跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 06:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王俊凱
研究生(外文):Jun-Kai Wang
論文名稱:NiO/SnO2異質接面奈米線之氣體感測性質探討
論文名稱(外文):Synthesis of NiO/SnO2 heterojunction nanowires for gas sensing properties
指導教授:曾文甲
指導教授(外文):Wenjea J. Tseng
口試委員:段維新向性一
口試委員(外文):Wei-Hsing TuanHsing-I Hsiang
口試日期:2016-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:61
中文關鍵詞:異質接面結構P-N Junction氣體感測器奈米線
外文關鍵詞:heterojunctionP-N Junctiongas sensingnanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:582
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本研究先以氣相傳輸法合成SnO2奈米線,接著用濕式化學法於SnO2奈米線表面附著直徑約10 nm的NiO奈米顆粒,形成的異質接面結構在NiO/SnO2接面處會形成P-N Junction 並產生更大能障,因而造成電阻增加,氣體感測發生反應時,氧化性氣體會捕捉電子,並在表面形成空間電荷層(或稱電子消耗層),使得電子傳輸通道縮小,使得電阻再度提升,靈敏度也隨之提升。配合一維奈米結構有大的比表面積以及NiO本身的吸濕性,使SnO2在進行氣體感測時,能降低環境濕度的影響,更有助於增加在室溫的感測能力。本研究於鎳前驅鹽比例0.5 wt%,溫度250oC以及待測氣體NO2濃度15 ppm時靈敏度可達到9.34,並於室溫時靈敏度仍能達8.41,相較於純SnO2奈米線於250oC對15 ppm NO2進行感測,其靈敏度可提升5.66倍,經改質後的異質結構,不只能在室溫進行感測而且比較純SnO2奈米線於250oC時,靈敏度有明顯的提升。所合成的NiO/SnO2異質接面結構分別會以電子顯微鏡、能量散射光譜儀、低掠角X光繞射儀、X射線光電子能譜儀做結構分析。

In this work, we synthesize NiO/SnO2 heterojuction nanowire by a two stage process. First, we use thermal vapor transport to form SnO2 nanowires. Then, we prepare Ni precursor and let NiO particles attach to the SnO2 nanowires by wet chemical method. Interface of NiO/SnO2 heterostructure forms p-n junctions so that local depletion layer existed near the surface and impeded electron transportation upon reacted with the NO2 gas, leading to an increased electrical resistivity accordingly. Absorption of moisture by NiO protects the SnO2 when measuring gas sensing at room temperature. In this work, 0.5wt% NiO/SnO2 heterostructure sensitivity can reach 9.34 at 250oC against 15 ppm of NO2, 8.41 at room temperature against 15 ppm of NO2. The sensitivity is 5.66 times when compared to that of the SnO2 nanowires.

第一章 緒論 1
1.1前言 1
第二章 文獻回顧 2
2.1氣體感測器的介紹 2
2.2金屬氧化物半導體的氣體感測機制 3
2.3金屬氧化物半導體氣體感測器的選擇以及影響因素 6
2.4二氧化氮的特性與危害 8
2.5二氧化錫的材料選擇 8
2.6氧化鎳的材料選擇 11
2.7研究動機與目的 14
第三章 實驗方法與步驟 15
3.1實驗藥品與製程設備 15
3.2實驗流程簡介 16
3.3 SnO2奈米線之製備 17
3.4 NiO/SnO2奈米異質接面結構的合成 18
3.5材料特性分析 20
3.6氣體感測元件的製作與氣體感測特性的量測 21
3.7室溫環境的氣體感測特性量測 23
第四章 實驗結果 24
4.1 SnO2奈米線之合成 24
4.2 NiO/SnO2異質接面奈米線之合成與結構分析 25
4.3 氣體感測 32
第五章 討論 43
5.1 SnO2奈米線之氣體感測 43
5.2 NiO/SnO2異質接面結構之氣體感測 44
第六章 結論48
參考文獻 49



