30 % O2/Ar),第二部分為對氧化鉻薄膜在700℃進行10分鐘快速熱退火,並進一步對此雙層膜作X光繞射儀之結構分析、穿透式電子顯微鏡之微結構分析、化學分析電子能譜儀之縱深分析及原子力顯微鏡之表面形貌分析,與在室溫下,以震動樣品磁力計及低溫10 K下,超導量子干涉儀分別量測其磁性質。
X光繞射結果與TEM選區繞射圖形顯示,在鎳鐵/氧化鉻(X% O2/Ar雙層膜之試片中,鎳鐵薄膜為面心立方結構,在氧化鉻薄膜中,有鉻(Cr)及氧化鉻(CrO3、Cr2O3與Cr3O4)等相出現,其中Cr為立方晶結構、CrO3為正交晶、Cr2O3為六方晶結構、Cr3O4為正方晶結構,隨著通氧量上升,結晶度變得較好。快速熱退火過程在鎳鐵/退火氧化鉻(8% O2/Ar)與鎳鐵/退火氧化鉻(15% O2/Ar)中顯示,氧化鉻有比初鍍膜之氧化鉻更好的結晶度。
室溫下的磁性量測結果顯示,鎳鐵/氧化鉻雙層膜的交換偏壓(Hex約-0.1~1.5 Oe)及矯頑磁力(Hc約1.5~2 Oe)皆趨近於零,表示在室溫下氧化鉻層呈現順磁性。低溫10 K下量測之磁滯曲線顯示,在實驗第一部分之鎳鐵/氧化鉻(8% O2/Ar)雙層膜之Hex~-51 Oe、Hc~79 Oe,且鎳鐵/氧化鉻(30% O2/Ar)雙層膜與其接近(Hex~-50 Oe、Hc~78 Oe),可能原因為Cr及Cr2O3在低溫下由順磁性轉為反鐵磁性,造成交換耦合作用較強。第二部分實驗之磁性量測結果顯示,鎳鐵/退火氧化鉻(15% O2/Ar)雙層膜之Hex~50 Oe、Hc~128 Oe ,有較強的交換耦合作用。


In this study, ferromagnetic Ni80Fe20 layers were deposited on Cr-oxide layers on thermal oxide Si substrates in an ion beam assisted deposition system (IBAD). Cr-oxide layer is used to be antiferromagnetic layer for investigate the magnetic exchange coupling between antiferromagnetic and ferromagnetic layers. The first part is the oxide content in Cr-oxide layer was adjusted with various oxygen to argon ratio (% O2/Ar) during deposition of Cr by End Hall ion source. The ratio (% O2/Ar) was change as 8, 15 and 30 % O2/Ar. The second part is Cr-oxide were annealed at 700℃ for 10 minutes before depositing the Ni80Fe20 layer.
XRD and TEM results shown that NiFe consisted of f.c.c. structure in NiFe/Cr-oxide bilayers thin films. There are Cr, CrO3,Cr2O3 and Cr3O4 phases exist in Cr-oxide layers. Cr2O3 is consisted of hexagonal structure and Cr is consisted of cubic structure. The crystallization is better with increasing deposited oxygen content. After annealing process of Cr-oxide layer, NiFe/Cr-oxide (8% O2/Ar) and NiFe/Cr-oxide (15% O2/Ar) shown a better crystallization.
VSM results shown that coecivity (Hc~1.5 to 2 Oe) and exchanged coupled field (Hex~-0.1 to 1.5 Oe) were closed to zero. It indicates that the Cr-oxide layer showing paramagnetism. In the first part of this investigation, the hysteresis loop measured at 10 K shown that Hex~-51 Oe and Hc~79 Oe in NiFe/Cr-oxide (8% O2/Ar) bilayers. And NiFe/Cr-oxide (30% O2/Ar) bilayers has a similar results (Hex~-50 Oe and Hc~78 Oe). It was the Cr-oxide layer turn to antiferromagnetism form paramagnetism at 10 K, leading to the stronger exchange coupling. The second part of the investigation, NiFe/annealed Cr-oxide (8% O2/Ar) bilayers has a stronger exchange coupling(Hex~50 Oe and Hc~128 Oe).


