(3.237.48.165) 您好!臺灣時間:2021/05/09 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:戴亦儒
研究生(外文):Yi-Ju Tai
論文名稱:以溫差發電評估含不同晶界潤覆相占比之BaGaCuSn第八型晶籠化合物的熱電表現
論文名稱(外文):Thermoelectric performances of the BaGaCuSn type-VIII clathrates with various proportions of grain boundary wetting phase evaluated by thermoelectric generation
指導教授:張立信
口試委員:曾文甲林昆明
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:熱電材料熱電優值晶籠化合物BaGaCuSn垂直式Sn溶液布里居曼法潤覆相熱電效率
外文關鍵詞:thermoelectric materialfigure of meritclathrateBaGaCuSnvertical Sn solution Bridgman methodwetting phasethermoelectric generation efficiency.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用垂直式Sn溶液布里居曼長晶法,以Ba:Ga:Cu:Sn = 8:14:2:50的成分配比,在爐體溫度520℃至720℃區間製備出八組含不同潤覆相占比之Ba8Ga16-xCuxSn30第八型晶籠化合物,並在環境溫度40℃下以溫差發電之自製模組直接獲得試片將實際廢熱轉換成電能的效率,估算出試片熱導率與熱電優值,目的是探討潤覆相占比多寡對熱電表現的影響。利用EDS分析結果得知,潤覆相為含有Cu、Ga以及富Sn之金屬物質。
八組試片潤覆相占比為2.8%~14.1%,在試片A占比為2.8%時有最佳熱電表現。本實驗結果為試片潤覆相愈少,輸出功率愈大、熱電效能愈高。在實驗中發現隨著潤覆相上升Cu的含量會增加,可提升試片電導率,而Seebeck係數絕對值則會下降。分別在14.1%之試片H有最高電導率5733 S/cm與2.8%之試片A中有最高Seebeck係數-120 μV/K以及最佳功率因子8.6×10-4 W/mK2。經由推導出八組試片熱導率為10~20 W/mK,其隨潤覆相增加而提高,而八組潤覆相最少的試片A,在40℃時具有最高ZT值0.028。


In this study, the Ba8Ga16-xCuxSn30 type-VIII clathrates were synthesized by vertical Sn solution Bridgman method with the atomic ratio of Ba:Ga:Cu:Sn = 8:14:2:50. The eight samples with different volume fraction of wetting phase between 2.8% to 14.1% were grown at furnace temperatures in the range of 520℃ to 720℃. The waste heat transformed to electrical energy by our thermoelectric generation at 40℃. The thermal conductivity and figure of merit ZT were estimated by the thermoelectric generation efficiency. The purpose is to investigate the effects of the various proportions of grain boundary wetting phase on the thermoelectric properties.
The results showed the wetting phase is a metal substance which contains with Cu, Ga and Sn by EDS. The specimen with 2.8% wetting phase has the best thermoelectric performances. When the specimens have less wetting phase, the power and thermoelectric generation efficiency are higher. The electrical conductivity increases and Seebeck coefficient decreases when increased wetting phase with the increase of Cu content in crystal. The highest electrical conductivity was 5733 S/cm at sample H with 14.1% wetting phase. The highest Seebeck coefficient and power factor were -120 μV/K and 8.6×10-4 W/mK2 at sample A with 2.8% wetting phase, respectively.
Consequently, the thermal conductivity is estimated from 10 to 20 W/mK and increases with the increasing of wetting phase. The highest figure of merit is 0.028 at sample A with the least wetting phase.

摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 熱電現象 3
1.2.1 Seebeck effect 3
1.2.2 Peltier effect 5
1.2.3 Thomson effect 6
1.3 熱電材料的應用 8
1.4 熱電轉換效率 9
1.5 熱電優值 11
1.5.1 電導率 12
1.5.2 功率因子 12
1.5.3 熱導率 13
1.6 材料種類選擇 15
1.7 研究動機與目的 17
第二章 文獻回顧與理論基礎 19
2.1 晶籠結構 19
2.2 BaGaSn晶籠化合物 21
2.2.1 Ba8Ga16Sn30第八型晶籠化合物歷年文獻回顧 22
2.2.2 Ba8Ga16Sn30第八型晶籠化合物摻雜Cu的相關文獻 26
2.3 實驗製程原理 28
2.3.1 布里居曼法 28
2.3.2 助熔劑法 29
2.3.3 垂直式Sn溶液布里居曼法 32
2.4 晶界潤覆現象 34
2.5 實驗分析與熱電性質 37
2.5.1 熱電發電效能 37
2.5.2 材料熱電性質 39
2.5.3 熱傳遞 40
第三章 實驗設計與方法 43
3.1 實驗製程介紹 45
3.1.1 原料配製 45
3.1.2 真空石英封管 45
3.1.3 晶體成長 48
3.1.4 爐溫調整 49
3.2 材料性質分析 49
3.2.1 金相觀察 49
3.2.2 潤覆相占比計算方法 50
3.2.3 材料成分分析 54
3.2.4 X光繞射結構分析 56
3.3 熱電特性量測 58
3.3.1 電導率量測 61
3.3.2 Seebeck係數量測 62
3.3.3 功率量測 63
3.3.4 溫度變化量測 65
第四章 結果與討論 67
4.1 金相觀察與成分結構分析 67
4.1.1 晶體剖面金相觀察 67
4.1.2 EDS成分分析 73
4.1.3 XRD結構分析 77
4.2 熱電效能 78
4.2.1 溫度變化 78
4.2.2 熱流 80
4.2.3 功率 81
4.2.4 熱電效率 82
4.3 熱電特性 84
4.3.1 電導率 84
4.3.2 Seebeck係數 86
4.3.3 功率因子 88
4.3.4 熱導率 90
4.3.5 熱電優值 92
第五章 結論 94
參考文獻 98


[1] S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research”, Energy Policy 28 (2000) 625-640.

[2] T. J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz”, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin (1823) 265-373.

[3] J. C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique”, Annales de Chimie et de Physique 56 (1834) 371.

[4] H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, British Journal of Applied Physics 5 (1954) 386-390.

[5] C. E. Kelly, “The MHW converter (RTG)”, 10th Int. Conf. on Energy Conversion Engineering (1975) 880.

[6] D. M. Rowe, “CRC Handbook of Thermoelectrics Chapter 1 and 10”, CRC Press Boca Raton London New York Washington (1995) 1.

[7] G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials”, Proceedings of the 17th International Conference on Thermoelectrics (1998) 294-297.

[8] 朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,(2004),78。

[9] W. Thomson, “Account of researches in thermos-electricity”, Philos. Mag 8 (1854) 62.


[10] W. Thomson, “On the electrodynamic qualities of metals”, Philos. Trans. R. Soc. London 146 (1856) 649.

[11] C. A. Gould, N. Y. A. Shammas, S. Grainger and I. Taylor, “A comprehensive review of thermoelectric technology, micro- electrical and power generation properties”, Proceedings of the 26th Inernational Conference on Microelectronics (2008) 329-332.

[12] D. M. Rowe, “CRC handbook of Thermoelectrics”, CRC Press (1995).

[13] J. P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New materials and devices for thermoelectric applications”, Energy Conversion Engineering Conference (1997) 1080.

[14] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47 (1993) 16631.

[15] N. Scoville, C. Bajgar, J. P. Fleurial and J. Vaderasnde, “Thermal
conductivity reduction in SiGe alloys by the addition of nanophase
particles”, NanoStuctured Materials 5 (1995) 207.

[16] V. I. Fistul, “Heavily Doped Semiconductors”, Plenum, New York (1969).

[17] D. M. Rowe and C. M. Bhandari, “Modern Thermoelectrics”, Holt Saunders, London (1983).

[18] 劉恩科、朱秉升、羅晉升編著,嚴考豐編修,「半導體物理學(第六版)」,新文京開發出版股份有限公司,(2006),470-471。

[19] C. M. Bhandari and D. M. Rowe, “Thermal Conduction in
Semiconductors”, Wiley Eastern Limited, New Delhi (1998).

[20] 熊聰,唐新峰,「I-型鍺基籠合物A8IIB16IIIB30IV的合成及熱電性能研究」,武漢理工大學材料所,(2006),16。

[21] G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials”, Nature Materials 7 (2008) 107.

