(34.237.52.11) 您好!臺灣時間:2021/05/18 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳奎廷
研究生(外文):Kuei-Ting Chen
論文名稱:氮化銦鎵發光元件之效率提升技術開發
論文名稱(外文):Efficiency Enhancement Technologies for InGaN Light Emitting Diodes
指導教授:林佳鋒林佳鋒引用關係
口試委員:紀國鐘洪瑞華蔡政達賴韋志陳思翰
口試日期:2016-06-02
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:氮化銦鎵發光二極體氧化圖案化藍寶石壓電場
外文關鍵詞:InGaNLight Emitting Diodeoxidationpattern sapphirepiezoelectric (PZ) field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文架構為二個部分,分別利用光輔助電化學氧化技術製作具圖形化多孔隙奈米結構與氧化鎵結構,以及不同形貌之圖案化藍寶石基板,來提升發光二極體之外部量子效率。
第一部分是利用光輔助電化學氧化技術於P型氮化鎵表面製作具微型孔洞陣列多孔隙奈米結構之發光二極體,比較在20mA操作電流下的標準及微型孔洞陣列多孔隙奈米結構發光二極體電激發螢光光譜(操作電壓)分別為462.2nm (3.47V)與462.0nm (3.68V),後者操作電壓偏高乃源自於多孔隙奈米結構P型氮化鎵表面區域具較高之接觸阻抗所致,乾式蝕刻製程後同步於發光二極體元件之N型氮化鎵表面形成環狀微結構,因此於光取出表面有較多的光散射效應,利用微型孔洞陣列多孔隙奈米結構製程技術於發光二極體元件中,其光強度可有40.5%提升效應。再利用光輔助電化學法於未摻雜氮化鎵模板上製作微型圓盤陣列氧化鎵,後以有機金屬化學氣相磊晶在此結構上成長氮化銦鎵發光二極體結構;由掃描式電子顯微鏡分析,此圖型化氧化鎵結構於二次磊晶成長期作為側向磊晶成長所需的遮罩,並且其頂部在磊晶後對應產生之孔隙結構於發光元件中亦作為提升光取出率散射中心點,在20mA操作電流下,兩種發光二極體對應之操作電壓相同皆為3.5V,圖型化氧化鎵結構發光二極體則有28%亮度提升,另根據光學分析結果顯示,埋入此結構於氮化銦鎵發光二極體中亦可減緩氮化銦鎵發光層之壓電場並提升內部量子效率。依據以上分析與結果,光輔助電化學氧化技術可應用於製作氮化物發光二極體以提升元件外部量子效率。
第二部分則為氮化銦鎵發光二極體成長於truncated pyramid (TP)型與pyramid (P)型兩種不同形貌圖案化藍寶石基板,並且分析比較兩種元件發光層之內部量子效率及壓電場效應;於外加逆向偏壓光激發螢光光譜分析中,P-LED及TP-LED的能帶平坦偏壓值分別為-8V及-12V,顯示於P-LED結構發光層中有較低之壓電場,另由內部量子效率分析,P-LED及TP-LED所測得之內部量子效率數值分別為86%及72%;由此實驗分析結果得知,於P型圖案化藍寶石基板上成長氮化銦鎵發光二極體結構,可獲得較佳內部量子效率、低壓電性極化發光層及高光取出效率之發光二極體元件特性。


誌謝.......................................................i
摘要......................................................ii
Abstract..................................................iv
Contents..................................................vi
List of Figures.........................................viii
Chapter 1 Introduction.....................................1
1.1 Background of Light-Emitting Diodes................1
1.2 III-V Semiconductor................................1
1.3 Review of photoelectrochemical oxidation process...2
1.4 The high brightness technologies of GaN-based LEDs.3
1.4.1 The texture of light emission surface................3
1.4.2 Regrowth of the InGaN LEDs on treated GaN template...4
1.4.3 Patterned-sapphire substrate.........................6
1.5 Organization of This Dissertation..................7
Chapter 2 Experiment.......................................9
2.1 MOCVD Growth of the InGaN Light-Emitting Diodes....9
2.2 Device Fabrication................................10
2.3 PEC oxidation process.............................10
2.4 CharacterizationTechniques........................11
2.4.1 The Optical Microscopy (OM).........................11
2.4.2 The Field Emission Scanning Electron Microscopy (FE-SEM)......................................................11
2.4.3 The Micro-Photoluminescence Spectroscopy (μ-PL)....11
2.4.4 The Electroluminescence (EL)........................12
2.4.5 The Beam Profiler...................................13
2.4.6 The Radiation Pattern Measurement...................13
Chapter 3 InGaN-Based Light-Emitting Diodes With Nanoporus Microhole arrays..........................................17
3.1 General Introduction..............................17
3.2 Device Fabrication of InGaN-based Light Emitting diodes with the pattern-nanoporous p-type GaN:Mg surface..17
3.3 Results and discussion............................19
3.4 Summary...........................................21
Chapter 4 Blue Light-Emitting Diodes with Embedded Native Gallium Oxide Pattern structure...........................26
