(3.238.130.97) 您好!臺灣時間:2021/05/09 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:彭皜禎
研究生(外文):Hao-Chen Peng
論文名稱:矽添加於氧化鐵奈米纖維之光催化與氣體感測特性
論文名稱(外文):Effect of Silicon on Gas Sensing and Photocatalysis of Iron Oxide Nanofibers
指導教授:曾文甲
口試委員:向性一段維新
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:氧化鐵靜電紡絲法氣體感測器光催化
外文關鍵詞:γ-Fe2O3Sielectrospinninggas sensingphotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以靜電紡絲法合成含PVP/Fe(NO3)3奈米纖維以及含Si/PVP/Fe(NO3)3奈米纖維,再透過熱處理將有機模板去除,進而獲得γ-Fe2O3奈米纖維及Si/γ-Fe2O3奈米纖維。於前驅鹽階段,吾人改變鐵及矽莫爾比,進行靜電紡絲,接著熱處理得到不同鐵:矽莫爾比之Si/γ-Fe2O3奈米纖維,再利用XRD、FE-SEM、HR-TEM進行材料分析。透過XRD分析可以發現,當含有Si存在時,再經過熱處理,將會有FeSi的化合物出現,藉由FE-SEM及TEM可以發現當矽的濃度逐漸升高時,奈米纖維會由小晶粒轉為大晶粒結構,奈米纖維之直徑也會由80~100 nm隨之下降至50 nm。接著固定鐵:矽莫爾比為1:2的奈米纖維,改變鍛燒溫度並進行XRD晶相分析,可以發現在鍛燒溫度於450oC時,尚未有FeSi的產生,隨著溫度大於450oC,則會有FeSi的生成;當溫度達750oC時,除了有明顯的FeSi生成,也會有許多鐵被還原。藉由SEM的表面觀察,隨著溫度升高,奈米纖維會趨於捲曲,且有明顯的晶粒成長,因此我們再利用BET分析其比表面積以及孔隙率,可以發現當溫度由650oC提高至750oC時,其比表面積由271.5 m2/g下降至215.6 m2/g,晶粒結合使奈米纖維更緻密,其孔隙分布也逐漸變小。此奈米纖維亦進行NO2氣體感測以及UV光催化性質測試,氣體感測操作環境為200oC對於NO2氣體進行量測,可以發現當鐵:矽莫爾比為1:2並鍛燒至450oC的奈米纖維,由於未產生FeSi的結構缺陷,具有較好的氣體感測性質;光催化性質則是奈米纖維對於亞甲基藍在UV光照射下進行測試,由於Si可以使γ-Fe2O3的電子電洞對不易重新結合,使得電子、電洞與水中的氧產生氧化還原反應,當鐵:矽莫爾比為1:2並鍛燒至650oC的奈米纖維,由於其比表面積高達271.4 m2/g,因此光降解率由γ-Fe2O3奈米纖維21.53%提升至31.09%。

We synthesized nanofibers consisting of PVP/Fe(NO3)3 and Si/PVP/Fe(NO3)3 through electrospinning process. Then, thermal pyrolysis was used to remove the organic template to obtain γ-Fe2O3 and Si/γ-Fe2O3 nanofibers. We changed the molar ratio of the iron precursor and silicon powders before the electrospinning process. Finally, XRD, FE-SEM, HR-TEM were used to analyze microstructure of the nanofibers. Through the XRD analysis one can find that the nanofibers consisted of Si, and after the heat-treatment, FeSi compound began to form. By FE-SEM and TEM, as the molar fraction of silicon increases, nanofibers were grown from small particles to large ones, also the diameter of nanofibers shrank to 50 nm. Then, we fixed the molar ratio of the Fe precursor and silicon powders at 1:2 before the electrospinning process, and changed the calcination temperature. XRD analysis could not find FeSi at 450oC. Above 450oC, there was FeSi generation. When temperature was increased up to 750oC, in addition to the obvious FeSi generation, reduction of iron was resulted. By SEM, as the temperature was increased, the nanofibers would tended to curl, and grain growth occurred apparently. By BET analysis, specific surface area and porosity, the specific surface area was decreased from 271.5 m2/g to 215.6 m2/g as the temperature was from 650oC to 750oC. The nanoparticles combined to the nanofibers and became more compact, resulted in a reduced pore diameter. The nanofibers was used to detect NO2 gas and photocatalysis under UV light. The experiment of gas sensing for NO2 at 200oC showed that the materials could not reach complete adsorption-desorption, resulting in poor long-term operation. The nanofibers with molar ratio of iron precursor and silicon powders of 1:2 and calcined to 450oC, showed a better gas sensing property. Photocatalytic property was tested against methylene blue under UV light irradiation. The presence of Si in γ-Fe2O3 would reduce electron-hole pair recombination which facilitate the degradation of organic compound.