[22] Q. G. Hong, L. S. Chang and H. L. Hsieh, “The Effect of Furnace Temperature on Evolution of the Microstructure of type-VIII Clathrate Ba8Ga16Sn30 Polycrystals Grown from Ba8Ga16Sn50 Solutions”, Journal of Electronic Materials 43 (2013) 1865-1869.

[23] 李顏佑,「添加銅與銀元素對BaGaSn晶籠材料金相及熱電特性之影響」,碩士論文,國立中興大學材料科學與工程學系研究所,(2015)。

[24] 蘇恆毅,「晶界潤覆相分布對Ba8Ga16Sn30第八型晶籠化合物之熱電性質的影響」,碩士論文,國立中興大學材料科學與工程學系研究所,(2015)。

[25] D. M. Rowe, “CRC Handbook of Thermoelectrics: Macro to Nano Chapter 32”, CRC, Boca Raton (2005) 387-400.

[26] D. Huo, T. Sakata, M. A. Avila, M. Tsubota, F. Iga, H. Fukuoka, S. Yamanaka, S. Aoyagi and T. Takabatake, “Structural, transport and thermal properties of the single crystalline type-VIII clathrate Ba8Ga16Sn30”, Physical Review B 71 (2005) 075113.

[27] H. G. von Schnering, W. Carrillo-Cabrera, R. Kröner, E. M. Peters and K. Peters, “Crystal structure of the clathrate β-Ba8Ga16Sn30”, Zeitschrift für Kristallographie-New Crystal Structures 213 (1998) 679.

[28] B. Eisenmann, H. Schäfer and A. Weiss, “Die Verbindungen A8IIB16IIIB30IV (AII = Sr, Ba; BIII = Al, Ga; BIV = Si, Ge, Sn) und ihre Käfigstrukturen”, Journal of Less-Common Metals 118 (1986) 43.

[29] M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka and T. Takabatake, “Glass versus crystalline thermal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X = Ge, Sn)”, Physical Review B 74 (2006) 125109.

[30] K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa and T. Takabatake, “Simultaneous structure and carrier tuning of dimorphic clathrate Ba8Ga16Sn30”, Physical Review B 77 (2008) 235119.

[31] Y. Saiga, K. Suekuni, B. K. Du and T. Takabatake, “Thermoelectric properties and structural in stability of type-I clathrate Ba8Ga16Sn30 at high temperatures”, Solid State Communications 152 (2012) 1902-1905.

[32] M. A. Avila, D. Huo, T. Sakata, K. Suekuni and T. Takabatake, “Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30”, Journal of Physics: Condensed Matter 18 (2006) 1585-1592.

[33] Y. Saiga, K. Suekuni, S. K. Deng, T. Yamamoto, Y. Kono, N. Ohya and T. Takabatake, “Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning”, Journal of Alloys and Compounds 507 (2010) 1-5.

[34] S. Deng, Y. Saiga, K. Kajisa and T. Takabatake, “High thermoelectric performance of Cu substituted type-VIII clathrate Ba8Ga16–xCuxSn30 single crystals”, Journal of Applied Physics 109 (2011).

[35] Y. Saiga, B. Du, S. K. Deng, K. Kajisa and T. Takabatake, “Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu”, Journal of Alloys and Compounds 537 (2012) 303-307.

[36] G. Dhanaraj, K. Byrappa, V. Prasad and M. Dudley, “Springer handbook of crystal growth”, Springer, New York (2005) 28-300.

[37] 郭家綺,「添加鋁元素對BaGaSn晶籠材料金相及熱電特性之影響」,碩士論文,國立中興大學材料科學與工程學系研究所,(2014)。

[38] Z. Fisk and J. P. Remeika, “Handbook on the Physics and Chemistry of Rare Earths”, Elsevier, Amsterdam (1989) 53-70.

[39] 洪欽港,「以布里居曼法製備N型BaGaSn晶籠材料與其熱電特性研究」,碩士論文,國立中興大學材料科學與工程學系研究所,(2013)。

[40] C. S. Smith, “Grains, phases and interfaces: An interpretation of microstructure”, Transactions of the Metallurgical Society of AIME (1948) 15-51.

[41] 維基百科,https://zh-yue.wikipedia.org/wiki/%E9%8C%AB,摘取自網路。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