4.1 General Introduction..............................26
4.2 Device Fabrication of InGaN/GaN MQW structures on an Embedded Native Gallium Oxide Pattern Template.........26
4.3 Results and discussion............................28
4.4 Summary...........................................30
Chapter 5 Reducing a Piezoelectric Field in InGaN Active Layers by Varying Sapphire Substrates.....................34
5.1 General Introduction..............................34
5.2 Device Fabrication of InGaN Light Emitting Diodes with TP- and P- patterned sapphire substrates.............35
5.3 Results and discussion............................36
5.4 Summary...........................................42
Chapter 6 Conclusions.....................................47
References................................................49
About the Author..........................................58
Publication Lists.........................................59


[1]S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: the complete story: Springer Science & Business Media, 2013.
[2]M. A. Khan, J. Kuznia, A. Bhattarai, and D.Olson, "Metal semiconductor field effect transistor based on single crystal GaN," Applied Physics Letters, vol. 62, pp. 1786-1787, 1993.
[3]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005.
[4]C.-T. Lee, U.-Z. Yang, C.-S. Lee, and P.-S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2029–2031, Oct. 1, 2006.
[5]C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, et al., “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Appl. Phys. Lett., vol. 93, no. 20, pp. 203103-1–203103-3, Nov. 2008.
[6]C. H. Chiu, C. C. Lin, H. V. Han, C. Y. Liu, Y. H. Chen, Y. P. Lan, et al., “High efficiency GaN-based light-emitting diodes with embedded air voids/SiO2 nano masks,” Nanotechnology, vol. 23, no. 4, pp. 045303-1–045303-7, Jan. 2012.
[7]C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, et al., “GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1275–1280, Jul. 2009.
[8]C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, et al., “Enhanced light output power in InGaN light emitting diodes by fabricating inclined undercut structure,” J. Electrochem. Soc., vol. 153, no. 12, pp. G1020–G1024, Dec. 2006.
[9]J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao“Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates” IEEE Photon. Technol. Lett. vol. 20, no. 13, pp. 1193–1195, 2008.
[10]C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides” IEEE Photon. Technol. Lett. vol. 18, no. 23, pp. 2517–2519, 2006.
[11]C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo “Nitride-Based LEDs With Textured Side Walls” IEEE Photon. Technol. Lett. vol. 16, no. 3, pp. 750–752, 2004.
[12]Hyunsoo Kim, Jaehee Cho, Jeong Wook Lee, Sukho Yoon, Hyungkun Kim, Cheolsoo Sone, and Yongjo Park, Tae-Yeon Seong “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers” Appl. Phys. Lett. vol. 90, pp. 161110, 2007.
[13]J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, J. R. Wendt and J. A. Simmons, M. M. Sigalas “InGaNOGaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures” Appl. Phys. Lett. vol. 84, pp. 3885, 2004.
[14]Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Park, Sang 94 Hoon Kim and Ki-Dong Lee “Enhanced light extraction from GaN-based green light-emitting diode with photonic crysta” Appl. Phys. Lett. vol. 91, pp. 181109, 2007.
