(3.236.214.19) 您好!臺灣時間:2021/05/07 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王珩安
研究生(外文):Heng-An Wang
論文名稱:雙添加與隨機添加的五、六元高熵合金成相行為之研究
論文名稱(外文):On the phase in high-entropy alloys with dual alloying elements and arbitrary alloying
指導教授:蔡銘洪
指導教授(外文):Ming-Hung Tsai
口試委員:呂福興黃爾文
口試委員(外文):Fu-Hsing LuEr-Wen Huang
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:135
中文關鍵詞:高熵合金成相合金設計
外文關鍵詞:high-entropy alloy (HEAs)phase formation rulealloy design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備一系列雙添加元素高熵合金與全隨機/部份隨機添加高熵合金,藉由分析這些合金在鑄造態與均質化態的相組成,試圖了解高熵合金的成相行為。研究結果顯示,雙添加合金的相種類與元素間的鍵結強度,以及原子大小都有關係。均質化則對雙添加合金的相影響不大。有超過一半合金未發生相種類變化,這意味著鑄造態大致上保留了高溫的相。
隨機添加是指該合金的全部或部份元素,是由21種常用元素隨機選擇而來。這些合金由於其熔點或是元素化學性質差異甚大,造成熔煉的困難,而使得其鑄造結構相當不均勻。部份隨機添加合金的成相行為,仍可一定程度預測。全隨機添加合金的鑄造結構則相當不均勻,其成相也較無明確的趨勢,部份元素甚至以幾乎純元素的狀況獨自存在。需要更多這類合金來歸納其成相行為。


In this study, we produced dual alloying elements and all/part of arbitrary alloying elements high-entropy alloys (HEAs). Trying to understand that how the adding elements effected the phase behaviors by analyzing the microstructures and the composition-phase of these alloys. Beside as-cast alloys, we all the dual alloying elements alloys were treated in the condition of 1100⁰C 48 hours.
Arbitrary alloying means that all or part of the alloying elements were randomly selected from 21 elements. Because of the differences in melting points and the chemical properties of the different alloying elements, it is hard to do the arc-melting, leading to the asymmetrical of the microstructures in the arbitrary elements alloys.


摘要 i
Abstract ii
圖目次 v
表目次 ix
壹、前言 1
第一章參考文獻 3
貳、文獻回顧 4
2.1 高熵合金 4
2.2 高熵合金的成相法則 4
2.2.1 為什麼要研究成相法則? 4
2.2.2 高熵合金現有的成相法則 5
2.3 Laves相 15
2.4 B82相 17
2.5 衍生結構(Derivative structure) 18
2.5.1 B81及B82 18
2.5.2 C23及C37 19
2.5.3 BCC相之衍生結構 19
2.6 CoCrFeNi添加單一元素的成相 23
第二章參考文獻 27
參、研究動機及實驗步驟 29
3.1 研究動機 29
3.2 實驗設計與流程 29
3.3 元素性質列表 30
3.4 合金製備 31
3.5 熱處理 31
3.6 相與微結構分析 31
第三章參考文獻 35
肆、結果與討論 36
4.1 鑄造態雙添加合金的相與微結構分析 36
4.2 1100°C48小時均質化退火的相與微結構分析 57
4.3 鑄造態與均質化態相與微結構比較 78
4.4 五元隨機添加合金鑄造態相與微結構分析 91
4.5 雙添加合金與隨機添加合金成相行為探討 111
4.5.1 鑄造態雙添加合金成相行為探討 111
4.5.2 1100⁰C 48小時均質化退火雙添加合金之成相行為115
4.5.3 鑄造態隨機添加合金成相行為探討 117
4.6 於口試後之新配方 125
第四章參考文獻 130
伍、結論 131
陸、未來工作 134


