(3.236.214.19) 您好!臺灣時間:2021/05/10 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許尊堯
研究生(外文):Zun-Yao Syu
論文名稱:具多孔隙反射鏡之氮化鋁鎵紫外光發光二極體
論文名稱(外文):Ultraviolet AlGaN Light-Emitting Diodes with a nanoporous reflectors
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
口試委員:林得裕陳思翰
口試委員(外文):Der-Yuh LinSy-Hann Chen
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:46
中文關鍵詞:布拉格反射鏡氮化鋁鎵發光二極體多孔隙
外文關鍵詞:Distributed Bragg ReflctorAlGaN light emitting diodesnanoporous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要希望設計出具有奈米多孔隙結構的布拉格反射鏡在波長約360nm左右的紫外光發光二極體元件,論文分兩部分的實驗來討論,首先探討了氮化鋁鎵材料之布拉格反射鏡,因此調整不同的鋁元素組成比例,分別以6%、8.5%、14%及17%四種比例觀察,觀察其側蝕後的孔隙大小、反射率及光激發光光譜,觀察到8.5%鋁含量的樣品,不會因為晶格不匹配而形成crack來影響我們的電化學蝕刻製程,並觀察到側蝕後有較適合的孔隙大小來提高我們布拉格反射鏡中兩種材料的折射率差值,且有高反射率涵蓋到我們LED的發光波長,因此第一部份的實驗結論中,我們選擇以鋁含量8.5%的鋁元素組成比例來探討第二部份的實驗。
第二部份的實驗中,製造了發光波長在361nm的紫外光發光二極體且具有12對未摻雜/奈米多孔隙氮化鋁鎵布拉格反射鏡的樣品,反射鏡中心波長在380nm,反射率強度約在77.2%, 截止帶為24nm,此結構經過光性及電性分析,明顯能有效提升發光效率及提高軸向方向強度,PL和EL的強度皆有兩倍提升,發散角也縮小大約25度且軸向強度有提升。


In this thesis, we designed to fabrication the AlGaN-based light emitting diodes (LED) at 360 nm with embedded the nanoporous structure that the experiments had divided into two parts. In the first part, the AlGaN distributed bragg reflector (DBR) with different aluminum contents were designed and fabricated. The porous size and reflectivity of the nanoporous AlGaN reflectors were analyzed by varying the Al content from 6%, 8.5%, 14%, to 17% in AlGaN DBR samples. The crack surfaces of the AlGaN reflectors were caused by the lattice mismatch that will not influence the electrochemical etching process. High light reflectivity, large refractive index different, and wide stopband width were observed in the porous AlGaN DBR structure with 8.5% Al content. The AlGaN-based UV-LED with 8.5% nanoporous AlGaN DBR structure were designed to analyzed the optical properties of the UV-LED structures.
In the second part, a 361 nm UV-LED with embedded the twelve pairs of undoped / noporous AlGaN DBR were designed and fabricated. The center wavelength, peak reflectivity, and stop-band width of the UC-LED with a nanoporous AlGaN DBR structure were measured at 380 nm, 77.2%, and 24 nm, respectively. High light reflectance and high light extraction efficiency were observed in the treated DBR structure with nanoporous AlGaN-based DBR structure.


致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 序論 1
1-1 發光二極體介紹 1
1-2紫外光發光二極體介紹 2
1-3布拉格反射鏡介紹 3
1-4 研究動機 4
第二章 文獻回顧 5
2-1布拉格反射鏡研究(DBR) 5
2-2 雷射切割製程(Laser scribing processing) 11
2-3 電化學溼式蝕刻製程 (Mechanism of electrochemical etching process) 15
第三章實驗步驟與方法 19
3-1 實驗設計與流程 19
3-2 試片製備流程 21
3-3實驗設備儀器介紹 22
3-3.1雷射切割系統 22
3-3.2電化學蝕刻 23
3-4分析儀器 24
3-4.1 光學顯微鏡(Optical microscope, OM) 24
3-4.2 多功能聚焦離子束系統(Focused Ion Beam, FIB) 25
3-4.3 電激發螢光光譜(Electroluminescence, EL) 26
3-4.4 光激發螢光光譜(Photoluminescence, PL) 27
3-4.5 發散角量測(Radiation pattern measurement) 28
第四章 實驗結果與討論 29
4-1不同鋁含量樣品 29
4-1.1不同鋁含量樣品之光激發螢光光譜量測分析 30
4-1.2不同鋁含量樣品之光學顯微鏡(OM)表面形貌分析 31
4-1.3不同鋁含量樣品之反射率光譜量測分析 32
4-1.4不同鋁含量樣品之場發掃描式電子顯微鏡(FE-SEM)形貌分析 33
4-2溼式電化學蝕刻發光二極體元件(EC-LED) 35
4-2.1 EC-LED光學顯微鏡(OM)表面形貌分析 35
4-2.2 EC-LED場發掃描式電子顯微鏡(FE-SEM)形貌分析 36
4-2.3 EC-LED反射鏡量測 37
4-2.4 EC-LED光激發光光譜量測 39
4-2.5 EC-LED光激發螢光遠場光輻射圖形 40
4-2.6 EC-LED電激發螢光光譜量測 41
第五章 結論 42
5 實驗結論 42
參考文獻 43