[15]Aurélien David, Brendan Moran, Kelly McGroddy, Elison Matioli, Evelyn L. Hu, Steven P. DenBaars, Shuji Nakamura, and Claude Weisbuch “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth” Appl. Phys. Lett. vol. 92, pp. 113514, 2008.
[16]S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes” Appl. Phys. Lett. vol. 87, pp. 011111, 2005.
[17]L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C.Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride” Appl. Phys. Lett., vol. 76, pp. 511, 2000.
[18]T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions” Appl. Phys. Lett. vol. 76, pp. 3923, 2000.
[19]J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee,” Bias-assisted photoelectrochemical oxidation of n-GaN in H2O” Appl. Phys. Lett. vol. 81, pp. 1029, 2002.
[20]D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, J. S. Yun, and K. S. Chung, “Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy” Appl. Phys. Lett. vol. 78, pp. 1309, 2001.
[21]Chia-Feng Lin, Jing-Hui Zheng, Zhong-Jie Yang, Jing-Jie Dai, Der-Yuh Lin, Chung-Ying Chang, Zhao-Xu Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure” Appl. Phys. Lett. vol. 88, pp. 083121, 2006.
[22]Jan-Tian Lian, Jian-Huei Ye, Jian-Ye Liou, Kai-Chieh Tsao, Nai-Chuan Chen and Tai-Yuan Lin, " Improved light extraction efficiency on GaN LEDs By an In2O3 nan0-cone film" Journal of Materials Chemistry C, vol. 1, pp. 6559-6564, 2013.
[23]Hyun Jeong, Rafael Salas-Montiel, and Mun Seok Jeong, et al., " Optimal length of ZnO nanorods for improving the light-extraction efficiency of blue InGaN light-emitting diodes," Opt. Express, vol. 23, p. 23195-23207, 2015.
[24]Dae-Woo Jeon, Lee-Woon Jang, Han-Su Cho, Kyeong-Seob Kwon, Myeong-Ji Dong, A. Y. Polyakov, Jin-Woo Ju, Tae-Hoon Chung, Jong Hyeob Baek, and In-Hwan Lee " Enhanced optical output performance in InGaN/GaN light-emitting diode embedded with SiO2 nanoparticles," Opt. Express, vol. 22, p. 21454-21459, 2014.
[25]Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim and Seong-Ju Park, " Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers,"Opt. Express, vol. 22, pp. A1164-A1173, 2006.
[26]Vin-Cent Su, Po-Hsun Chen, Ray-Ming Lin, Ming-Lun Lee, Yao-Hong You, Chung-I Ho, Yi-Chi Chen, Wei-Fan Chen, and Chieh-Hsiung Kuan, " Suppressed quantum-confined Stark effect in InGaN-based LEDs with nano-sized patterned sapphire substrates," Opt. Express, vol. 21, pp. 30065-30073, 2013.
[27]Kyu-Seung Lee, Isnaeni, Yang-Seok Yoo, Jae-Hoon Lee, Yong-Chun Kim, and Yong-Hoon Cho, " Influence of defect reduction and strain relaxation on carrier dynamics in InGaN-based light-emitting diodes on cone-shaped patterned sapphire substrates," J. Appl. Phys., vol. 113, p. 173512, 2013.
[28]J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee, "Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire," IEEE Photon. Technol. Lett., vol.20, no. 18, pp. 1563–1565,Sep. 2008.
[29]M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G. Y. Jung, S. J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett., vol. 92, no. 25, pp. 251 110-1–251 110-3, Jun. 2008.
[30]D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. H. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light emitting diodes with holographically generated twodimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, no. 20, pp. 203 508-1–203 508-3, Nov. 2005.
[31]S. H. Kim, K. D. Le, J. Y. Kim, M. K. Kwon, and S. J. Park, “Fabrication of photonic crystal by nanoimprint lithography,” Nanotechnology, vol. 18, pp. 055 306-1–055 306-5, Jan. 2007.
