1.Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
2.葉均蔚, 高熵合金的發展. 華岡工程學報, 2011. 27: p. 1-18.3.Liu, W., et al., The Phase Competition and Stability of High-Entropy Alloys. JOM, 2014. 66(10): p. 1973-1983.
4.Guo, S., Phase selection rules for cast high entropy alloys: an overview. 2015.
5.Massalski, T.B., Comments Concerning Some Features of Phase Diagrams and Phase Transformations. Materials Transactions, 2010. 51(4): p. 583-596.
6.Mizutani, U., Hume-Rothery rules for structurally complex alloy phases. 2010, Boca Raton, FL: CRC Press.
7.Guo, S. and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science-Materials International, 2011. 21(6): p. 433-446.
8.Guo, S., et al., More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 2013. 41(0): p. 96-103.
9.Wang, Z., et al., Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015. 94: p. 28-31.
10.Tong, C.J., et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 881-893.
11.Tung, C.C., et al., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials Letters, 2007. 61(1): p. 1-5.
12.Senkov, O.N., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
13.Senkov, O.N., et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): p. 6043-6048.
14.Guo, S., et al., Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011. 109(10): p. 103505.
15.Tsai, M.H., et al., Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013. 1(4): p. 207-212.
16.Li, C., et al., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 2009. 475(1-2): p. 752-757.
17.Joubert, J.M., Crystal chemistry and Calphad modeling of the sigma phase. Progress in Materials Science, 2008. 53(3): p. 528-583.
18.Tsai, M.H., K. C, Chang, J. H, Li, A second criterion for sigma phase formation in high-entropy alloys. Material Research Letters, 2015: p. 1-6.
19.Calvert, L. and P. Villars, Pearson’s handbook of crystallographic data for intermetallic phases. ASM, Materials Park, OH, 1991.
20.Ansara, I., et al., Thermodynamic Modelling of Solutions and Alloys. Calphad, 1997. 21(2): p. 171-218.
21.Friauf, J.B., The crystal structures of two intermetallic compounds. Journal of the American Chemical Society, 1927. 49(12): p. 3107-3114.
22.Friauf, J.B., The crystal structure of magnesium di-zincide. Physical Review, 1927. 29(1): p. 34.
23.Sinha, A.K., Topologically close-packed structures of transition metal alloys. Progress in Materials Science, 1972. 15(2): p. 81-185.
24.Kitano, Y., M. Takata, and Y. Komura, High resolution electron microscopy of partial dislocations in the Laves phase structure. Journal of Microscopy, 1986. 142(2): p. 181-190.
25.Hafner, J., et al., The structures of binary compounds. 1990.
26.N. Yurchenko∗, N.S.a.G.S., Laves-phase formation criterion for high-entropy alloys. Materials Science and Technology, 2016: p. 1-6.
27.S., L., Superstructure ordering of intermetallics: B8 structures in the pseudo-cubic regime. Acta Crystallographica Section B: Structural Science, 1998. 54: p. 97-108.
28.Cahn, R.W. and P. Haasen, eds. Physical Metallurgy. 4th Ed. ed. 1996, Elsevier Science B. V.: Amsterdam, NH.
29. ; Available from: http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/06/licence/lecture_2/lec2.
30.范恩誠,“CoCrFeNiX高熵合金成相行為之研究”, 國立國立中興大學材料科學與工程研究所碩士論文, 2015.31.陳宴儀,“系統性添加CoCrFeNiX高熵合金成相行為之研究”, 國立國立中興大學材料科學與工程研究所碩士論文, 2016.32.Wang, W.-R., et al., Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
33.Norman, N., N. Greenwood, and A. Earnshaw, Chemistry of the Elements. Butter worth-Heinemann, Earnshaw, Alan, 1997.
34.Yeh, J.W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(8): p. 2533-2536.
35.Raghavan, V., Co-Fe-Ga (Cobalt-Iron-Gallium). Journal of Phase Equilibria and Diffusion, 2008. 29.
36.de Boer, F.R., et al., Cohesion in Metals: Transition Metal Alloys. 1988, Amsterdam, Netherlands: Elsevier Science Publishers B.V.
37.Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.