[1] B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu. A Novel SnO2 Gas Sensor Doped with Carbon Nanotubes Operating at Room Temperature. Sens. Actuators, B, 2004, 101, 81-89.
[2] Y.C. Her, S.L. Huang. Growth Mechanism of Te Nanotubes by a Direct Vapor Phase Process and Their Room-Temperature CO and NO2 Sensing Properties. Nanotechnology, 2013, 24, 1-9.
[3] E. Comini. Metal Oxide Nano-crystals for Gas Sensing. Anal. Chim. Acta. 2006, 568, 28-40.
[4] O. Lupana, V.V. Ursakic, G. Chaia, L. Chowa, G.A. Emelchenkoe, I.M. Tiginyanug, A.N. Gruzintsev, A.N. Redkin. Selective Hydrogen Gas Nanosensor Using Individual ZnO Nanowire with Fast Response at Room Temperature. Sens. Actuators, B, 2010, 144, 56-66.
[5] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors. 2010, 10, 2088-2106.
[6] C.W. Na, H.S. Woo, I.D. Kim, J.H. Lee. Selective Detection of NO2 and C2H5OH Using a Co3O4-Decorated ZnO Nanowire Network Sensor, Chem. Commun., 2011, 47, 5148-5150.
[7] Y. Chen, L. Yu, D. Feng, M. Zhuo, M. Zhang, E. Zhang, Z. Xu, Q. Li , T. Wang. Superior Ethanol-Sensing Properties Based on Ni-doped SnO2 P–N Heterojunction Hollow Spheres. Sens. Actuators, B ,2012, 166– 167,61- 67
[8] 黃品富, TeO2/SnO2多階層異質結構之合成及其室溫紫外光輔助氣體感測特性, 碩士論文 國立國立中興大學 , 2012[9] S. Tetsuro, K.Akio, F. Kiyosh, N. Masanori. A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry, 1962, 11, 1502-1503.
[10] 周瑞福, 三聯科技股份有限公司 ,氣體感測器原理與應用.
[11] I.D. Kim, A. Rothschild, H.L.Tuller. Advances and New Directions in Gas Sensing Devices. Acta Mater, 2013, 61, 974-1000.
[12] M.E. Franke, T.J. Koplin, U. Simon. Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?, Small. 2006, 22, 36-50.
[13] D. Manno, G. Micocci, A. Serra, M.D. Giulio, A. Tepore. Structural and Electrical Properties of In2O3–SeO2 Mixed Oxide Thin Films for Gas Sensing Applications. J. Appl. Phys, 2000, 88, 6571-6577.
[14] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe. Electronic Interaction Between Metal Additives and Tin Dioxide-Based Gas Sensors, Jpn. J. Appl. Phys, 1988, 27, 1798-1802.
[15] C. Cantalini , M. Pelino , H.T. Sun , M. Faccio , S. Santucci , L. Lozzi , M. Passacantando. Cross Sensitivity and Stability of NO2 Sensors From WO3 Thin Film. Sens. Actuators, B , 1996, 112-118.
[16] H.J. Kim, J.H. Lee. Highly Sensitive and Selective Gas Sensors Using P-type Oxide Semiconductors: Overview. Sens. Actuators, B , 2014, 192, 607-627.
[17] J.M. Wu, A Room Temperature Ethanol Sensor Made From P-type Sb-doped SnO2 Nanowires. Nanotechnology, 2010. 21, 1-7.
[18] G.S.Sen, V. Bhandarkar, K.P. Muthea, M. Royb, S.K. Deshpande, R.C. Aiyer, J.V. Yakhmi, V.C. Sahni. Highly Sensitive Hydrogen Sulphide Sensors Operable at Room Temperature. Sens. Actuators, B , 2006, 115, 270-275.
[19] S.W. Choi, A. Katoch, J. Zhang, S.S. Kim. Tin Oxide/Graphene Composite Fabricated via a Hydrothermal Method for Gas Sensors Working at Room Temperature. Sens. Actuators, B, 2012, 173, 139-147.
[20] A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J.W. Gardner, W. Gopel. Gas Identification by Modulating Temperatures of SnO2-based Thick Film Sensors. Sens. Actuators, B, 1997, 43, 45-51.
[21] A. Vomiero, M. Ferroni, E. Comini, G. Faglia, G. Sberveglier. Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2.. Nano Lett. ,2007, 7, 3553-3558.
[22] 王芃文, 以水熱法合成二氧化鈰奈米線和氧化鎢-二氧化鈰核卅殼結構奈米棒及其氣感之應用, 碩士論文 國立國立中興大學, 2012[23] S. Park, H Ko, S. Kim, C. Lee. Role of the Interfaces in Multiple Networked One-Dimensional Core−Shell Nanostructured Gas Sensors. ACS Appl. Mater. Interfaces, 2014, 6, 9595-9600.
[24] Y.J. Chen, G. Xiao, T.S. Wang, F. Zhang, Y. Ma, P. Gao, C.L. Zhu, E. Zhang, Z. Xu, Q.H. Li. -MoO3/TiO2 Core/Shell Nanorods: Controlled-Synthesis and Low-Temperature Gas Sensing Properties. Sens. Actuators, B, 2011, 155, 270-277.