致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 x
第一章、 緒論 1
一、 前言 1
二、 基礎理論 2
(一) 磁性材料 (Magnetic Materials) 2
(二) 磁滯現象 (Hysteresis) 8
(三) 磁異向性 (Magnetic Anisotropy) 11
(四) 交換異向性 (Exchange anisotropy) 13
(五) 理論模型 14
三、 文獻回顧 17
四、 研究動機與目的 32
五、 應用 33
六、 參考文獻 34
第二章、 實驗方法與設計 35
一、 實驗設計 35
一、 材料選用 37
(一) 鐵磁層 37
(二) 反鐵磁層 38
二、 樣品製備 39
(一) 基材處理 39
(二) 薄膜沉積 39
三、 雙離子束濺鍍系統(Ion Beam Assisted Deposition, IBAD) 41
(一) 原理及介紹 41
(二) 真空系統 42
(三) 離子源 43
四、 參考文獻 47
第三章、 儀器分析原理與介紹 48
一、 X光繞射儀(X-Ray Diffraction, XRD) 48
二、 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 51
三、 化學分析電子能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 54
四、 原子力顯微鏡(Atomic Force Microscopy, AFM) 55
五、 震動樣品磁力計(Vibrating Sample Magnetometer, VSM) 57
六、 超導量子干涉儀(Superconducting Quantum Interference Device Magnetometer, SQUID) 59
七、 參考文獻 61
第四章、 結果與討論 62
一、 X光繞射儀(XRD) 62
二、 穿透式電子顯微鏡(TEM) 69
三、 化學分析電子能譜儀(ESCA) 74
四、 原子力顯微鏡(AFM) 78
五、 震動樣品磁力計(VSM) 80
六、 超導量子干涉儀(SQUID) 86
七、 參考文獻 101
第五章、 結論 102


[1] Nicola A. Spaldin (2010). MAGNETIC MATERIALS: Fundamentals and Applications, 2nd Edition. Cambridge University Press.
[2] J. Nogues, J. Sort, V. langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro(2005). Physics Reports, 422(3), 65-117.
[3] K.-W. Lin, C. Shueh, C.-H. Liu, E. Skoropata, T.-H. Wu, and J. van Lierop (2013). J. Appl. Phys., 113, 17C104.
[4] D.Mauri, H.C.Siegmann (1987). J. Appl. Phys. 82, 3047.
[5] A. Brambilla, P. Sessi, M. Cantoni, M. Finazzi, N. Rougemaille, R. Belkhou, P. Vavassori, L. Duò, and F. Ciccacci (2009). Phys. Rev., B79, 172401.
[6] William D. jr Callister, David G. Rethwisch (2011). Materials Science and Engineering, 8/e. Canada: John Wiley & Sons.
[7] A.E. Berkowitz, K. Takano (1999). Journal of Magnetism and Magnetic Materials. 200, 552-570.
[8] D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay (1987). J. Appl. Phys. 82, 3047.
[9] A. P. Malozemoff (1987). Phys. Rev. B, 30,3679.
[10] R. Gago, M. Vinnichenko, R. Hübner, A. Redondo-Cubero (2016). Journal of Alloys and Compounds. 672, 529-535.
[11] K. Khojier, H. Savaloni, Z. Ashkabusi, N.Z. Dehnavi (2013). Applied Surface Science. 284, 489-496.
[12] R.K. Gupta, K. Ghosh, P.K. Kahol (2011). Materials Letters. 65, 2429-2431.
[13] Guijun Li, Chi Wah Leung, Chin Shueh, Hsun-Feng Hsu, Hsuan-Rong Huang, Ko-Wei Lin, Pui To Lai, Philip W.T. Pong (2013). Surface & Coatings Technology. 228, S437-S441.
[14] H. Sang, S.Y. Zhang, Y.W. Du (2000). Thin Solid Films. 375, 5-8.
[15] P. Borisov, T. Eimuller, A. Fraile-Rodrguez, A. Hochstrat, X. Chen, W. Kleemann (2007). Journal of Magnetism and Magnetic Materials. 310, 2313-2315.
