(3.238.173.209) 您好!臺灣時間:2021/05/17 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宴儀
研究生(外文):Yen-Yi Chen
論文名稱:系統性添加CoCrFeNiX高熵合金成相行為之研究
論文名稱(外文):Phase formation behavior of systematically alloyed CoCrFeNiX high entropy alloys
指導教授:蔡銘洪
指導教授(外文):Ming-Hung Tsai
口試委員:顏秀崗蔡哲瑋
口試委員(外文):Swee-Kuan YeChe-Wei Tsai
口試日期:2016-03-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:220
中文關鍵詞:高熵合金成相過渡金屬III、IVA 元素
外文關鍵詞:High entropy alloysPhase formation behaviorTransition metalIII、IVA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現有文獻中,對於高熵合金的設計,與添加元素的影響,往往是各自為政,因而各自無法比較。因為各個合金基底不同,比較的基準即不同,不容易互相參照比較,來歸納成相理論。
本研究以 CoCrFeNi 四元為基底,週期性添加週期表過渡金屬及III、IVA 元素,即 Mn, Fe, Co, Ni, Cu, Ag, B, Al, Ga, C, Si, Ge, Sn 等等十三個元素,混合成十三個不同配方的高熵合金,如 CoCrFeNiMn、CoCrFe2Ni、CoCrFeNiB…等等。並以真空電弧熔煉製備這些合金。每個合金鑄錠除鑄造態外,另外進行四個不同溫度的長時間退火。希望透過這些合金的成相,來了解不同元素添加對於合金成相的影響。
結果顯示,鑄造態 CoCrFeNiX 合金中,大多數合金內的成相幾乎皆為固溶相,除了 B、Al、C、Si 與 Sn 合金。其中除了 C 合金,其餘的主要相皆為介金屬相而非簡單固溶相。鑄造態合金是否會形成簡單固溶相,以及簡單固溶相的結構,皆可以現有理論成功預測。
對於鑄造態含有介金屬相的合金,本實驗室提出可透過觀察 Co-X、Cr-X、Fe-X、Ni-X 等四個二元相圖,來預測其內出現的主要介金屬
相。此法簡便、成本低、且有不差的成功率,對未來高熵合金設計的
初步評估上有其實用性。
後續四個不同退火溫度中,添加過渡金屬元素的合金均不發生任何相變化。添加 3A、4A 元素的七個合金有較多相變化。均質化後,B、Al、Sn 等合金發生顯著相變化。在 900°C 與 700°C 退火溫度,則多數合金都發生相變化,多為 σ 相的生成。500°C 長時間退火中,除了 Si、Ge 合金產生析出物,各合金都幾乎沒有影響。
σ相在本實驗合金中的形成與否,大體上與本實驗室提出的兩個σ相形成準則的預測吻合。

In present studies of high entropy alloys (HEAs), our understanding of the composition-phase relationship of HEAs is far from satisfactory.The main problems that hinder our progress is that most works study the effect of alloying by adding different elements into different base alloys.Because there can be substantial difference between base alloys, it becomes difficult to understand the effect of the alloying elements themselves.
Here, we added thirteen different alloying elements to the same base alloy CoCrFeNi. The alloying elements are varied systematically from transition metal (TM) elements to IIIB and IVB elements (Mn, Fe, Co, Ni, Cu, Ag, B, Al, Ga, C, Si, Ge, Sn), leading to thirteen CoCrFeNiX alloys, like CoCrFeNiMn, CoCrFe 2 Ni, CoCrFeNiB, etc. All the casting alloys were produced by vacuum arc melting, then the phase information including the microstructures and the compositions of these thirteen as-cast alloys were investigated. Besides, all alloys were heat treated in
four conditions and their phase information were also investigated. We tried to understand that how the different adding elements effected the phase behaviors between these thirteen alloys by analyzing the microstructures of these alloys.
We found that in as cast alloys, most of alloys formed solid solution, except for the alloys adding B, Al, C, Si, Sn. Surprisingly, the major phase of four alloys adding B, Al, Si, Sn was intermetallic phase. The results perfectly corresponded to the existing phase formation theories. In this research, we created an idea to predict the possible major intermetallic phase in the CoCrFeNiX cast alloys by checking the binary
phase diagrams.
