(3.210.184.142) 您好!臺灣時間:2021/05/16 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡博丞
研究生(外文):Po-Cheng Tsai
論文名稱:濺鍍法中以空氣做為反應性氣體製備TiNxOy薄膜及其應用研究
論文名稱(外文):Processing and Evaluation of TiNxOy Thin Films Prepared by Sputtering Using Air as a Reactive Gas
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:黃嘉宏陳弘穎
口試委員(外文):Jia-Hong HuangHong-Ying Chen
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:濺鍍法空氣氮氧化鈦
外文關鍵詞:sputteringairTiNxOy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以非平衡直流磁控濺鍍法利用空氣做為反應性氣體製備氮氧化鈦(TiNxOy)薄膜並探討其特性,分別以矽晶片、ITO玻璃和玻璃做為基材製備,藉由調控空氣比例成功製備出具不同特性之TiNxOy薄膜。以空氣(air)取代傳統氮/氧(N/O)混合氣體做為反應性氣體,在高背景壓力1.3×10-2 Pa (低真空)下可進行製程,此製程可大幅降低抽真空所需要的時間,更符合經濟環保效益。
實驗參數主要是改變空氣/氬氣(air/Ar)流量比值0.10-0.50,固定工作壓力為0.26 Pa、鍍著功率350 W、鍍著時間20 min、基板偏壓-50 V等參數下,觀察TiNxOy在不同air/Ar流量比值下薄膜顏色、結晶相、微結構、成分組成、電阻率、載子濃度與遷移率、穿透率以及電容值等性質之影響。另外有些部分會改變背景壓力為1.1×10-3 Pa(高真空)和鍍著時間製備TiNxOy薄膜,以做為對照及評估應用於透明導電薄膜之可行性。
在air/Ar流量比值為0.10-0.25的製程區間內,隨air/Ar流量比值增加,薄膜顏色從接近金黃色→暗黃色→褐色→銀色→紫色之變化;且經X光繞射分析結果顯示薄膜從岩鹽型結晶之TiN→岩鹽型結晶之TiNxOy→非晶之TiNxOy;N/Ti比為0.23-1.05時,氧含量為7-58%;電阻率也從導體的140±10 μΩ-cm,逐漸增加至半導的3.52×106 μΩ-cm;以霍爾量測得知,TiNxOy呈現n-type之半導體性質,薄膜內的主要載子為電子,其載子濃度與遷移率都隨air/Ar流量比值提高而下降,推測是薄膜氧含量增加會消除圍繞在Ti周圍的價電子即載子,價電子被氧原子牢牢地綁住,造成自由電子數量下降,即薄膜載子濃度與遷移率下降。air/Ar流量比值為0.25時,薄膜近乎透明並呈現半導性質,推測可能為接近氧化物的特性;最後,超級電容電極的性質測試,其面電容值從最高的165.53 mF/cm2隨air/Ar流量比值增加下降至最低的0.4 mF/cm2。
本研究製備的TiNxOy薄膜成分組成經由XPS分析,薄膜內之N、O比例和空氣的N、O比例有所差異,是因為電漿中N、O不同的解離能所導致,由於電漿中N的解離能比O的低,使N較容易被解離,且反應性氣體的氮、氧氣通入電漿並不會百分之百被解離,以及Ti、N、O在薄膜上表面能的差異,因此薄膜內和空氣所占的N、O比例會有所不同。
裝飾性鍍膜應用評估方面,將薄膜顏色之變化機制可分為本徵色以及非本徵色這兩大類,本徵色範圍之薄膜呈現導電、結晶與不透明接近金屬的特性,薄膜內自由電子的數量多寡將使薄膜呈現不同的顏色變化,而O/Ti比上升,會消耗越多的自由電子,造成薄膜電子組態改變;而非本徵色範圍之薄膜呈現非晶、透明與不導電接近氧化物的特性,其電子因原子間鍵結為共價鍵,束縛力很強,自由電子數量很少,造成薄膜呈現透明的性質,且因基材、薄膜厚度與視角不同,光產生干涉現象使薄膜呈現多彩的顏色。利用本研究簡易之製程,在裝飾性鍍膜上可具有廣泛的用途。
透明導電薄膜應用評估方面,在air/Ar流量比值為0.15與0.20,改變鍍著時間以提升薄膜之穿透率,發現鍍著時間為1 min時,air/Ar=0.15、0.20皆有最高之薄膜穿透率,但因為薄膜為非晶相,電阻率已接近絕緣;而鍍著時間為3 min、air/Ar=0.15,薄膜穿透率為31%,電阻率也降為3440±30 μΩ-cm,是本研究目前較有機會製備出符合透明導電需求之薄膜。


This study focuses on the processing and evaluation of TiNxOy thin films by DC unbalanced magnetron reactive sputtering using air as a reactive gas. The films were prepared on silicon, ITO glass, and glass substrates respectively and the films with different characteristics by varying the air ratio. Replacing nitrogen/oxygen mixed gas with air as a reactive gas allows the process to conduct at high base pressure of 1.3×10-2 Pa (low vaccum) which can greatly reduce the processing time and have more economically environmental benefits.