[1] B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu. A Novel SnO2 Gas Sensor Doped with Carbon Nanotubes Operating at Room Temperature. Sens. Actuators, B, 2004, 101, 81-89.
[2] Y.C. Her, S.L. Huang. Growth Mechanism of Te Nanotubes by a Direct Vapor Phase Process and Their Room-Temperature CO and NO2 Sensing Properties. Nanotechnology, 2013, 24, 1-9.
[3] E. Comini. Metal Oxide Nano-crystals for Gas Sensing. Anal. Chim. Acta. 2006, 568, 28-40.
[4] O. Lupana, V.V. Ursakic, G. Chaia, L. Chowa, G.A. Emelchenkoe, I.M. Tiginyanug, A.N. Gruzintsev, A.N. Redkin. Selective Hydrogen Gas Nanosensor Using Individual ZnO Nanowire with Fast Response at Room Temperature. Sens. Actuators, B, 2010, 144, 56-66.
[5] C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors. 2010, 10, 2088-2106.
[6] C.W. Na, H.S. Woo, I.D. Kim, J.H. Lee. Selective Detection of NO2 and C2H5OH Using a Co3O4-Decorated ZnO Nanowire Network Sensor, Chem. Commun., 2011, 47, 5148-5150.
[7] Y. Chen, L. Yu, D. Feng, M. Zhuo, M. Zhang, E. Zhang, Z. Xu, Q. Li , T. Wang. Superior Ethanol-Sensing Properties Based on Ni-doped SnO2 P–N Heterojunction Hollow Spheres. Sens. Actuators, B ,2012, 166– 167,61- 67
[8] 黃品富, TeO2/SnO2多階層異質結構之合成及其室溫紫外光輔助氣體感測特性, 碩士論文 國立國立中興大學 , 2012
[9] S. Tetsuro, K.Akio, F. Kiyosh, N. Masanori. A New Detector for Gaseous Components Using Semiconductive Thin Films. Analytical Chemistry, 1962, 11, 1502-1503.
[10] 周瑞福, 三聯科技股份有限公司 ,氣體感測器原理與應用.
[11] I.D. Kim, A. Rothschild, H.L.Tuller. Advances and New Directions in Gas Sensing Devices. Acta Mater, 2013, 61, 974-1000.
[12] M.E. Franke, T.J. Koplin, U. Simon. Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?, Small. 2006, 22, 36-50.
[13] D. Manno, G. Micocci, A. Serra, M.D. Giulio, A. Tepore. Structural and Electrical Properties of In2O3–SeO2 Mixed Oxide Thin Films for Gas Sensing Applications. J. Appl. Phys, 2000, 88, 6571-6577.


[14] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe. Electronic Interaction Between Metal Additives and Tin Dioxide-Based Gas Sensors, Jpn. J. Appl. Phys, 1988, 27, 1798-1802.
[15] C. Cantalini , M. Pelino , H.T. Sun , M. Faccio , S. Santucci , L. Lozzi , M. Passacantando. Cross Sensitivity and Stability of NO2 Sensors From WO3 Thin Film. Sens. Actuators, B , 1996, 112-118.
[16] H.J. Kim, J.H. Lee. Highly Sensitive and Selective Gas Sensors Using P-type Oxide Semiconductors: Overview. Sens. Actuators, B , 2014, 192, 607-627.
[17] J.M. Wu, A Room Temperature Ethanol Sensor Made From P-type Sb-doped SnO2 Nanowires. Nanotechnology, 2010. 21, 1-7.
[18] G.S.Sen, V. Bhandarkar, K.P. Muthea, M. Royb, S.K. Deshpande, R.C. Aiyer, J.V. Yakhmi, V.C. Sahni. Highly Sensitive Hydrogen Sulphide Sensors Operable at Room Temperature. Sens. Actuators, B , 2006, 115, 270-275.
[19] S.W. Choi, A. Katoch, J. Zhang, S.S. Kim. Tin Oxide/Graphene Composite Fabricated via a Hydrothermal Method for Gas Sensors Working at Room Temperature. Sens. Actuators, B, 2012, 173, 139-147.
[20] A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J.W. Gardner, W. Gopel. Gas Identification by Modulating Temperatures of SnO2-based Thick Film Sensors. Sens. Actuators, B, 1997, 43, 45-51.
[21] A. Vomiero, M. Ferroni, E. Comini, G. Faglia, G. Sberveglier. Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2.. Nano Lett. ,2007, 7, 3553-3558.
[22] 王芃文, 以水熱法合成二氧化鈰奈米線和氧化鎢-二氧化鈰核卅殼結構奈米棒及其氣感之應用, 碩士論文 國立國立中興大學, 2012
[23] S. Park, H Ko, S. Kim, C. Lee. Role of the Interfaces in Multiple Networked One-Dimensional Core−Shell Nanostructured Gas Sensors. ACS Appl. Mater. Interfaces, 2014, 6, 9595-9600.
[24] Y.J. Chen, G. Xiao, T.S. Wang, F. Zhang, Y. Ma, P. Gao, C.L. Zhu, E. Zhang, Z. Xu, Q.H. Li. -MoO3/TiO2 Core/Shell Nanorods: Controlled-Synthesis and Low-Temperature Gas Sensing Properties. Sens. Actuators, B, 2011, 155, 270-277.
[25] S.W. Choi, A. Katoch, J.-H. Kim, S.S. Kim. Prominent Reducing Gas-Sensing Performances of n‑SnO2 Nanowires by Local Creation of p−n Heterojunctions by Functionalization with p‑Cr2O3 Nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6, 17723-17729.

