跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏淞
研究生(外文):Bo-Song Huang
論文名稱:超薄氮化銦鎵發光薄膜
論文名稱(外文):Ultrathin InGaN Light-Emitting Membranes
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
口試委員:林得裕陳思翰
口試委員(外文):Sy-Hann Chen
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:氮化鎵發光二極體薄膜電化學濕式蝕刻
外文關鍵詞:GaN-based light-emitting diodeselectrochemical wet etching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用電化學濕式蝕刻技術進行氮化鎵發光二極體剝離成奈米發光二極體薄膜,我們為了讓蝕刻液能選擇性的側向蝕刻,在試片磊晶過程中成長一層高濃度矽摻雜的氮化鎵犧牲層,後續在晶片上鍍上ITO/Ti/Au保護層,除了在蝕刻時有保護作用外,也提供機械應力幫助剝離,剝離後的試片因為應力得到釋放能帶傾斜程度較平緩,所以經由Raman量測所得連續光譜奈米薄膜(NM-LED,566.3 cm-1) 相較於未處理樣品(ST-LED,571.5cm-1)向短波數移了5.2 cm-1,不同雷射能量激發試片所得光激螢光光譜特性波長也約藍移了4nm(0.86mW),在改變不同注入電流之電激發光光譜可以觀察到奈米發光二極體薄膜之波長為524.4nm,相較與標準樣品之529.9nm有5.5nm藍移(0.025mA)。最後經由光激發螢光遠場光輻射圖形,可以發現剝離後的奈米發光二極體薄膜之激發光在薄膜間全反射後並由試片上方發光,由光激發光遠場光譜得知,奈米薄膜之發散角為97°,小於未處理樣品113°。

In this study, GaN-based light-emitting diodes (LEDs) were lifted-off as a light-emitting diodes membranes by electrochemical wet etching technique. The heavy Si-doped GaN:Si sacrificial layer was inserted into the InGaN LED structure that the lateral wet etching rate had been enhanced. The ITO/Ti/Au layers deposited on p-GaN:Mg layer acted the protection layer and provided the mechanical strain during the lift-off processes. In the Raman spectra, the Raman peak of the NM-LED was observed at 566.3 cm-1 that had a 5.2 cm-1 shifted compared with the non-treated ST-LED (571.5cm-1). In the photoluminescence spectra, the peak wavelength of the NM-LED had a 4.0nm blueshifted compared to the ST-LED. The electroluminescence spectra were measured at 529.9nm for ST-LED and 524.4nm for the NM-LED, respectively. The divergent angle of the NM-LED was 97° that was narrowed compared with the ST-LED (113°).

致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 序論 1
1-1照明技術的歷史 1
1-2半導體發光二極體簡介與原理 3
1-3 晶格應力(Lattice Stress) 5
1-4極化效應(Polarization Effect ) 6
第二章 文獻回顧 8
2-1氮化鎵奈米薄膜文獻回顧 8
2-1-1 磊晶於矽基板上 8
2-1-2 磊晶於砷化鎵基板上 13
2-1-3 磊晶於藍寶石基板上 18
2-2研究動機 27
第三章 實驗步驟與方法 28
3-1 實驗設計與流程 28
3-2 試片製備流程 28
3-3 雷射切割系統 31
3-4 電化學濕式蝕刻系統 32
3-5 光學顯微鏡(Optical Microscope, OM) 33
3-6 多功能聚焦離子束系統(Focused Ion Beam, FIB) 33
3-7光激發螢光(Photoluminescence, PL) 35
3-8 拉曼(Ramam) 36
3-9電激發螢光(Electroluminescence, EL) 37
第四章 實驗結果與討論 38
4-1氮化鎵薄膜剝離 38
4-2 氮化鎵薄膜表面形貌分析 38
4-3 奈米發光二極體(NM-LED)之場發掃描式電子顯微鏡(FE-SEM)形貌分析 42
4-4 奈米發光二極體薄膜厚度分析 45
4-5 奈米發光二極體應力分析 47
4-5-1拉曼(Raman)量測 47
4-5-2光激發光(Photoluminescence)量測 48
4-6 奈米發光二極體之光激發螢光遠場光輻射圖形 53
4-7奈米發光二極體之電激發光光譜量測分析 55
第五章 結論與未來方向 58
5-1結論 58
5-2未來研究方向 59
參考文獻 60


[1]H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
[2]S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, p. L797, 1995.
