(3.239.56.184) 您好!臺灣時間:2021/05/13 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:賴志軒
研究生(外文):Chih-Hsuan Lai
論文名稱:合成氧化鎢-碲奈米結構及其對NO2氣體感測特性之探討
論文名稱(外文):Gas-Sensing Properties of Tungsten Oxide-Tellurium Heterogeneous Nanostructures
指導教授:曾文甲
指導教授(外文):Wenjea J. Tseng
口試委員:張立信蔣東堯
口試委員(外文):Li-Shin ChangDon Yau Chiang
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:氧化鎢氣體感測奈米複合結構
外文關鍵詞:tungsten oxidetelluriumgas sensingheterogeneous nanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用水熱法(Hydrothermal)合成氧化鎢奈米桿(WO3 Nanorods),再使用氣相傳輸法(Vapor Solid Transportation)合成出氧化鎢-碲(WO3-Te)的奈米複合結構材料。水熱法透過調整水溶液的酸鹼值,並且在水溶液中進行反應,以固定的時間、溫度可以穩定得到直徑約250-300nm的WO3奈米桿。再將WO3奈米桿的水溶液,均勻滴定在固定大小的矽基板之上,利用水平高溫管狀爐,以Te粉末作為原料進行高溫氣相傳輸,獲得WO3奈米棒表面,覆滿壁厚為100nm的Te奈米片。
合成的產物利用SEM、XRD、TEM的觀察分析,確認產物的組成,之後使用網版印刷的方式製作出簡易且穩定的電路元件,將固定濃度的產物與電路元件結合,以長時間烘烤的方式,製作出可以針對NO2濃度偵測的氣體感測元件。
實驗結果顯示,WO3奈米棒以方向性聚合的機制沿著[001]方向成長。藉由XRD得知,WO3以及Te的繞射訊號相當明顯;經由EDS針對WO3-Te奈米材料的能譜分析,得到Te奈米片重量比有89%,原子占比約83.7%,間接證明此複合材料是以類似核-殼結構的包覆組成。NO2氣體感測方面,WO3-Te奈米複合結構於200℃有最佳的靈敏度及最佳的回復速率。另外,WO3-Te奈米複合結構於室溫操作對5ppm的NO2靈敏度也達到30,這是單一材料WO3無法達到的效果。


Tunsteng oxide nanorods (WO3 Nrds) were synthesized through hydrothermal method which was reacted in solvent and was adjusted to pH2 , then heated at certain temperature for 24hr. and then tungsten oxide-tellurium (WO3-Te) heterogeneous nanostructure were grown on silicon (Si) substrate with WO3 nanorods covered, tungsten oxide-tellurium by which were synthesized through vapor transport (VS) method in a horizontal high-temperature tube furnace, with telluriun powder material. And Te nanosheet with radius from 100 to 300 nm were obtained on WO3 nanorods, the most appropriate process for the WO3-Te heterostructure were determined from morphology and composition analysis. Scanning electron microscopy (SEM) was used to observe the morphology of nanostructures, with X-ray diffraction analyzer (XRD) for the composition detected, and transmission electron microscope (TEM) were used to conferm the composition of the nanostructure .
The result of TEM analysis showed that WO3 nanorods were grown with OA (Oriented aggregation) mechanism with the direction [001], and XRD analysis for the congregation nanostructure has display the distributed element of Te, which is more percentage of atomic about 89% on WO3-Te congregations.
We have detected NO2 gas from 5 to 50ppm successfulyu by using WO3 and WO3-Te nanostructrues , specially WO3-Te could operated in room temperature, and receiving a distinguished sensitivity for 5ppm of NO2.