第一章 緒論 1
第二章 文獻回顧 2
2.1 氣體感測器 2
2.1.1 金屬氧化物半導體氣體感測材料的應用 2
2.1.2 金屬氧化物半導體氣體感測材料的工作原理 3
2.1.3 金屬氧化物半導體氣體感測材料的發展與面臨問題 5
2.1.3.1 靈敏度(Sensitivity) 6
2.1.3.2 長期穩定性(Long-term stability) 6
2.1.3.3 室溫操作(Room-temperature operation) 7
2.2 光觸媒 8
2.2.1 金屬氧化物半導體光觸媒材料的應用 8
2.2.2 金屬氧化物半導體光觸媒材料的工作原理 8
2.3 材料選擇與製備 9
2.3.1 氧化鐵材料選擇 9
2.3.2 氧化鐵材料的製備 17
2.3.2.1 水熱法 18
2.3.2.2 氣相沉積法 18
2.3.2.3 靜電紡絲法 19
2.3.3 矽材料選擇 20
2.4 研究動機 25
第三章 實驗流程與設備 26
3.1 實驗藥品及製程設備 26
3.1.1 實驗藥品 26
3.1.2 製程設備 26
3.2 分析儀器 27
3.3 樣品製備 29
3.3.1 製備γ-Fe2O3奈米纖維之實驗流程 29
3.3.2 鐵前驅鹽參雜不同莫爾比的矽對於Si/γ-Fe2O3奈米纖維之實驗流程 30
3.3.3 改變鍛燒溫度對於Si/γ-Fe2O3奈米纖維之實驗流程 31
3.4 氣體感測氣元件的製作與氣體感測特性的量測 32
3.5 光催化特性的量測 33
3.5.1 檢量線製作之實驗流程 33
3.5.2 有機染料光催化之實驗流程 34
第四章 結果與討論 35
4.1 γ-Fe2O3奈米纖維之XRD晶相繞射分析 35
4.2 未鍛燒之奈米纖維的熱重分析 35
4.3 鍛燒後γ-Fe2O3奈米纖維之表面形貌與微觀結構分析 36
4.3.1 γ-Fe2O3奈米纖維之FE-SEM表面形貌與微觀結構分析 36
4.3.2 γ-Fe2O3奈米纖維之TEM微結構及SAD分析 37
4.4 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之晶相繞射及表面形貌與微觀結構分析 38
4.4.1 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之XRD晶相繞射分析 38
4.4.2 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之FE-SEM表面形貌與微觀結構分析 39
4.4.3 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之TEM微結構、晶格形貌及SAD分析 41
4.5 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之ICP元素含量分析 43
4.6 改變鐵矽莫爾比之Si/γ-Fe2O3奈米纖維之SQUID磁性量測及粉體回收之可行性 44
4.7 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維之晶相繞射及表面形貌 46
4.7.1 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維之XRD晶相繞射分析 46
4.7.2 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維之FE-SEM表面形貌與微觀結構分析 46
4.8 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維之BET比表面積量測分析 48
4.9 γ-Fe2O3及Si/γ-Fe2O3奈米纖維之氣體感測特性 50
4.9.1 γ-Fe2O3奈米纖維與改變鐵前驅物及矽莫爾比之Si/γ-Fe2O3奈米纖維對於氣體感測特性 50
4.9.2 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維對於氣體感測特性 53
4.10 Si/γ-Fe2O3奈米纖維之有機染料( MB)之光觸媒特性 55
4.10.1 有機染料(MB)之檢量線 55
4.10.2 γ-Fe2O3及改變鐵前驅物及矽莫爾比之Si/γ-Fe2O3奈米纖維對於有機染料(MB)之光催化特性 55
4.10.3 改變鍛燒溫度之Si/γ-Fe2O3奈米纖維對於有機染料(MB)之光催化特性 56
第五章 結論 57
參考文獻 58


[1]M. M. Arafat, B. Dinan, S. A. Akbar, A. S. M. A. Haseeb, “Gas sensors based on one dimensional nanostructured metal-oxides: A review,” Sensors, 12 (2012) 7207-7258.