[3]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005.
[4]Q. Yan, P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, "Effects of strain on the band structure of group-III nitrides," Physical Review B, vol. 90, p. 125118, 2014.
[5]E. T. Yu and E. Manasreh, "Spontaneous and piezoelectric polarization in nitride heterostructures," III-V Nitride Semiconductors: Applications and Devices (Optoelectronic Properties of Semiconductors and Superlattices), pp. 161-193, 2003.
[6]A. Thamm, O. Brandt, J. Ringling, A. Trampert, K. Ploog, O. Mayrock, et al., "Optical properties of heavily doped G a N/(A l, G a) N multiple quantum wells grown on 6 H− S i C (0001) by reactive molecular-beam epitaxy," Physical Review B, vol. 61, p. 16025, 2000.
[7]F. Bernardini, "Spontaneous and piezoelectric polarization: Basic theory vs. practical recipes," Nitride Semiconductor Devices: Principles and Simulation, pp. 49-68, 2007.
[8]T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric effect in group-III nitride-based heterostructures and quantum wells," III-V Nitride Semiconductors Applications and Devices, pp. 414-426, 2003.
[9]K. J. Lee, J. Lee, H. Hwang, Z. J. Reitmeier, R. F. Davis, J. A. Rogers, et al., "A Printable Form of Single‐Crystalline Gallium Nitride for Flexible Optoelectronic Systems," small, vol. 1, pp. 1164-1168, 2005.
[10]H.-s. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, et al., "Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting," Proceedings of the National Academy of Sciences, vol. 108, pp. 10072-10077, 2011.
[11]X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, "High efficiency membrane light emitting diode fabricated by back wafer thinning technique," Applied Physics Letters, vol. 105, p. 031109, 2014.
[12]S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, et al., "Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays," science, vol. 325, pp. 977-981, 2009.
[13]C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, and D. K. Sadana, "Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics," Nature communications, vol. 4, p. 1577, 2013.
[14]A. Van Niftrik, J. Schermer, G. Bauhuis, P. Mulder, P. Larsen, and J. Kelly, "A diffusion and reaction related model of the epitaxial lift-off process," Journal of the Electrochemical Society, vol. 154, pp. D629-D635, 2007.
[15]J. Schermer, P. Mulder, G. Bauhuis, M. Voncken, J. Van Deelen, E. Haverkamp, et al., "Epitaxial Lift‐Off for large area thin film III/V devices," physica status solidi (a), vol. 202, pp. 501-508, 2005.
[16]M. Voncken, J. Schermer, A. Van Niftrik, G. Bauhuis, P. Mulder, P. Larsen, et al., "Etching AlAs with HF for epitaxial lift-off applications," Journal of the Electrochemical Society, vol. 151, pp. G347-G352, 2004.
[17]J. Schermer, G. Bauhuis, P. Mulder, W. Meulemeesters, E. Haverkamp, M. Voncken, et al., "High rate epitaxial lift-off of InGaP films from GaAs substrates," Applied Physics Letters, vol. 76, pp. 2131-2133, 2000.
[18]M. Voncken, J. Schermer, G. Maduro, G. Bauhuis, P. Mulder, and P. Larsen, "Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process," Materials Science and Engineering: B, vol. 95, pp. 242-248, 2002.
[19]M. Kneissl, W. S. Wong, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, "CW InGaN multiple-quantum-well laser diodes on copper and diamond substrates by laser lift-off," Materials Science and Engineering: B, vol. 93, pp. 68-72, 2002.
[20]R. Martin, H. Kim, Y. Cho, P. Edwards, I. Watson, T. Sands, et al., "GaN microcavities formed by laser lift-off and plasma etching," Materials Science and Engineering: B, vol. 93, pp. 98-101, 2002.