In other conditions, results showed that in 1100°C Homogenizing annealing condition, alloys adding TM elements remained unchanged of their phases, while varied phase transformations occurred to the alloys
adding IIIA and IVA elements. Most of the alloys adding IIIA and IVA elements had no phase transformations during 500°C annealing except for the two alloys adding Si, Ge. However, most of the alloys adding IIIA and IVA elements had phase transformations during 900°C and 700°C annealing. The common phase transformation in these alloys during annealing was the formation of the σ phase.
the prediction of the σ phase formation in these thirteen alloys corresponded to the two criterions of the σ phase formation, which were proposed by our aboratory.

國立國立中興大學材料科學與工程學系 ........................................................ i
碩士學位論文............................................................................................. i
誌謝 ............................................................................................................. i
摘要 ............................................................................................................ ii
Abstract ..................................................................................................... iv
目錄 ........................................................................................................... vi
圖目錄 ....................................................................................................... ix
表目錄 .................................................................................................... xvii
壹、 前言 ................................................................................................. 21
第一章參考文獻 .............................................................................. 22
貳、 文獻回顧......................................................................................... 23
2.1 高熵合金 ................................................................................... 23
2.2 常見 Al-Co-Cr-Cu-Fe-Ni 高熵合金之延伸系統 ..................... 24
2.3 高熵合金的成相法則 ............................................................... 26
2.3.1 成相法則的重要性 ................................................................ 26
2.3.2 傳統成相-Hume-Rothery ....................................................... 26
2.3.3 現有成相法則 ........................................................................ 26
2.4 拓樸緊密堆積相 ....................................................................... 38
2.4.1 TCP 相的必要條件 ................................................................. 38
2.4.2 σ 相 .......................................................................................... 39
2.4.3 A15 相 ...................................................................................... 39
2.4.4 A13 相 ...................................................................................... 40
2.5 B8 2 相 .......................................................................................... 43
2.6 延伸結構(Derivative structure) ................................................. 45
2.6.1 BCC 相之衍生結構 ................................................................ 48
第二章參考文獻 .............................................................................. 52
參、 研究動機及實驗步驟 .................................................................... 57
3.1 研究動機 ................................................................................... 57
3.2 實驗設計與流程 ....................................................................... 58
3.3 元素性質列表 ........................................................................... 59
3.4 合金製備 ................................................................................... 59
3.5 熱處理........................................................................................ 59
3.6 相與微結構分析 ....................................................................... 60
3.7 硬度及破壞韌性量測 ............................................................... 60
3.8 實驗參數與計算 ....................................................................... 61
3.8.1 熱力學參數 ............................................................................ 61
3.8.2 尺寸學參數 ............................................................................ 62
3.8.3 電子參數 ................................................................................ 62
第三章文獻參考 .............................................................................. 67
肆、 鑄造態 CoCrFeNiX 高熵合金的成相行為 ................................... 68
4.1 基底相(CoCrFeNi)金相分析 .................................................... 68
4.2 鑄造態 CoCrFeNiX 合金的相與微結構分析 .......................... 72
4.3 純簡單相的形成預測 ............................................................... 92
4.4 CoCrFeNi v.s X 二元相圖之成相預測 ..................................... 95
第四章參考文獻 ............................................................................ 105
伍、 CoCrFeNiX 高熵合金不同溫度長時間退火後的成相行為...... 106
5.1 均質化 1100°C 48 小時 CoCrFeNiX 合金的相與微結構分析
......................................................................................................... 106
5.2 900°C 10 天退火 ...................................................................... 130
5.3 700°C 20 天退火 ...................................................................... 148
5.4 500°C 30 天退火 ...................................................................... 165
5.5 不同退火溫度結果討論 ......................................................... 181
5.6 σ 相 ........................................................................................... 215
第五章參考文獻 ............................................................................ 218
陸、 結論 ............................................................................................... 219

1. Yeh, J.W., S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy
alloys with multiple principal elements: Novel alloy design
concepts and outcomes. Advanced Engineering Materials, 2004.
6(5): p. 299-303.
2. 葉均蔚,
高熵合金的發展
. 華岡工程學報, 2011(27): p. 1-18.
1. 葉均蔚,
高熵合金的發展
. 華岡工程學報, 2011(27): p. 1-18.