The main deposition parameters varied the air/Ar flow ratio with simple method in a range of 0.10-0.50. The experimental parameters of the working pressure (=0.26 Pa), power (=350 W), deposition time (=20 min), substrate bias (=-50 V) were fixed throughout the study. Comparing the color, crystal structure, microstructure, chemical composition, electrical, carrier concentration, carrier mobility, optoelectronic, mechanical, and capacitance are the properties of TiNxOy films with different air/Ar flow ratio. For comparison and evaluation, films were also deposited at a low base pressure of 1.1×10-3 Pa (high vaccum) and decrased the deposition time as well.
As the air/Ar flow ratio increased from 0.10 to 0.25, the films revealed color from golden→dark yellow→brown→silver to violet with rock-salt structured TiN→rock-salt crystalline TiNxOy and amorphous TiNxOy. The N/Ti of the films was 0.23-1.05 with 7-58% of oxygen. The resistivities of the films were in the range of 140-3.52×106 μΩ-cm from conductor to semi-conductor. They were n-type semi-conductors and major carrier of the films was electrons. The increase of air/Ar flow ratio causes the carrier concentration and carrier mobility decrease which oxygen content of the films makes the electron binding energy higher might remove valence electrons and extend the extent of oxidation can change the optoelectronic properties of the films. As air/Ar flow ratio at 0.25, the film was almost transparent and revealed semi-conductive material. The capacitance of the films decreased from 165.53 mF/cm2 to 0.4 mF/cm2 as the air/Ar flow ratio increased.
Nitrogen and oxygen content within the films and air were different because the dissociation energy of nitrogen and oxygen in the plasma were also different. The dissociation energy of nitrogen is smaller than that of oxygen, which enhances the impimgement rate of nitrogen. Furthermore, the surface energy of Ti, N and O on the films surface will also cause different content of nitrogen and oxygen within the films and air.
To evaluate the application of decorative coatings, the mechanism with different color of the films can be divided into two categories: intrinsic and extrinsic color. The films with intrinsic color are conductive, crystalline and opaque which are similar to metal. The films with different number of electrons will influence the configuration of electrons and present different of color. On the other hand, the films with extrinsic color are insulating, amorphous and transparent which are similar to oxide. The binding force of atoms in the films is strong and lead to decrease the electrons so the films will become transparent. Moreover, the films with different substrate, thickness and viewing angle might present variety color and colorful films. It might have a wide range of uses for decorative coatings.
Choicing air/Ar flow ratio at 0.15 and 0.20 to evaluate the application of transparent conductive films. It can elevate transmittance of the films by decreasing the deposition time. Although the films with the best transmittance of 56% and 67% as air/Ar flow ratio at 0.15 and 0.20 respectively at 1 min deposition time, the films are amorphous and insulating. However, resistivity and transmittance of the films decrease to 3440±30 μΩ-cm and 31% with 3 min deposition time and air/Ar flow ratio at 0.15 which have an opportunity to obtain transparent conductive films in this study.