[26] 李奕昇, p-CuO/n-SnO2 異質接面奈米複合材料的製備及對硫化氫感測能力的提升, 碩士論文 國立國立中興大學, 2014.
[27] 趙義芬, 趙鶴雲, 吳興惠, 金屬氧化物半導體氣敏材料的研究進展,感測器
世界, 2009, 6, 11-20.
[28]. J.Y. Park, S.W. Choi, S.S. Kim. Junction-Tuned SnO2 Nanowires and Their Sensing Properties. J. Phys. Chem, 2011, 26, 12774-12781.
[29] J. Sun, P. Sun, D. Zhang, J. Xu, X. Liang, F. Liu, G. Lu. Growth of SnO2 Nanowire Arrays by Ultrasonic Spray Pyrolysis and Their Gas Sensing Performance. RSC Adv, 2014, 4, 43429-43435.
[30] M.A. Andio, P.N. Browning, P.A. Morris, S.A. Akbar. Comparison of Gas Sensor Performance of SnO2 Nano-Structures on Microhotplate Platforms. Sens. Actuators, B, 2012, 65, 13-18.
[31] H.W. Kim, H.G. Na, Y.J. Kwon, H.Y. Cho, C. Lee. Decoration of Co Nanoparticles on ZnO-Branched SnO2 Nanowires to Enhance Gas Sensing. Sens. Actuators, B, 2015, 219, 22-29.
[32] Y. Lin, C. Li, W. Wei, Y. Li, S. Wen, D. Sun, Y. Chen, S. Ruan. A New Type of
Acetylene Gas Sensor Based on a Hollow Heterostructure. RSC Adv, , 2015, 5, 61521-61527.
[33] K. Nakaoka, J. Ueyama, K. Ogura. Semiconductor and Electrochromic Properties of Electrochemically Deposited Nickel Oxide Films. J.Electroanalytical. Chem. 2004, 571, 93-99.
[34] H.J. Kim, H.M. Jeong, T.H. Kim, J.H. Chung, Y.C. Kang, J.H. Lee. Enhanced Ethanol Sensing Characteristics of In2O3‑Decorated NiO Hollow Nanostructures via Modulation of Hole Accumulation Layers. ACS Appl. Mater. Interfaces, 2014, 6, 18197-18204.
[35] C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe
Hierarchical α‑Fe2O3/NiO Composites with a Hollow Structure for a Gas Sensor. ACS Appl. Mater. Interfaces, 2014, 6, 12031-12037.
[36] L. Liu, S. Li, L. Wang, C. Guo, Q. Dong, W. Liz. Enhancement Ethanol Sensing Properties of NiO–SnO2 Nanofibers. J. Am. Ceram. Soc., 2011, 94, 771-775.
[37] L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song. NiO@ZnO Heterostructured Nanotubes: Coelectrospinning Fabrication, Characterization, and Highly Enhanced Gas Sensing Properties. Inorg. Chem., 2012, 51, 7733-7740.

[38] S.Han, H.Y. Chen, C.C.Chen, T.N. Yuan, H.C. Shih. Charaterization of Ni Nanowires after Annealing. Mater. Lett. 2007, 61, 1105-1108.
[39] M. G. Cook, N. S. Mcintyre. X-Ray Photoelectron Studies on Some Oxides and
Hydroxides of Cobalt, Nickel, and Copper. Analatica chemistry, 1975, 47, 2208-2213.
[40] D.J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I.D. Kim. Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading. Adv. Funct. Mater., 2010, 20, 4258-4264.
[41] A.A. Tsyganenko, V.N. Filimonov. Infrared Spectra of Surface Hydroxyl Groups and Crystalline Structure of Oxides. J. Molecular Structure. 1973, 19, 579-589.
[42] B.M. Weckhuysen, P.V. Voort, G. Catana. Spectroscopy of transition metal ions on surfaces, 2000, 292 Leuven, Belgium.
[43] H. Ding, J. Zhu, J. Jiang, R. Ding, Y. Feng, G. Wei, X. Huang. Preparation and Gas Sensing Property of Ultra-fine NiO/SnO2 Nano-Particles. RSC Adv., 2012, 2, 10324-10329.
[44] S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim. Prominent Reducing Gas-Sensing
Performances of n‑SnO2 Nanowires by Local Creation of p-n Heterojunctions by Functionalization with p‑Cr2O3 Nanoparticles. ACS Appl. Mater. Interfaces. 2014, 6, 17723-17729.
[45] J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu. Enhancement of NO2 Gas Sensing Response Based on Ordered Mesoporous Fe-Doped In2O3. Sens. Actuators, B, 2014, 191, 806-812.
[46] F. Gu, R. Nie, D. Han, Z. Wang. In2O3–Graphene Nanocomposite Based Gas Sensor for Selective Detection of NO2 at Room Temperature, Sens. Actuators,B, 2015, 219, 94-99.
[47] S.R. Nalage, M.A. Chougule, S.Sen, V. B. Patil. Novel Method for Fabrication of NiO Sensor for NO2 Monitoring. J.Mater Sci. Mater Electron., 2013, 24, 368-375.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