2. Tong, C.J., M.R. Chen, S.K. Chen, et al., Mechanical performance
of the Al x CoCrCuFeNi high-entropy alloy system with
multiprincipal elements. Metallurgical and Materials Transactions
a-Physical Metallurgy and Materials Science, 2005. 36A(5): p.
1263-1271.
3. Tong, C.J., Y.L. Chen, S.K. Chen, et al., Microstructure
characterization of Al x CoCrCuFeNi high-entropy alloy system with
multiprincipal elements. Metallurgical and Materials Transactions
a-Physical Metallurgy and Materials Science, 2005. 36A(4): p.
881-893.
4. Singh, S., N. Wanderka, B.S. Murty, et al., Decomposition in
multi-component AlCoCrCuFeNi high-entropy alloy. Acta
Materialia, 2011. 59(1): p. 182-190.
5. Tsai, M.H., H. Yuan, G. Cheng, et al., Morphology, structure and
composition of precipitates in Al 0.3 CoCrCu 0.5 FeNi high-entropy
alloy. Intermetallics, 2013. 32: p. 329-336.
6. Tung, C.C., J.W. Yeh, T.T. Shun, et al., On the elemental effect of
AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007.
61(1): p. 1-5.
7. Wen, L.H., H.C. Kou, J.S. Li, et al., Effect of aging temperature on
microstructure and properties of AlCoCrCuFeNi high-entropy alloy.
Intermetallics, 2009. 17(4): p. 266-269.
8. Tsai, C.W., Y.L. Chen, M.H. Tsai, et al., Deformation and
annealing behaviors of high-entropy alloy Al 0.5 CoCrCuFeNi.
Journal of Alloys and Compounds, 2009. 486(1-2): p. 427-435.
9. Tsai, C.W., M.H. Tsai, J.W. Yeh, et al., Effect of temperature on
mechanical properties of Al 0.5 CoCrCuFeNi wrought alloy. Journal
of Alloys and Compounds, 2010. 490(1-2): p. 160-165.
10. Zhang, K.B., Z.Y. Fu, J.Y. Zhang, et al., Annealing on the structure
and properties evolution of the CoCrFeNiCuAl high-entropy alloy.
Journal of Alloys and Compounds, 2010. 502(2): p. 295-299.
11. Wang, F.J., Y. Zhang, G.L. Chen, et al., Tensile and compressive
mechanical behavior of a CoCrCuFeNiAl 0.5 high entropy alloy.
International Journal of Modern Physics B, 2009. 23(6-7): p.
1254-1259.
12. Kuznetsov, A.V., D.G. Shaysultanov, N.D. Stepanov, et al., Tensile
properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and
wrought conditions. Materials Science and Engineering
a-Structural Materials Properties Microstructure and Processing,2012. 533: p. 107-118.
13. Kuznetsov, A.V., D.G. Shaysultanov, N.D. Stepanov, et al.,
Superplasticity of AlCoCrCuFeNi High Entropy Alloy. Materials
Science Forum, 2013. 735: p. 146-151.
14. Wu, J.M., S.J. Lin, J.W. Yeh, et al., Adhesive wear behavior of
Al x CoCrCuFeNi high-entropy alloys as a function of aluminum
content. Wear, 2006. 261(5-6): p. 513-519.
15. Hemphill, M.A., T. Yuan, G.Y. Wang, et al., Fatigue behavior of
Al 0.5 CoCrCuFeNi high entropy alloys. Acta Materialia, 2012.
60(16): p. 5723-5734.
16. Liu, Z.Y., S. Guo, X.J. Liu, et al., Micromechanical
characterization of casting-induced inhomogeneity in an
Al 0.8 CoCrCuFeNi high-entropy alloy. Scripta Materialia, 2011.
64(9): p. 868-871.
17. Shun, T.T. and Y.C. Du, Microstructure and tensile behaviors of
FCC Al 0.3 CoCrFeNi high entropy alloy. Journal of Alloys and
Compounds, 2009. 479(1-2): p. 157-160.
18. Wang, W.R., W.L. Wang, S.C. Wang, et al., Effects of Al addition
on the microstructure and mechanical property of Al x CoCrFeNi
high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
19. Kao, Y.F., T.J. Chen, S.K. Chen, et al., Microstructure and
mechanical property of as-cast, -homogenized, and -deformed
Al x CoCrFeNi (0 <= x <= 2) high-entropy alloys. Journal of Alloys
and Compounds, 2009. 488(1): p. 57-64.