摘要................................................................................................................................i
Abstract..........................................................................................................................ii
目錄...............................................................................................................................iii
圖目錄........................................................................................................................... v
表目錄..........................................................................................................................vii

第一章 緒論................................................................................................................1

第二章 文獻回顧........................................................................................................2
2.1 環境中的二氧化氮(NO2).............................................................................2
2.2 氣體感測器.................................................................................................. 2
2.3 金屬氧化半導體的氣體感測機制...............................................................2
2.3.1金屬氧化半導體的氣體感測方法及定義...................................................6
2.4 WO3一維奈米結構研究與製備..................................................................7
2.5 一維奈米Te的研究與製備.........................................................................9
2.6 奈米金屬氧化半導體氣體感測元件的發展.............................................10
2.6.1操作溫度對氧化金屬半導體靈敏度的影響...........................................10
2.6.2奈米結構對靈敏度的影響.......................................................................11
2.6.3 p-n接面對氧化金屬半導體感測NO2氣體的影響...............................13
2.7 研究動機.............................................................................................................15

第三章 實驗方法與步驟..........................................................................................16
3.1 實驗設計及流程.........................................................................................16
3.2 水熱法合成WO3奈米桿...........................................................................17
3.3 實驗前基板處理………………….............................................................17
3.4 氧化鎢奈米桿與碲奈米片的合成.............................................................17
3.5 表面形貌觀察及材料成分分析.................................................................19
3.6 氣體感測元件的製作與量測.....................................................................19

第四章 結果與討論...................................................................................................21
4.1 WO3奈米桿的合成與材料分析.................................................................21
4.2 WO3-Te複合材料的合成與材料分析..................................................... ..27
4.3 氣體感測的特性及定義..............................................................................37
4.3.1 WO3的NO2氣體感測結果……………………..…………………….......37
4.3.2 WO3及WO3-Te的NO2氣體感測結果.....................................................43

第五章 結論...............................................................................................................50
參考文獻.......................................................................................................................51

