|
[1]H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907. [2]S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, vol. 34, p. L797, 1995. [3]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005. [4]Q. Yan, P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, "Effects of strain on the band structure of group-III nitrides," Physical Review B, vol. 90, p. 125118, 2014. [5]E. T. Yu and E. Manasreh, "Spontaneous and piezoelectric polarization in nitride heterostructures," III-V Nitride Semiconductors: Applications and Devices (Optoelectronic Properties of Semiconductors and Superlattices), pp. 161-193, 2003. [6]A. Thamm, O. Brandt, J. Ringling, A. Trampert, K. Ploog, O. Mayrock, et al., "Optical properties of heavily doped G a N/(A l, G a) N multiple quantum wells grown on 6 H− S i C (0001) by reactive molecular-beam epitaxy," Physical Review B, vol. 61, p. 16025, 2000. [7]F. Bernardini, "Spontaneous and piezoelectric polarization: Basic theory vs. practical recipes," Nitride Semiconductor Devices: Principles and Simulation, pp. 49-68, 2007. [8]T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, "Piezoelectric effect in group-III nitride-based heterostructures and quantum wells," III-V Nitride Semiconductors Applications and Devices, pp. 414-426, 2003. [9]K. J. Lee, J. Lee, H. Hwang, Z. J. Reitmeier, R. F. Davis, J. A. Rogers, et al., "A Printable Form of Single‐Crystalline Gallium Nitride for Flexible Optoelectronic Systems," small, vol. 1, pp. 1164-1168, 2005. [10]H.-s. Kim, E. Brueckner, J. Song, Y. Li, S. Kim, C. Lu, et al., "Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting," Proceedings of the National Academy of Sciences, vol. 108, pp. 10072-10077, 2011. [11]X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, and Y. Wang, "High efficiency membrane light emitting diode fabricated by back wafer thinning technique," Applied Physics Letters, vol. 105, p. 031109, 2014. [12]S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl, D.-H. Kim, et al., "Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays," science, vol. 325, pp. 977-981, 2009. [13]C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, and D. K. Sadana, "Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics," Nature communications, vol. 4, p. 1577, 2013. [14]A. Van Niftrik, J. Schermer, G. Bauhuis, P. Mulder, P. Larsen, and J. Kelly, "A diffusion and reaction related model of the epitaxial lift-off process," Journal of the Electrochemical Society, vol. 154, pp. D629-D635, 2007. [15]J. Schermer, P. Mulder, G. Bauhuis, M. Voncken, J. Van Deelen, E. Haverkamp, et al., "Epitaxial Lift‐Off for large area thin film III/V devices," physica status solidi (a), vol. 202, pp. 501-508, 2005. [16]M. Voncken, J. Schermer, A. Van Niftrik, G. Bauhuis, P. Mulder, P. Larsen, et al., "Etching AlAs with HF for epitaxial lift-off applications," Journal of the Electrochemical Society, vol. 151, pp. G347-G352, 2004. [17]J. Schermer, G. Bauhuis, P. Mulder, W. Meulemeesters, E. Haverkamp, M. Voncken, et al., "High rate epitaxial lift-off of InGaP films from GaAs substrates," Applied Physics Letters, vol. 76, pp. 2131-2133, 2000. [18]M. Voncken, J. Schermer, G. Maduro, G. Bauhuis, P. Mulder, and P. Larsen, "Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process," Materials Science and Engineering: B, vol. 95, pp. 242-248, 2002. [19]M. Kneissl, W. S. Wong, D. W. Treat, M. Teepe, N. Miyashita, and N. M. Johnson, "CW InGaN multiple-quantum-well laser diodes on copper and diamond substrates by laser lift-off," Materials Science and Engineering: B, vol. 93, pp. 68-72, 2002. [20]R. Martin, H. Kim, Y. Cho, P. Edwards, I. Watson, T. Sands, et al., "GaN microcavities formed by laser lift-off and plasma etching," Materials Science and Engineering: B, vol. 93, pp. 98-101, 2002. [21]J. Chun, Y. Hwang, Y.