[21]J. Chun, Y. Hwang, Y.-S. Choi, T. Jeong, J. H. Baek, H. C. Ko, et al., "Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing," Photonics Technology Letters, IEEE, vol. 24, pp. 2115-2118, 2012.
[22]H. Xiao, J. Cui, D. Cao, Q. Gao, J. Liu, and J. Ma, "Self-standing nanoporous GaN membranes fabricated by UV-assisted electrochemical anodization," Materials Letters, vol. 145, pp. 304-307, 2015.
[23]J.-H. Seo, J. Li, J. Lee, S. Gong, J. Lin, H. Jiang, et al., "A Simplified Method of Making Flexible Blue LEDs on a Plastic Substrate," Photonics Journal, IEEE, vol. 7, pp. 1-7, 2015.
[24]E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si (1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 155317, 2008.
[25]L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, "Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy," Journal of Applied Physics, vol. 108, p. 073522, 2010.
[26]H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate," Thin Solid Films, vol. 163, pp. 415-420, 1988.
[27]A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993.
[28]L. Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, et al., "3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium," Nature communications, vol. 5, 2014.
[29]J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, "Heterogeneously Integrated Optoelectronic Devices Enabled by Micro‐Transfer Printing," Advanced Optical Materials, vol. 3, pp. 1313-1335, 2015.
[30]H. Ning, N. A. Krueger, X. Sheng, H. Keum, C. Zhang, K. D. Choquette, et al., "Transfer-printing of tunable porous silicon microcavities with embedded emitters," ACS Photonics, vol. 1, pp. 1144-1150, 2014.
[31]X. Li, D. Bai, Z. Shi, G. Zhu, M. Zhang, Z. Cao, et al., "Thickness-Dependent Performance of a Free-Standing Membrane LED," Photonics Journal, IEEE, vol. 7, pp. 1-7, 2015.
[32]Z. Shi, X. Li, G. Zhu, Z. Wang, P. Grünberg, H. Zhu, et al., "Characteristics of GaN-based LED fabricated on a GaN-on-silicon platform," Applied Physics Express, vol. 7, p. 082102, 2014.
[33]I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano letters, vol. 10, pp. 3927-3932, 2010.
[34]S. H. Park, G. Yuan, D. Chen, K. Xiong, J. Song, B. Leung, et al., "Wide Bandgap III-Nitride Nanomembranes for Optoelectronic Applications," Nano letters, vol. 14, pp. 4293-4298, 2014.
[35]J. Chun, Y. Hwang, Y.-S. Choi, J.-J. Kim, T. Jeong, J. H. Baek, et al., "Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer," Scripta Materialia, vol. 77, pp. 13-16, 2014.
[36]J. Park, K. M. Song, S.-R. Jeon, J. H. Baek, and S.-W. Ryu, "Doping selective lateral electrochemical etching of GaN for chemical lift-off," Applied Physics Letters, vol. 94, p. 1907, 2009.
[37]H. M. Ng, N. G. Weimann, and A. Chowdhury, "GaN nanotip pyramids formed by anisotropic etching," Journal of applied physics, vol. 94, pp. 650-653, 2003.
[38]N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," Journal of Applied Physics, vol. 83, pp. 3656-3659, 1998.
[39]M.-S. Lin, C.-F. Lin, W.-C. Huang, G.-M. Wang, B.-C. Shieh, J.-J. Dai, et al., "Chemical–Mechanical Lift-Off Process for InGaN Epitaxial Layers," Applied physics express, vol. 4, p. 062101, 2011.
[40]T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, et al., "Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride," Journal of applied physics, vol. 75, pp. 1098-1101, 1994.
[41]B. Ryu, W. Z. Tawfik, S.-J. Bae, J. S. Ha, S.-W. Ryu, H. S. Choi, et al., "Uni-axial external stress effect on green InGaN/GaN multi-quantum-well light-emitting diodes," Journal of Physics D: Applied Physics, vol. 46, p. 435103, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top