[2]P. A. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, Z. F. Liu, “Use of iron oxide nanomaterials in wastewater treatment: A review,” Science of the Total Environment, 15 (2013) 39-48.
[3]Z. H. Jing, “Fabrication and gas sensing properties of Ni-doped gamma-Fe2O3 by anhydrous solvent method,” Materials Letters, 60 (2006) 3315-3318.
[4]R. Klaysri, S. Wichaidit, T. Tubchareon, S. Nokjan, S. Piticharoenphun, O. Mekasuwandumrong, P. Praserthdam, “Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2,” Ceramics International, 41 (2015) 11409-11417.
[5]A. Khanna, R. Kumar, S. S. Bhatti, “CuO-doped SnO2 thin films as hydrogen sulfide gas sensor,” Applied Physics Letters, 82 (2003) 4388-4390.
[6]N. Yamazoe, “Toward innovations of gas sensor technology,” Sensors and Actuators B: Chemical, 108 (2005) 2-14.
[7]J. R. Stetter, W. R. Penrose, S. Yao, “Sensors, chemical sensors, electrochemical sensors, and ECS,” Journal of the Electrochemical Society, 150 (2003) S11-S16.
[8]R. Frodl, T. Tille, “A high-precision NDIR CO2 gas sensor for automotive applications,” IEEE Sensors Journal, 6 (2006) 1697-1705.
[9]C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sensors and Actuators B: Chemical, 128 (2007) 320-325.
[10]I. D. Kim, A. Rothschild, H. L. Tuller, “Advances and new directions in gas-sensing devices,” Acta Materialia, 61 (2013) 974-1000.
[11]M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?,” Small, 2 (2006) 36-50.
[12]H. J. Kim, J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sensors and Actuators B: Chemical, 192 (2014) 607-627.
[13]T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, “A new detector for gaseous components using semiconductor thin film,” Analytical Chemistry, 34 (1962) 1502.
[14]K. J. Choi, H. W. Jang, “One-dimensional oxide nanostructures as gas-sensing materials: Review and Issues,” Sensors, 10 (2010) 4083-4099.
[15]F. D. Qu, J. Liu, Y. Wang, S. P. Wen, Y. Chen, X. Li, S. P. Ruan, “Hierarchical Fe3O4@Co3O4 core-shell microspheres: preparation and acetone sensing properties,” Sensors and Actuators B: Chemical, 199 (2014) 346-353.
[16]C. B. Liu, H. Shan, L. Liu, S. C. Li, H. Y. Li, “High sensing properties of Ce-doped alpha-Fe2O3 nanotubes to acetone,” Ceramics International, 40 (2014) 2395-2399.
[17]Y. Wang, Y. M. Wang, J. L. Cao, F. H. Kong, H. J. Xia, J. Zhang, B. L. Zhu, S. R. Wang, S. H. Wu, “Low-temperature H2S sensors based on Ag-doped alpha-Fe2O3 nanoparticles,” Sensors and Actuators B: Chemical, 131 (2008) 183-189.
[18]M. Chirita, I. Grozescu, “Fe2O3–nanoparticles, physical properties and their photochemical and photoelectrochemical applications,” Chemical Bulletin, 54 (2009) 1-8.
[19]M. Mishra, D. M. Chun, “Alpha-Fe2O3 as a photocatalytic material: A review,”Applied Catalysis A: General, 498 (2015) 126-141.