20. Li, C., J.C. Li, M. Zhao, et al., Effect of aluminum contents on
microstructure and properties of Al x CoCrFeNi alloys. Journal of
Alloys and Compounds, 2010. 504: p. S515-S518.
21. Lin, C.M. and H.L. Tsai, Evolution of microstructure, hardness,
and corrosion properties of high-entropy Al 0.5 CoCrFeNi alloy.
Intermetallics, 2011. 19(3): p. 288-294.
22. Wang, Y., B. Li, M. Ren, et al., Microstructure and compressive
properties of AlCrFeCoNi high entropy alloy. Materials Science
and Engineering: A, 2008. 491(1): p. 154-158.
23. Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in
Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013.
61(13): p. 4887-4897.
24. Liu, W.H., Y. Wu, J.Y. He, et al., Grain growth and the Hall-Petch
relationship in a high-entropy FeCrNiCoMn alloy. Scripta
Materialia, 2013. 68(7): p. 526-529.
25. Otto, F., A. Dlouhý, C. Somsen, et al., The influences of
temperature and microstructure on the tensile properties of a
CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755.
26. Bhattacharjee, P.P., G.D. Sathiaraj, M. Zaid, et al., Microstructure
and texture evolution during annealing of equiatomic
CoCrFeMnNi high-entropy alloy. Journal of Alloys and
Compounds, 2014. 587(0): p. 544-552.
27. Tsao, L.C., C.S. Chen, and C.P. Chu, Age hardening reaction of the
Al 0.3 CrFe 1.5 MnNi 0.5 high entropy alloy. Materials & Design, 2012.
36: p. 854-858.
28. Chen, S.T., W.Y. Tang, Y.F. Kuo, et al., Microstructure and
properties of age-hardenable Al x CrFe 1.5 MnNi 0.5 alloys. Materials
Science and Engineering a-Structural Materials Properties
Microstructure and Processing, 2010. 527(21-22): p. 5818-5825.
29. Tsai, M.H., H. Yuan, G. Cheng, et al., Significant hardening due to
the formation of a sigma phase matrix in a high entropy alloy.
Intermetallics, 2013. 33: p. 81-86.
30. Zhu, J., H. Fu, H. Zhang, et al., Synthesis and properties of
multiprincipal component AlCoCrFeNiSi x alloys. Materials
Science and Engineering: A, 2010. 527(27): p. 7210-7214.
31. de Boer, F., Cohesion and structure. 1995: North-Holland.
32. Liu, W., Y. Wu, J. He, et al., The Phase Competition and Stability
of High-Entropy Alloys. JOM, 2014. 66(10): p. 1973-1983.
33. Guo, S., Phase selection rules for cast high entropy alloys: an
overview. 2015.
34. Cahn, R.W. and P. Haasen, Physical metallurgy. Vol. 1. 1996:
North-Holland.
35. Massalski, T.B., Comments concerning some features of phase
diagrams and phase transformations. Materials transactions, 2010.
51(4): p. 583-596.
36. Mizutani, U., Hume-Rothery rules for structurally complex alloy
phases. 2010: CRC Press.
37. Guo, S. and C.T. Liu, Phase stability in high entropy alloys:
Formation of solid-solution phase or amorphous phase. Progress in
Natural Science-Materials International, 2011. 21(6): p. 433-446.
38. Guo, S., Q. Hu, C. Ng, et al., More than entropy in high-entropy
alloys: Forming solid solutions or amorphous phase. Intermetallics,
2013. 41: p. 96-103.
39. Wang, Z., Y. Huang, Y. Yang, et al., Atomic-size effect and solid
solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p.
28-31.
40. Senkov, O.N., G.B. Wilks, D.B. Miracle, et al., Refractory
high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
41. Senkov, O.N., J.M. Scott, S.V. Senkova, et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy.
Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
42. Guo, S., C. Ng, J. Lu, et al., Effect of valence electron
concentration on stability of fcc or bcc phase in high entropy alloys.
Journal of Applied Physics, 2011. 109(10): p. 103505.
43. Tsai, M.H., K.Y. Tsai, C.W. Tsai, et al., Criterion for Sigma Phase
Formation in Cr- and V-Containing High-Entropy Alloys. Materials
Research Letters, 2013. 1(4): p. 207-212.