[25] S.W. Choi, A. Katoch, J.-H. Kim, S.S. Kim. Prominent Reducing Gas-Sensing Performances of n‑SnO2 Nanowires by Local Creation of p−n Heterojunctions by Functionalization with p‑Cr2O3 Nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6, 17723-17729.
[26] 李奕昇, p-CuO/n-SnO2 異質接面奈米複合材料的製備及對硫化氫感測能力的提升, 碩士論文 國立國立中興大學, 2014.[27] 趙義芬, 趙鶴雲, 吳興惠, 金屬氧化物半導體氣敏材料的研究進展,感測器
世界, 2009, 6, 11-20.
[28]. J.Y. Park, S.W. Choi, S.S. Kim. Junction-Tuned SnO2 Nanowires and Their Sensing Properties. J. Phys. Chem, 2011, 26, 12774-12781.
[29] J. Sun, P. Sun, D. Zhang, J. Xu, X. Liang, F. Liu, G. Lu. Growth of SnO2 Nanowire Arrays by Ultrasonic Spray Pyrolysis and Their Gas Sensing Performance. RSC Adv, 2014, 4, 43429-43435.
[30] M.A. Andio, P.N. Browning, P.A. Morris, S.A. Akbar. Comparison of Gas Sensor Performance of SnO2 Nano-Structures on Microhotplate Platforms. Sens. Actuators, B, 2012, 65, 13-18.
[31] H.W. Kim, H.G. Na, Y.J. Kwon, H.Y. Cho, C. Lee. Decoration of Co Nanoparticles on ZnO-Branched SnO2 Nanowires to Enhance Gas Sensing. Sens. Actuators, B, 2015, 219, 22-29.
[32] Y. Lin, C. Li, W. Wei, Y. Li, S. Wen, D. Sun, Y. Chen, S. Ruan. A New Type of
Acetylene Gas Sensor Based on a Hollow Heterostructure. RSC Adv, , 2015, 5, 61521-61527.
[33] K. Nakaoka, J. Ueyama, K. Ogura. Semiconductor and Electrochromic Properties of Electrochemically Deposited Nickel Oxide Films. J.Electroanalytical. Chem. 2004, 571, 93-99.
[34] H.J. Kim, H.M. Jeong, T.H. Kim, J.H. Chung, Y.C. Kang, J.H. Lee. Enhanced Ethanol Sensing Characteristics of In2O3‑Decorated NiO Hollow Nanostructures via Modulation of Hole Accumulation Layers. ACS Appl. Mater. Interfaces, 2014, 6, 18197-18204.
[35] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe
Hierarchical α‑Fe2O3/NiO Composites with a Hollow Structure for a Gas Sensor. ACS Appl. Mater. Interfaces, 2014, 6, 12031-12037.
[36] L. Liu, S. Li, L. Wang, C. Guo, Q. Dong, W. Liz. Enhancement Ethanol Sensing Properties of NiO–SnO2 Nanofibers. J. Am. Ceram. Soc., 2011, 94, 771-775.
[37] L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song. NiO@ZnO Heterostructured Nanotubes: Coelectrospinning Fabrication, Characterization, and Highly Enhanced Gas Sensing Properties. Inorg. Chem., 2012, 51, 7733-7740.
[38] S.Han, H.Y. Chen, C.C.Chen, T.N. Yuan, H.C. Shih. Charaterization of Ni Nanowires after Annealing. Mater. Lett. 2007, 61, 1105-1108.
[39] M. G. Cook, N. S. Mcintyre. X-Ray Photoelectron Studies on Some Oxides and
Hydroxides of Cobalt, Nickel, and Copper. Analatica chemistry, 1975, 47, 2208-2213.
[40] D.J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I.D. Kim. Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading. Adv. Funct. Mater., 2010, 20, 4258-4264.
[41] A.A. Tsyganenko, V.N. Filimonov. Infrared Spectra of Surface Hydroxyl Groups and Crystalline Structure of Oxides. J. Molecular Structure. 1973, 19, 579-589.
[42] B.M. Weckhuysen, P.V. Voort, G. Catana. Spectroscopy of transition metal ions on surfaces, 2000, 292 Leuven, Belgium.
[43] H. Ding, J. Zhu, J. Jiang, R. Ding, Y. Feng, G. Wei, X. Huang. Preparation and Gas Sensing Property of Ultra-fine NiO/SnO2 Nano-Particles. RSC Adv., 2012, 2, 10324-10329.
[44] S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim. Prominent Reducing Gas-Sensing
Performances of n‑SnO2 Nanowires by Local Creation of p-n Heterojunctions by Functionalization with p‑Cr2O3 Nanoparticles. ACS Appl. Mater. Interfaces. 2014, 6, 17723-17729.
[45] J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu. Enhancement of NO2 Gas Sensing Response Based on Ordered Mesoporous Fe-Doped In2O3. Sens. Actuators, B, 2014, 191, 806-812.
[46] F. Gu, R. Nie, D. Han, Z. Wang. In2O3–Graphene Nanocomposite Based Gas Sensor for Selective Detection of NO2 at Room Temperature, Sens. Actuators,B, 2015, 219, 94-99.
[47] S.R. Nalage, M.A. Chougule, S.Sen, V. B. Patil. Novel Method for Fabrication of NiO Sensor for NO2 Monitoring. J.Mater Sci. Mater Electron., 2013, 24, 368-375.