[20]Z. H. Jing, Y. Wang, S. H. Wu, “Preparation and gas sensing properties of pure and doped gamma-Fe2O3 by an anhydrous solvent method,” Sensors and Actuators B: Chemical, 113 (2006) 177-181.
[21]Z. H. Jing, “Ethanol sensing properties of gamma-Fe2O3 nanopowder doped with Mg by nonaqueous medium method,” Materials Science and Engineering: B, 133 (2006) 213-217.
[22]R. C. Biswal, “Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone,” Sensors and Actuators B: Chemical, 157 (2011) 183-188.
[23]M. I. Ivanovskaya, D. A. Kotsikau, A. Taurino, P. Siciliano, “Structural distinctions of Fe2O3-In2O3 composites obtained by various sol-gel procedures, and their gas-sensing features,” Sensors and Actuators B: Chemical, 124 (2007) 133-142.
[24]S.F. Matar, G. Demazeau, “Enhancement of the coercivity of gamma-Fe2O3 by hydrothermal treatment,” Materials Letters, 11 (1991) 301-304.
[25]L. Yu, X. J. Peng, F. Ni, J. Li, D. S. Wang, Z. K. Luan, “Arsenite removal from aqueous solutions by gamma-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption,” Journal of Hazardous Materials, 246 (2013) 10-17.
[26]C. H. Liang, H. Liu, J. M. Zhou, X. C. Peng, H. Z. Zhang, “One-step synthesis of spherical gamma-Fe2O3 nanopowders and the evaluation of their photocatalytic activity for Orange I degradation,” Journal of Chemistry, 791829 (2015).
[27]J. S. Xu, Y. J. Zhu, “Monodisperse Fe3O4 and gamma-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries,” ACS Applied Materials & Interfaces, 4 (2012) 4752-4757.
[28]T. S. Zhang, H. M. Luo, H. M. Zeng, R. F. Zhang, Y. S. Shen, “Synthesis and gas-sensing characteristics of high thermostability gamma-Fe2O3 powder,” Sensors and Actuators B: Chemical, 32 (1996) 181-184.
[29]I. Ray, S. Chakraborty, A. Chowdhury, S. Majumdar, A. Prakash, R. Pyare, A. Sen,“Room temperature synthesis of gamma-Fe2O3 by sonochemical route and its response towards butane,” Sensors and Actuators B: Chemical, 130 (2008) 882-888.
[30]M. Yang, X. Y. Liu, X. D. Zhao, “Acetone sensing characteristics of gamma-Fe2O3 nanofibers,” Chemical Journal of Chinese Universities, 35 (2014) 1615-1619.
[31]M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, S. Irkaev, “Gas-sensitive properties of thin film heterojunction structures based on Fe2O3-In2O3 nanocomposites,” Sensors and Actuators B: Chemical, 93 (2003) 422-430.
[32]S. Kundu, I. Subramanian, M. Narjinary, R. Manna, “Enhanced performance of gamma-Fe2O3:WO3 nanocomposite towards selective acetone vapor detection,” Ceramics International, 42 (2016) 7309-7314.
[33]A. K. Dutta, S. K. Maji, B. Adhikary, “Gamma-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant,” Materials Research Bulletin, 49 (2014) 28-34.
[34]Y. Z. Wang, X. B. Fan, S. L. Wang, G. L. Zhang, F. B. Zhang, “Magnetically separable gamma-Fe2O3/TiO2 nanotubes for photodegradation of aqueous methyl orange,” Materials Research Bulletin, 48 (2013) 785-789.
[35]Z. W. Wei, X. C. Wei, S. Y. Wang, D. Y. He, “Preparation and visible-light photocatalytic activity of alpha-Fe2O3/gamma-Fe2O3 magnetic heterophase photocatalyst,” Materials Letters, 118 (2014) 107-110.