44. Li, C., J. Li, M. Zhao, et al., Effect of alloying elements on
microstructure and properties of multiprincipal elements
high-entropy alloys. Journal of Alloys and Compounds, 2009.
475(1): p. 752-757.
45. Joubert, J.-M., Crystal chemistry and Calphad modeling of the σ
phase. Progress in Materials Science, 2008. 53(3): p. 528-583.
46. Tsai, M.-H., K.-C. Chang, J.-H. Li, et al., A second criterion for
sigma phase formation in high-entropy alloys. Materials Research
Letters, 2015: p. 1-6.
47. Seiser, B., R. Drautz, and D.G. Pettifor, TCP phase predictions in
Ni-based superalloys: Structure maps revisited. Acta Materialia,
2011. 59(2): p. 749-763.
48. De Graef, M. and M.E. McHenry, Structure of materials: an
introduction to crystallography, diffraction and symmetry. 2007:
Cambridge University Press.
49. Watson, R. and L. Bennett, Transition-metal alloy formation. The
occurrence of topologically close packed phases-I. Acta
Metallurgica, 1984. 32(4): p. 477-489.
50. Greenfield, P., CORRECTION. 1954, MINERALS METALS
MATERIALS SOC 420 COMMONWEALTH DR,
WARRENDALE, PA 15086. p. 758-758.
51. Emmanuel, G., The Nature, Occurrence, and Effects of Sigma
Phase. ASTM Spec. Tech. Publ, 1950. 110: p. 82.
52. Duwez, P., Theory of Alloy Phases. ASM, Cleveland, Ohio, 1956: p.
243.
53. Greenfield, P. and P.A. Beck, The sigma phase in binary alloys.
Trans. AIME, 1954. 200: p. 253.
54. Lawson, A., C. Olsen, J. Richardson, et al., Structure of β-uranium.
Acta Crystallographica Section B: Structural Science, 1988. 44(2):
p. 89-96.
55. Treitschke, W. and G. Tammann, Enthalpy of formation for σ-phase
solid solutions at 1060 K. Anorganische Chemie, 1907. 55: p. 707.
56. Bain, E.C. and W.E. Griffiths, An introduction to the
iron-chromium-nickel alloys. Trans. AIME, 1927. 75(166): p. 166-211.
57. Jette, E.R. and F. Foote, The Fe-Cr Alloy System. Metals and
Alloys, 1936. 7: p. 207-210.
58. Lee, S., C. Leighton, and F.S. Bates, Sphericity and symmetry
breaking in the formation of Frank–Kasper phases from one
component materials. Proceedings of the National Academy of
Sciences, 2014. 111(50): p. 17723-17731.
59. Shoemaker, C.B., D.P. Shoemaker, T. Hopkins, et al., Refinement of
the structure of β-manganese and of a related phase in the
Mn–Ni–Si system. Acta Crystallographica Section B: Structural
Crystallography and Crystal Chemistry, 1978. 34(12): p.
3573-3576.
60. Bardos, D., R. Malik, F. Spiegel, et al., Beta-Manganese Phases in
Ternary Systems of Transition Elements with Silicon, Germanium,
or Tin. AIME MET SOC TRANS, 1966. 236(1): p. 40-48.
61. Sinha, A.K., Topologically close-packed structures of transition
metal alloys. Progress in Materials Science, 1972. 15(2): p. 81-185.
62. Lidin, S., Superstructure ordering of intermetallics: B8 structures
in the pseudo-cubic regime. Acta Crystallographica Section B:
Structural Science, 1998. 54(2): p. 97-108.
63. Biloni, H., W. Boettinger, R. Cahn, et al., Physical metallurgy.
Solidification, ed. RW Cahn and P. Haasen,(North-Holland Physics
Publ., Amsterdam, 1983), 1996.
64. Ferro, R. and A. Saccone, Intermetallic chemistry. 2008: Elsevier.
65.
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/
06/licence/lecture_2/lec2.html.