-S. Choi, T. Jeong, J. H. Baek, H. C. Ko, et al., "Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing," Photonics Technology Letters, IEEE, vol. 24, pp. 2115-2118, 2012. [22]H. Xiao, J. Cui, D. Cao, Q. Gao, J. Liu, and J. Ma, "Self-standing nanoporous GaN membranes fabricated by UV-assisted electrochemical anodization," Materials Letters, vol. 145, pp. 304-307, 2015. [23]J.-H. Seo, J. Li, J. Lee, S. Gong, J. Lin, H. Jiang, et al., "A Simplified Method of Making Flexible Blue LEDs on a Plastic Substrate," Photonics Journal, IEEE, vol. 7, pp. 1-7, 2015. [24]E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si (1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 155317, 2008. [25]L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, "Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy," Journal of Applied Physics, vol. 108, p. 073522, 2010. [26]H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate," Thin Solid Films, vol. 163, pp. 415-420, 1988. [27]A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993. [28]L. Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, et al., "3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium," Nature communications, vol. 5, 2014. [29]J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, "Heterogeneously Integrated Optoelectronic Devices Enabled by Micro‐Transfer Printing," Advanced Optical Materials, vol. 3, pp. 1313-1335, 2015. [30]H. Ning, N. A. Krueger, X. Sheng, H. Keum, C. Zhang, K. D. Choquette, et al., "Transfer-printing of tunable porous silicon microcavities with embedded emitters," ACS Photonics, vol. 1, pp. 1144-1150, 2014. [31]X. Li, D. Bai, Z. Shi, G. Zhu, M. Zhang, Z. Cao, et al., "Thickness-Dependent Performance of a Free-Standing Membrane LED," Photonics Journal, IEEE, vol. 7, pp. 1-7, 2015. [32]Z. Shi, X. Li, G. Zhu, Z. Wang, P. Grünberg, H. Zhu, et al., "Characteristics of GaN-based LED fabricated on a GaN-on-silicon platform," Applied Physics Express, vol. 7, p. 082102, 2014. [33]I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano letters, vol. 10, pp. 3927-3932, 2010. [34]S. H. Park, G. Yuan, D. Chen, K. Xiong, J. Song, B. Leung, et al., "Wide Bandgap III-Nitride Nanomembranes for Optoelectronic Applications," Nano letters, vol. 14, pp. 4293-4298, 2014. [35]J. Chun, Y. Hwang, Y.-S. Choi, J.-J. Kim, T. Jeong, J. H. Baek, et al., "Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer," Scripta Materialia, vol. 77, pp. 13-16, 2014. [36]J. Park, K. M. Song, S.-R. Jeon, J. H. Baek, and S.-W. Ryu, "Doping selective lateral electrochemical etching of GaN for chemical lift-off," Applied Physics Letters, vol. 94, p. 1907, 2009. [37]H. M. Ng, N. G. Weimann, and A. Chowdhury, "GaN nanotip pyramids formed by anisotropic etching," Journal of applied physics, vol. 94, pp. 650-653, 2003. [38]N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," Journal of Applied Physics, vol. 83, pp. 3656-3659, 1998. [39]M.-S. Lin, C.-F. Lin, W.-C. Huang, G.-M. Wang, B.-C. Shieh, J.-J. Dai, et al., "Chemical–Mechanical Lift-Off Process for InGaN Epitaxial Layers," Applied physics express, vol. 4, p. 062101, 2011. [40]T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, et al., "Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride," Journal of applied physics, vol. 75, pp. 1098-1101, 1994. [41]B. Ryu, W. Z. Tawfik, S.-J. Bae, J. S. Ha, S.-W. Ryu, H. S. Choi, et al., "Uni-axial external stress effect on green InGaN/GaN multi-quantum-well light-emitting diodes," Journal of Physics D: Applied Physics, vol. 46, p. 435103, 2013.
|