[32]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” Appl. Phys. Lett., vol. 90, no. 14, pp. 142 115-1–142 115-3, Apr. 2007.
[33]M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yi, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaNbased LEDs by SiO2 nanosphere lithography,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 658–660, Jul. 2008.
[34]S. K. Kim, H. K. Cho, D. K. Bae, J. S. Lee, H. G. Park, and Y. H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned highindex layer,” Appl. Phys. Lett., vol. 92, no. 24, pp. 241 118-1–241 118-3, Jun. 2008.
[35]H. Y. Lee, X. Y. Huang, and C. T. Lee, “Light output enhancement of GaN-based roughened LEDs using bias-assisted photoelectrochemical etching method,” J. Electrochem. Soc., vol. 155, no. 10, pp. H707–H709, Aug. 2008.
[36]D. S. Liu, T. W. Lin, B. W. Huang, F. S. Juang, P. H. Lei, and C. Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett., vol. 94, no. 14, pp. 143502-1–143502-3, Apr. 2009.
[37]H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 95, no. 22, pp. 221110-1–221110-3, Nov. 2009.
[38]H. K. Kim, H. G. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Enhanced light output power of GaNbased light emitting diodes with overcut sideholes formed by wet etching,” Solid State Electron., vol. 54, no. 5, pp. 575–578, May 2010.
[39]J. Park, J. K. Oh, K. W. Kwon, Y. H. Kim, S. S. Jo, J. K. Lee, and S.W. Ryu, “Improved light output of photonic crystal light-emitting diode fabricated by anodized aluminum oxide nano-patterns,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 321–323, Feb. 2008.
[40]J. W. Lee, C. Sone, Y. Park, S.-N. Lee, J.-H. Ryou, R. D. Dupuis, C.-H. Hong, and H. Kim, “High efficiency GaN-based light-emitting diodes fabricated on dielectric mask-embedded structures,” Appl. Phys. Lett., vol. 95, no. 1, pp. 011108-1–011108-3, Jul. 2009.
[41]T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 37, no. 7B, pp. L839–L841, Jul. 1998.
[42]C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4304–4306, Jun. 2003.
[43]C. F. Lin, K. T. Chen, C. M. Lin, and C. C. Yang, “InGaN-based light emitting diodes with nanoporous microhole structures,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 1057–1059, Oct. 2009.
[44]C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga Oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, no. 3, pp. 282–286, Mar. 2005.
[45]W.-C. Lai, Y.-Y. Yang, L.-C. Peng, S.-W. Yang, Y.-R. Lin, and J.-K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures,” Appl. Phys. Lett., vol. 97, no. 8, p. 081 103, Aug. 2010.
[46]K. Y. Zang, Y. D. Wang, H. F. Liu, and S. J. Chua, “Structural and optical properties of InGaN/GaN multiple quantum wells grown on nano-air bridged GaN template,” Appl. Phys. Lett., vol. 89, no. 17, pp. 171921-1–171921-3, Oct. 2006.
[47]C. F. Lin, C. C. Yang, J. F. Chien, C. M. Lin, K. T. Chen, and S. K. Yen, “Fabrication of the InGaN-based light-emitting diodes through a photoelectrochemical process,” IEEE Photon. Technol. Lett., vol. 21, no. 16, pp. 1142–1144, Aug. 2009.
[48]T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett., vol. 73, no. 12, pp. 1691–1693, Sep. 1998.
[49]C.-T. Lee, U.-Z. Yang, C.-S. Lee, and P.-S. Chen, “White light emission of monolithic carbon-implanted InGaN–GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2029–2031, Oct. 1, 2006.
[50]C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, et al., “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Appl. Phys. Lett., vol. 93, no. 20, pp. 203103-1–203103-3, Nov. 2008.
[51]C. H. Chiu, C. C. Lin, H. V. Han, C. Y. Liu, Y. H. Chen, Y. P. Lan, et al., “High efficiency GaN-based light-emitting diodes with embedded air voids/SiO2 nano masks,” Nanotechnology, vol. 23, no. 4, pp. 045303-1–045303-7, Jan. 2012.