66. http://emaps.mrl.uiuc.edu/default.asp. 1. Wang, W.-R., W.-L. Wang, S.-C. Wang, et al., Effects of Al addition on
the microstructure and mechanical property of Al x CoCrFeNi
high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
2. Schubert, W., H. Neumeister, G. Kinger, et al., Hardness to toughness
relationship of fine-grained WC-Co hardmetals. International Journal
of Refractory Metals and Hard Materials, 1998. 16(2): p. 133-142.
3. Zhang, Y., Y.J. Zhou, J.P. Lin, et al., Solid-solution phase formation
rules for multi-component alloys. Advanced Engineering Materials,
2008. 10(6): p. 534-538.
4. Yang, X. and Y. Zhang, Prediction of high-entropy stabilized
solid-solution in multi-component alloys. Materials Chemistry and
Physics, 2012. 132(2-3): p. 233-238.
5. Fang, S., X. Xiao, L. Xia, et al., Relationship between the widths of
supercooled liquid regions and bond parameters of Mg-based bulk
metallic glasses. Journal of Non-Crystalline Solids, 2003. 321(1): p.
120-125.
6. Liu, C., Physical metallurgy and mechanical properties of ductile
ordered alloys (Fe, Co, Ni) 3 V. International metals reviews, 1984.
29(1): p. 168-194.
7. Zhu, J., P. Liaw, and C. Liu, Effect of electron concentration on the
phase stability of NbCr 2-based Laves phase alloys. Materials Science
and Engineering: A, 1997. 239: p. 260-264.
8. Wang, Z., Y. Huang, Y. Yang, et al., Atomic-size effect and solid
solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p.
28-31.
9. Senkov, O. and D. Miracle, Effect of the atomic size distribution on
glass forming ability of amorphous metallic alloys. Materials Research
Bulletin, 2001. 36(12): p. 2183-2198.
10. http://www.webelements.com/.
11. Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by
atomic size difference, heat of mixing and period of constituent
elements and its application to characterization of the main alloying
element. Materials Transactions, 2005. 46(12): p. 2817-2829. 1. Wang, W.-R., W.-L. Wang, S.-C. Wang, et al., Effects of Al addition on
the microstructure and mechanical property of Al x CoCrFeNi
high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
2. Manzoni, A., H. Daoud, R. Völkl, et al., Phase separation in
equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 2013.
132: p. 212-215.
3. http://himikatus.ru/.
4. Nakajima, Y., E. Takahashi, T. Suzuki, et al., “Carbon in the core”
revisited. Physics of the Earth and Planetary Interiors, 2009. 174(1): p.
202-211. 1. Wang, W.-R., W.-L. Wang, S.-C. Wang, et al., Effects of Al addition on
the microstructure and mechanical property of Al x CoCrFeNi
high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
2. Manzoni, A., H. Daoud, R. Völkl, et al., Phase separation in
equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 2013.
132: p. 212-215.
3. Singh, S., N. Wanderka, B. Murty, et al., Decomposition in
multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia,
2011. 59(1): p. 182-190.
4. Wang, Y., B. Li, M. Ren, et al., Microstructure and compressive
properties of AlCrFeCoNi high entropy alloy. Materials Science and
Engineering: A, 2008. 491(1): p. 154-158.
5. Tsai, M.-H., H. Yuan, G. Cheng, et al., Significant hardening due to
the formation of a sigma phase matrix in a high entropy alloy.
Intermetallics, 2013. 33: p. 81-86.
6. Lin, C.W., M.H. Tsai, C.W. Tsai, et al., Microstructure and aging
behavior of Al 5 Cr 32 Fe 35 Ni 22 Ti 6 ternary-like high-entropy alloy. In
preparation.
7. Guo, S., C. Ng, J. Lu, et al., Effect of valence electron concentration
on stability of fcc or bcc phase in high entropy alloys. Journal of
Applied Physics, 2011. 109(10): p. 103505.
8. Tsai, M.H., K.Y. Tsai, C.W. Tsai, et al., Criterion for Sigma Phase
Formation in Cr- and V-Containing High-Entropy Alloys. Materials
Research Letters, 2013. 1(4): p. 207-212.
9. Joubert, J.-M., Crystal chemistry and Calphad modeling of the σ phase.
Progress in Materials Science, 2008. 53(3): p. 528-583.
10. Tsai, M.-H., K.-C. Chang, J.-H. Li, et al., A second criterion for sigma
phase formation in high-entropy alloys. Materials Research Letters,
2015: p. 1-6.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top