[1] I. V. Vernyhora, V. A. Tatarenko and S. M. Bokoch (2012). Thermodynamics of f.c.c.-Ni–Fe Alloys in a Static Applied Magnetic Field. ISRN, 2012, 1-11.
[2] O''Handley, Robert C (2000). Modern magnetic materials : principles and applications. New York : Wiley .
[3] J.C.A. Huang et al. (1997). Epitaxial growth and characterization of (100) and (110) perma11oy films, J. Crystal Growth, 171, 442-446.
[4] J.E Greedan (1994). Magnetic oxides in Encyclopedia of Inorganic chemistry. Canada: John Wiley & Sons.
[5] M. M. Abdullah, Fahd M. Rajab, and Saleh M. Al-Abbas (2014). Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Advances , 4, 027121.
[6] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (1990). Binary Alloy Phase Diagrams, 2nd Edition. ASM International.
[7] J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman(1989). Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis, Noyes Publication.
[8] 李正中(2001)。薄膜光學與鍍膜技術。台灣:逸軒圖書。
[9] H. R. Kaufman, R. S. Robinson (1987). End Hall Ion Source. J. Vac. Sci. Technol. A, 5(3), 2081.
[10] C. Weissmantle (1989). Ion Beam Deposition of Special Film Structure. J. Vac. Sci. Technol., 18, 179.
[11] T. C. Huang, G. Lim, F. Parmigiani, and E. Kay (1985). J. Vac. Sci. Technol. A, 3, 216.
[12] R. A. Roy, D. Yee, and J. J. Cuomo (1988). J Vac. Sci. Technol. A, 6, 1621.
[13] K. W. Lin, M. R. Wei and J. Y. Guo (2009). J. Nanosci. Nanotechnol, 9(3):2023-9.
[14] C.H. Jin, P. Z. Si n, X. F. Xiao, H. Feng, Q. Wu, H. L. Ge, M. Zhong (2012). Materials Letters. 92, 213–215.
[15] R. Gago , M. Vinnichenko, R. Hübner , A. Redondo-Cubero(2016). Journal of Alloys and Compounds. 672, 529535
[16] R.K. Gupta, K. Ghosh, P.K. Kahol (2011). Materials Letters. 65, 2429-2431.
[17] Eric Fawcett(1988). Rev. Mod. Phys. 60, 209.
[18]羅文孜(2015),國立國立中興大學碩士論文。
[1] William D. jr Callister, David G. Rethwisch (2011). Materials Science and Engineering, 8/e. Canada: John Wiley & Sons.
[2]汪建民 主編(1998)。材料分析。中國材料科學學會。
[3] Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill (2008). Physical Metallurgy Principles (4th ed.). India: Cengage Learning.
[4] Nicholas A. Geisse (2009). Materials Today, 12(7-8),40-45.
[5] David C. Jiles (1998). Introduction to Magnetism and Magnetic Materials(2nd ed.). United Kingdom: Taylor & Francis.
[6] John Clarke, Alex I. Braginski(2005). The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID system. German: WILEY-VCH.
[1] C.D. Wagner, J.F. Moulder, L.E. Davis, W.M. Riggs. Perking-Elmer Corporation, Physical Electronics Division (end of book).
[2] G.K. Wertheim, J.H. Wernick, S. Hufner(1975). XPS Core Line Asymetries in Metals, Vol 17, 417-422.
[3] John Clarke, Alex I. Braginski(2004). The SQUID Handbook. WILEY-VCH.
[4] A.M. De Becdelievre, C. Duret Thual, D. Vouagner, R. Devaux(1994). Corrosion Science, Vol 36, 171-186.
[5] S. Ciampi, V. Di Castro(1995). Surface Science, Vol 331-333, 294-299.
[6] David J. Joyner, David M. Hercules, Olivier Johnson(1980). J. Am. Chem. Soc., vol 102, 1910-1917.
[7] T.L. BARR(1990). Journal Phys. Chem., Vol 10, 760-765.
[8] D. Briggs - M.P. Seah(1993). John WILLEY & SONS. Vol. 1, second edition.
[9] 羅文孜(2015),國立國立中興大學碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