[36]K. M. Lee, A. H. Abdullah, “Synthesis and characterization of zinc oxide/maghemite nanocomposites: Influence of heat treatment on photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid,” Materials Science in Semiconductor Processing, 30 (2014) 298-306
[37]W. Wu, X. H. Xiao, S. F. Zhang, T. C. Peng, J. Zhou, F. Ren, C. Z. Jiang, “Synthesis and magnetic properties of maghemite (gamma-Fe2O3) short-nanotubes,” Nanoscale Research Letters, 5 (2010) 1474-1479.
[38]S. M. Zhou, X. T. Zhang, H. C. Gong, B. Zhang, Z. S. Wu, Z. L. Du, S. X. Wu,“Magnetic enhancement of pure gamma Fe2O3 nanochains by chemical vapor deposition,” Journal of Physics: Condensed Matter, 20 (2008) 075217.
[39]N. A. M. Barakat, “Synthesis and characterization of maghemite iron oxide (gamma-Fe2O3) nanofibers: novel semiconductor with magnetic feature,” Journal of Materials Science, 47 (2012) 6237-6245.
[40]L. Y. Li, Y. F. Dong, W. F. Jiang, H. F. Ji, X. J. Li, “High-performance capacitive humidity sensor based on silicon nanoporous pillar array,” Thin Solid Films, 517 (2008) 948-951.
[41]H.M. Martı’nez, N.E. Rincon, J. Torres, J.E. Alfonso, “Porous silicon thin film as CO sensor,” Microelectronics Journal, 39 (2008) 1354-1355.
[42]K. Watanabe, T. Okada, I. Choe, Y. Sato, “Organic vapor sensitivity in a porous silicon device,” Sensors and Actuators B: Chemical, 33 (1996) 194-197.
[43]H. Bahruji, M. Bowker, P. R. Davies, “Photoactivated reaction of water with silicon nanoparticles,” International Journal of Hydrogen Energy, 34 (2009) 8504-8510.
[44]A. Errachid, A. Ivorra, J. Aguilo, R. Villa, N. Zine, J. Bausells, “New technology for multi-sensor silicon needles for biomedical applications,” Sensors and Actuators B: Chemical, 78 (2001) 279-284.
[45]J.K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications,” Solar Energy Materials & Solar Cells, 76 (2003) 431-487.
[46]S. Naama, T. Hadjersi, A. Keffous, G. Nezzal, “CO2 gas sensor based on silicon nanowires modified with metal nanoparticles,” Materials Science in Semiconductor Processing, 38 (2015) 367-372.
[47]M. Righettoni, A. Tricoli, S. E. Pratsinis, “Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis,” Analytical Chemistry, 82 (2010) 3581-3587.
[48]A. A. Iliadis, H. A. Ali, “Properties of fast response room temperature ZnO-Si heterojunction gas nanosensors,” IEEE Transactions on Nanotechnology, 10 (2011) 652-656.
[49]W. J. Yan, M. Hu, P. Zeng, S. Y. Ma, M. D. Li, “Room temperature NO2-sensing properties of WO3 nanoparticles/porous silicon,” Applied Surface Science, 292 (2014) 551-555.
[50]Y. Su, S. O. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, “A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity,” Applied Surface Science, 255 (2008) 2167-2172.
[51]W. T. Sun, Q. Q. Meng, L. Q. Jing, L. M. He, X. D. Fu, “Synthesis of long-lived photogenerated charge carriers of Si-modified alpha-Fe2O3 and its enhanced visible photocatalytic activity,” Materials Research Bulletin, 49 (2014) 331-337.
[52]J. X. Wang, X. W. Sun, Y. Yang, C.M.L. Wu, “N-P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas,” Nanotechnology, 20 (2009) 465501.
[53]T. Araki, T. Sugahara, J. T. Jiu, S. Nagao, M. Nogi, H. Koga, H. Uchida, K. Shinozaki, K. Suganuma, “Cu salt ink formulation for printed electronics using photonic sintering,” Langmuir, 29 (2013) 11192-11197.
[54] 台灣物聯科技 TaiwanIOT, “https://goo.gl/68VAuJ”
[55]Z. K. Liu, Y. A. Chang, “Thermodynamic assessment of the Al-Fe-Si system,” Langmuir, 30 (1999) 1081-1095.
[56]http://goo.gl/TCIEoG 


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