[1]Wang, HZ; Liang, JB; Fan, H; Xi, BJ; Zhang, MF; Xiong, SL; Zhu, YC; Qian, YT “Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres”, Journal of solid state chemistry, 2008, 181 (1) p.122-129
[2]Sadek, AZ; Choopun, S; Wlodarski, W; Ippolito, SJ; Kalantar-zadeh, K “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing”, IEEE sensors journal, 2007, 7 (5-6) p.919-924
[3]Son, B; Yang, WH; Breysse, P; Chung, TW; Lee, YS “Estimation of occupational and nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a microenvironmental model”, Environmental research, 2004, 94 (3) p.291-296
[4]Xie, T; Xie, GZ; Zhou, Y; Huang, JL; Wu, M; Jiang, YD; Tai, HL “Thin film transistors gas sensors based on reduced graphene oxide poly(3-hexylthiophene) bilayer film for nitrogen dioxide detection”, Chemical physics letters, 2014, 614 p.275-281
[5]Chou, PC; Chen, HI; Liu, IP; Chen, CC; Liou, JK; Lai, CJ; Liu, WC “Nitrogen oxide (NO2) gas sensing performance of znO nanoparticles (NPs)/sapphire-based sensors”, IEEE sensors journal, 2015, 15 (7) p.3759-3763
[6]Sharma, A; Tomar, M; Gupta, V “Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters”, Sensors and actuators b-chemical, 2013, 181 p.735-742
[7]張惠華教授, “Nitrogen oxides (nitric oxide, nitrogen dioxide, etc.)”, 國家衛生研究院 重點摘錄(http://nehrc.nhri.org.tw/toxic/toxfaqs/Nitrogen_Oxides.pdf), 2014
[8]ATSDR, “ToxFAQsTM for nitrogen oxides”, Division of Toxicology ToxFAQsTM (http://www.atsdr.cdc.gov/toxfaqs/tfacts175.pdf), 2002
[9]Frodl, R; Tille, T “A high-precision NDIR CO2 gas sensor for automotive applications”, IEEE sensors journal, 2006, 6 (6) p.1697-1705
[10]Sun, LY; Qiu, FB; Quan, BF “Investigation of a new catalytic combustion-type CH4 gas sensor with low power consumption”, Sensors and actuators b-chemical, 2000, 66 (1-3) p.289-292
[11]Tierney, MJ; Kim, HOL “Electrochemical gas sensor with extremely fast response times”, Analytical chemistry, 1993, 65 (23) p.3435-3440
[12]Mohammadi, MR; Fray, DJ “Semiconductor TiO2–Ga2O3 thin film gas sensors derived from particulate sol–gel route”, ACTA materialia, 2007, 55 (13) p.4455-4466
[13]Kolmakov, A; Moskovits, M “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures”, Annual review of materials research, 2004, 34 p.151-180
[14] Siciliano, T; Di Giulio, M, Tepore, M; Filippo, E; Micocci, G; Tepore, A “Room temperature NO2 sensing properties of reactively sputtered TeO2 thin films”, Sensors and actuators b-chemical, 2009, 137 (2) p.644-648
[15] Pitcher, S; Thiele, JA; Ren, HL; Vetelino, JF “Current/voltage characteristics of a semiconductor metal oxide gas sensor”, Sensors and actuators b-chemical, 2003, 93 (1-3) p.454-462
[16]Alivisatos, AP “Perspectives on the physical chemistry of semiconductor nanocrystals”, Journal of physical chemistry, 1996, 100 (31) p13226-13239
[17]Li, MD; Hu, M; Jia, DL; Ma, SY; Yan, WJ “NO2-sensing properties based on the nanocomposite of n-WO3-x/n-porous silicon at room temperature”, Sensors and actuators b-chemical, 2013, 186 p.140-147
[18]Bai, SL; Zhang, KW; Luo, RX; Li, DQ; Chen, AF; Liu, CC “Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2”, Journal of physical chemistry, 2012, 22 (25) p.12634-12650
[19]Choi, JM; Byun, JH; Kim, SS “Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers”, Sensors and actuators b-chemical, 2016, 227 p.149-156
[20]Samerjai, T; Channei, D; Khanta, C; Inyawilert, K; Liewhiran, C; Wisitsoraat, A; Phokharatkul, D; Phanichphant, S “Flame-spray-made Zn-In-O alloyed nanoparticles for NO2 gas sensing”, Sensors and actuators b-chemical, 2016, 680 p.711-721
[21] Meng, D; Shaalan, NM; Yamazaki, T; Kikuta, T “Preparation of tungsten oxide nanowires and their application to NO2 sensing”, Sensors and actuators b-chemical, 2012, 169 p.113-120
[22]Qin, YX; Ye, ZH; “DFT study on interaction of NO2 with the vacancy-defected WO3 nanowires for gas-sensing”, Sensors and actuators b-chemical, 2016, 222 p.499-507
[23]Pitcher, S; Thiele, JA; Ren, HL; Vetelino, JF; “Solvothermal synthesis of WO3 nanocrystals with nanosheet and nanorod morphologies and the gas-sensing properties”, Materials ltters, 2016, 171 p.146-149
[24]Hadia, NMA; Alqahtani, MS; Mohamed, SH “WO3 nanowires for optoelectronic and gas sensing applications”, Applied physics a-materials science & processing, 2015, 119 (4) p.1261-1267