[52]C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang, et al., “GaN-based LEDs output power improved by textured GaN/sapphire interface using in situ SiH4 treatment process during epitaxial growth,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1275–1280, Jul. 2009.
[53]C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, et al., “Enhanced light output power in InGaN light emitting diodes by fabricating inclined undercut structure,” J. Electrochem. Soc., vol. 153, no. 12, pp. G1020–G1024, Dec. 2006.
[54]T. Takeuchi, H. Amano, and I. Akasaki, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys., vol. 39, no. 2, pp. 413–416, Feb. 2000.
[55]S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multi quantum well structures,” Appl. Phys. Lett., vol. 69, no. 27, pp. 4188–4190, Dec. 1996.
[56]D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (2021) InGaN/GaN light-emitting diodesfor high-efficiency solid-state lighting,” J. Display Technol., vol. 9, no. 4, pp. 190–198, Apr. 2013.
[57]R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol., vol. 27, no. 2, pp. 024001–024014, Feb. 2012.
[58]H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light emitting diodes with large overlap quantum wells,” Opt. Exp., vol. 19, no. S4, pp. A991–A1007, Jul. 2011.
[59]G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum well light-emitting diodes,” IEEE Photon. J., vol. 5, no. 2, p. 2201011, Apr. 2013.
[60]J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys., vol. 110, no. 11, pp. 113110-1–113110-5, Dec. 2011.
[61]Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1066–1072, Jul. 2009.
[62]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, et al., “Defect reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol. 98, no. 15, pp. 151102-1–151102-3, Apr. 2011.
[63]H. Y. Lin, Y. J. Chen, C. C. Chang, X. F. Li, S. C. Hsu, and C. Y. Liu, “Pattern-coverage effect on light extraction efficiency of GaN LED on patterned-sapphire substrate,” Electrochem. Solid-State Lett., vol. 15, no. 3, pp. H72–H74, Mar. 2012.
[64]S. I. Park, J. I. Lee, D. H. Jang, H. S. Kim, D. S. Shin, H. Y. Ryu, et al., “Measurement of internal electric field in GaN based light-emitting diodes,” IEEE J. Quantum Electron., vol. 48, no. 4, pp. 500–506, Apr. 2012.
[65]S. M. Kim, H. S. Oh, J. H. Baek, K. H. Lee, G. Y. Jung, J. H. Song, et al., “Effects of patterned sapphire substrates on piezoelectric field in blue-emitting InGaN multiple quantum wells,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 842–844, Aug. 2010.
[66]C. F. Lin, K. T. Chen, and K. P. Huang, “Blue light-emitting diodes with an embedded native gallium oxide pattern structure,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1431–1433, Dec. 2010.
[67]S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, R. A. Arif, et al., “Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate,” Appl. Phys. Lett., vol. 93, no. 20, pp. 201107-1–201107-3, Nov. 2008.
[68]M. F. Schubert, Q. Dai, J. Xu, J. K. Kim, and E. F. Schubert, “Electroluminescence induced by photoluminescence excitation in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 95, no. 19, pp. 191105-1–191105-3, Nov. 2009.
[69]J. H. Song, H. J. Kim, B. J. Ahn, Y. Dong, S. Hong, J. H. Song, et al., “Role of photovoltaic effects on characterizing emission properties of InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 95, no. 26, pp. 263503-1–263503-3, Dec. 2009.
[70]K. C. Shen, D. S. Wuu, C. C. Shen, S. L. Ou, and R. H. Horng, “Surface modification on wet-etched patterned sapphire substrates using plasma treatments for improved GaN crystal quality and LED performance,” J. Electrochem. Soc., Vol. 158, no. 10, pp. 988–993, Oct. 2011.
[71]J. H. Cheng, Y. S. Wu, W. C. Liao, and B. W. Lin, “Improved crystal quality and performance of GaN-based light-emitting diodes by decreasing the slanted angle of patterned sapphire,” Appl. Phys. Lett., vol. 96, no. 5, pp. 051109-1–051109-3, Feb. 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top