[1]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005.
[2]H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, "Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 53, p. 100209, 2014.
[3]王军喜, 闫建昌, 郭亚楠, 张韵, 田迎冬, 朱邵歆, et al., "氮化物深紫外 LED 研究新进展," 中国科学: 物理学, 力学, 天文学, pp. 32-51, 2015.
[4]Grant R. Fowles, Introduction to Modern Optics, 2nd ed, Holt, Rinehart and Winston, Inc., pp. 100, 1975
[5]P. S. Yeh, M.-C. Yu, J.-H. Lin, C.-C. Huang, Y.-C. Liao, D.-W. Lin, et al., "GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer," IEEE Photonics Technology Letters, vol. 26, pp. 2488-2491, 2014.
[6]J. Dorsaz, J.-F. Carlin, S. Gradecak, and M. Ilegems, "Progress in AlInN-GaN Bragg reflectors: Application to a microcavity light emitting diode," Journal of applied physics, vol. 97, pp. 084505-084505, 2005.
[7]N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, "Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire," Applied Physics Letters, vol. 76, pp. 1804-1806, 2000.
[8]Y.-C. Chu, Y.-K. Su, C.-H. Chao, and W.-Y. Yeh, "Size-Dependent Resonant Cavity Light-Emitting Diodes for Collimating Concerns," Japanese Journal of Applied Physics, vol. 52, p. 01AG03, 2013.
[9]X.-L. Hu, W.-J. Liu, G.-E. Weng, J.-Y. Zhang, X.-Q. Lv, M.-M. Liang, et al., "Fabrication and characterization of high-quality factor GaN-based resonant-cavity blue light-emitting diodes," Photonics Technology Letters, IEEE, vol. 24, pp. 1472-1474, 2012.
[10]T. Moudakir, F. Genty, M. Kunzer, P. Borner, T. Passow, S. Suresh, et al., "Design, Fabrication, and Characterization of Near-Milliwatt-Power RCLEDs Emitting at 390 nm," Photonics Journal, IEEE, vol. 5, pp. 8400709-8400709, 2013.
[11]S.-Y. Kuo, K.-B. Hong, and T.-C. Lu, "Enhanced Light Output of UVA GaN Vertical LEDs With Novel DBR Mirrors," Quantum Electronics, IEEE Journal of, vol. 51, pp. 1-5, 2015.
[12]K. Baik, B. Min, J. Kim, H. Kim, C. Sone, Y. Park, et al., "Light output enhancement of GaN-based flip-chip light-emitting diodes fabricated with SiO2/TiO2 distributed Bragg reflector coated on mesa sidewall," Journal of Applied Physics, vol. 108, p. 063105, 2010.
[13]Y. Yang, Y. Lin, P. Xiang, M. Liu, W. Chen, X. Han, et al., "Vertical-conducting InGaN/GaN multiple quantum wells LEDs with AlN/GaN distributed Bragg reflectors on Si (111) substrate," Applied Physics Express, vol. 7, p. 042102, 2014.
[14]R. Moser, C. Goßler, M. Kunzer, K. Köhler, W. Pletschen, J. Brunne, et al., "Laser direct writing of GaN-based light-emitting diodes—The suitable laser source for mesa definition," Journal of Applied Physics, vol. 113, p. 103107, 2013.
[15]R. Moser, M. Kunzer, C. Goßler, K. Köhler, W. Pletschen, U. T. Schwarz, et al., "Laser processing of gallium nitride–based light-emitting diodes with ultraviolet picosecond laser pulses," Optical Engineering, vol. 51, pp. 114301-114301, 2012.
[16]D. Chen, H. Xiao, and J. Han, "Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism," Journal of Applied Physics, vol. 112, p. 064303, 2012.
[17]D.-W. Jeon, H.-S. Cho, J.-W. Park, L.-W. Jang, M. Kim, J.-W. Jeon, et al., "Separation of laterally overgrown GaN template by using selective electrochemical etching," Journal of Alloys and Compounds, vol. 542, pp. 59-62, 2012.
[18]S. Cheah, S. Lee, S. Ng, F. Yam, H. A. Hassan, and Z. Hassan, "Surface phonon polariton characteristic of honeycomb nanoporous GaN thin films," Applied Physics Letters, vol. 102, p. 101601, 2013.
[19]C. Zhang, S. H. Park, D. Chen, D.-W. Lin, W. Xiong, H.-C. Kuo, et al., "Mesoporous GaN for Photonic Engineering- Highly Reflective GaN Mirrors as an Example," ACS Photonics, vol. 2, pp. 980-986, 2015.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