1.Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
2.葉均蔚, 高熵合金的發展. 華岡工程學報, 2011. 27: p. 1-18.
3.Liu, W., et al., The Phase Competition and Stability of High-Entropy Alloys. JOM, 2014. 66(10): p. 1973-1983.
4.Guo, S., Phase selection rules for cast high entropy alloys: an overview. 2015.
5.Massalski, T.B., Comments Concerning Some Features of Phase Diagrams and Phase Transformations. Materials Transactions, 2010. 51(4): p. 583-596.
6.Mizutani, U., Hume-Rothery rules for structurally complex alloy phases. 2010, Boca Raton, FL: CRC Press.
7.Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science-Materials International, 2011. 21(6): p. 433-446.
8.Guo, S., et al., More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013. 41(0): p. 96-103.
9.Wang, Z., et al., Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p. 28-31.
10.Tong, C.J., et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 881-893.
11.Tung, C.C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007. 61(1): p. 1-5.
12.Senkov, O.N., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
13.Senkov, O.N., et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
14.Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011. 109(10): p. 103505.
15.Tsai, M.H., et al., Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013. 1(4): p. 207-212.
16.Li, C., et al., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 2009. 475(1-2): p. 752-757.
17.Joubert, J.M., Crystal chemistry and Calphad modeling of the sigma phase. Progress in Materials Science, 2008. 53(3): p. 528-583.
18.Tsai, M.H., K. C, Chang, J. H, Li, A second criterion for sigma phase formation in high-entropy alloys. Material Research Letters, 2015: p. 1-6.
19.Calvert, L. and P. Villars, Pearson’s handbook of crystallographic data for intermetallic phases. ASM, Materials Park, OH, 1991.
20.Ansara, I., et al., Thermodynamic Modelling of Solutions and Alloys. Calphad, 1997. 21(2): p. 171-218.
21.Friauf, J.B., The crystal structures of two intermetallic compounds. Journal of the American Chemical Society, 1927. 49(12): p. 3107-3114.
22.Friauf, J.B., The crystal structure of magnesium di-zincide. Physical Review, 1927. 29(1): p. 34.
23.Sinha, A.K., Topologically close-packed structures of transition metal alloys. Progress in Materials Science, 1972. 15(2): p. 81-185.
24.Kitano, Y., M. Takata, and Y. Komura, High resolution electron microscopy of partial dislocations in the Laves phase structure. Journal of Microscopy, 1986. 142(2): p. 181-190.
25.Hafner, J., et al., The structures of binary compounds. 1990.
26.N. Yurchenko∗, N.S.a.G.S., Laves-phase formation criterion for high-entropy alloys. Materials Science and Technology, 2016: p. 1-6.
27.S., L., Superstructure ordering of intermetallics: B8 structures in the pseudo-cubic regime. Acta Crystallographica Section B: Structural Science, 1998. 54: p. 97-108.
28.Cahn, R.W. and P. Haasen, eds. Physical Metallurgy. 4th Ed. ed. 1996, Elsevier Science B. V.: Amsterdam, NH.
29. ; Available from: http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/06/licence/lecture_2/lec2.
30.范恩誠,“CoCrFeNiX高熵合金成相行為之研究”, 國立國立中興大學材料科學與工程研究所碩士論文, 2015.
31.陳宴儀,“系統性添加CoCrFeNiX高熵合金成相行為之研究”, 國立國立中興大學材料科學與工程研究所碩士論文, 2016.
32.Wang, W.-R., et al., Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
33.Norman, N., N. Greenwood, and A. Earnshaw, Chemistry of the Elements. Butter worth-Heinemann, Earnshaw, Alan, 1997.
34.Yeh, J.W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(8): p. 2533-2536.
35.Raghavan, V., Co-Fe-Ga (Cobalt-Iron-Gallium). Journal of Phase Equilibria and Diffusion, 2008. 29.
36.de Boer, F.R., et al., Cohesion in Metals: Transition Metal Alloys. 1988, Amsterdam, Netherlands: Elsevier Science Publishers B.V.
37.Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