[25] Yu, Yangchun; Zeng, Wen; Yu, Le; Wu, Sujuan “A novel WO3•H2O nanostructure assembled with nanorods: hydrothermal synthesis, growth and their gas sensing properties”, Materials ltters, 2016, 180 p.51-54
[26]Kim, JS; Yoon, JW; Hong, YJ; Kang, YC; Abdel-Hady, F; Lee, JH “Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk-shell spheres”, Sensors and actuators b-chemical, 2016, 229 p.561-569
[27]Wang, ZS; Hu, M; Wei, YL; Liu, JF; Qin, YX “Low-temperature NO2-sensing properties and morphology-controllable solvothermal synthesis of tungsten oxide nanosheets/nanorods”, Applied surface science, 2015, 362 p.525-531
[28]Han, LY; Chen, CL; Wei, YL; Shao, BQ; Mu, XH; Liu, QL; Zhu, PH “Hydrothermal deposition of tungsten oxide monohydrate films and room temperature gas sensing performance”, Journal of alloys and compounds, 2016, 656, p.326-331
[29]Lu, CH; Hon, MH; Kuan, CY; Leu, IC “Preparation of WO3 nanorods by a hydrothermal method for electrochromic device”, Japanese journal of applied physics, 2014, 53 (6), p.06JG08-1 - 06JG08-5
[30]Giancaterini, L; Emamjomeh, SM; De Marcellis, A; Palange, E; Resmini, A; Anselmi-Tamburini, U; Cantalini, C; “The influence of thermal and visible light activation modes on the NO2 response of WO3 nanofibers prepared by electrospinning”, Sensors and actuators b-chemical,2016, 229, p.387-395
[31]Siciliano, T; Filippo, E; Genga, A; Micocci, G; Siciliano, M; Tepore, A; “Single-crystalline Te microtubes: Synthesis and NO2 gas sensor application”, Sensors and actuators b-chemical, 2009, 142 (1), P.185-190
[32]Gautam, UK; Rao, CNR “Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process”, Journal of materials chemistry, 2004, 14 (16) p.2530-2535
[33]Her, YC; Huang, SL “Growth mechanism of Te nanotubes by a direct vapor phase process and their room-temperature CO and NO2 sensing properties”, Nanotechnology, 2013, 24 (21) p.1-9
[34]Bekri, M; Shaalan, NM; Ahmed, AS “Thermal evaporated WO3 nanoparticles film under different evaporation pressures for NO2 sensing”, Digest journal of nanomaterials and biostructures, 2015, 10 (2), p.603-613
[35]Bai, SL; Zhang, KW; Luo, RX; Li, DQ; Chen, AF; Liu, CC “Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2”, Journal of matrrials chemistry, 2012, 22 (25), p.12643-12650
[36]Wang, YL; Cui, XBA; Yang, QY; Liu, J; Gao, Y; Sun, P; Lu, GY “Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance”, Journal of materials chemistry, 2016, 225 p.544-552
[37]Kolmakov, A; Klenov, DO; Lilach, Y; Stemmer, S; Moskovits, M “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles”, Nano letters, 2005, 5 (4) p.667-673
[38]Hadia, NMA; Alqahtani, MS; Mohamed, SH; “Vapor-solid growth of p-Te/n-SnO2 hierarchical heterostructures and their enhanced room-temperature gas sensing properties”, ACS applied materials & interfeces, 2014, 6 (12) p.9150-6159
[39]Tsiulyanu, D; Tsiulyanu, A; Liess, HD; Eisele, I “Characterization of tellurium-based films for NO2 detection”, Thin solid film, 2005, 485 (1-2) p.252-256
[40]Tsiulyanu, D; Marian, S; Liess, HD; Eisele, I “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films”, Sensors and actuators b-chemical, 2004, 100 (3) p.380-386
[41]Zhang, WY; Hu, M; Liu, X; Wei, YL; Li, N; Qin, YX “Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor”, Journal of alloys and compounds, 2016, 679 p.391-399
[42]Adhikari, S; Sarkar, D “High efficient electrochromic WO3 nanofibers”, Electrochimica ACTA, 2014, 138 p.115-123
[43]林潔,”兩階段水熱法合成氧化鎢/石墨稀奈米複合結構及其二氧化氮氣體感測性質”,碩士論文,國立國立中興大學,2014
[44]Gu, ZJ; Li, HQ; Zhai, TY; Yang, WS; Xia, YY; Ma, Y; Yao, JN “Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals”, Journal of solid state chemistry, 2007, 180 (1) p.95-105
[45]Peng, TY; Ke, DN; Xiao, JR; Wang, L; Hu, J; Zan, L,” Hexagonal phase WO3 nanorods: hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation”, Journal of solid state chemistry, 2012, 194 p.250-256
[46]Guan, L; Wang, S; Gu, W; Zhuang, JX; Jin, HL; Zhang, WM; Zhang, T; Wang, JC “Ultrasensitive room-temperature detection of NO2 with tellurium nanotube based chemiresistive sensor”, Sensors and actuators b-chemical, 2014, 196 p.321-327
[47]Tsiulyanu, D; Marian, S; Liess, HD; Eisele, I “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films”, Sensors and actuators b-chemical, 2004, 100 (3) p.380-386


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