誌謝 i
摘要 ii
Abstract iv
目次 vi
圖目次 ix
表目次 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
第二章 理論背景與文獻回顧 3
2.1 理論背景 3
2.1.1 電漿原理 3
2.1.2 濺鍍現象 4
2.1.3 直流磁控濺鍍 5
2.1.4 薄膜成長機制 6
2.2 文獻回顧 8
2.2.1 利用濺鍍法製備TiNxOy薄膜 8
2.2.2 TiNxOy薄膜應用於超級電容之電極 13
2.2.3 TiNxOy薄膜應用於裝飾性鍍膜 16
2.2.4 TiNxOy薄膜應用於透明導電薄膜 17
第三章 研究方法 20
3.1 實驗流程 20
3.2 實驗濺鍍系統與參數 20
3.3 分析儀器 22
3.3.1 色度計 22
3.3.2 X光繞射儀 23
3.3.3 場發射電子顯微鏡 23
3.3.4 X光光電能譜儀 23
3.3.5 四點探針儀 24
3.3.6 霍爾效應量測分析儀 25
3.3.7 紫外/可見光光譜儀 26
3.3.8 奈米壓痕儀 26
3.3.9 電化學分析儀 27
第四章 結果 28
4.1 試片外觀 28
4.2 結晶相分析 30
4.3 微結構分析 35
4.4 成分分析 37
4.5 電性、半導體及光學性質分析 44
4.6 電容值分析 49
4.7 硬度分析 52
第五章 討論 54
5.1 以空氣為反應性氣體形成TiNxOy之成膜機制 54
5.1.1 熱力學分析 54
5.1.2 動力學分析 55
5.2 裝飾性鍍膜之應用評估 60
5.2.1 薄膜顏色的變化 60
5.2.2 薄膜顏色的來源 67
5.3 透明導電薄膜之應用評估 72
5.3.1 air/Ar流量比值 73
5.3.2 改變鍍著時間 78
5.4 TiNxOy薄膜之綜合討論 82
第六章 結論 86
參考文獻 88


[1]F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, and J.P. Riviere, “Preparation of magnetron spttered TiNxOy thin films,” Surf. Coat. Technol. 197 (2003) 174-175.
[2]N. D. Cuong, D.-J. Kim, B.-D. Kang, S.-G. Yoon, “Structural and Electrial Properties of TiNxOy Thin-Film Resistors for 30 dB Applications of -type Attenuator,” J. Electronchem. Soci. 153 (2006) G856.
[3]F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, “Structural, optical and mechanical properties of coloured TiNxOy thin films,”Thin Solid Films 449 (2004) 447-448.
[4]M.-S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Y. Tong, “Recent advances in metal nitrides as high-performance electrode materials for energy storage devices,” J. Mater. Chem. A 3 (2015) 1364-1387.
[5]X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, and Y. Li, “Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors,” Nano Lett. 12 (2012) 5376-5381.
[6]K.-F. Chiu, S.-H. Su, H.-J. Leu, C.-H. Hsia, “Titanium oxynitride thin films as hihj-capacity and high-rate anode materials for lithium-ion batteries,” Thin Solid Films 596 (2015) 29-33.
[7]H. Han, T. Song, J.Y. Bae, L.F. Nazar, H. Kim, U. Paik, “Nitridated TiO2 hollow nanofibers as an anode material for high power lithiumion batteries,” Energy Environ. Sci. 4 (2011) 4532-4536.
[8]J.-M. Chappe, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, J. Takadoum, “Influence of substrate temperature on titanium oxynitride yhin films preoared by reactive sputtering,” Appl. Surf. Sci. 225 (2004) 29-38
[9]A. Trenczek-Zajac, M. Radecka, K. Zakrzewska, A. Brednik, E. Kusior, S. Bourgeoisc, M.C. Marco de Lucasc, L. Imhoff, “Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen,”J. Power Sources 194 (2009) 93-103.
[10]P. K. Barhai, N. Kumari, I. Banerjee, S.K. Pabi, S.K. Mahapatra, “Study of the effect of plasma current density on the formation of titanium nitride and titanium oxynitride thin films prepared by reactive DC magnetron sputtering,”Vacuum 84 (2010) 896-901.
[11]M. C. Lin, L.-S. Chang, H.C. Lin, “Effects of nitrogen partial pressure on titanium oxynitride films deposited by reactive RF magnetron sputtering onto PET substrates,”Surf. & Coat. Technol. 202 (2008) 5440-5443.
[12]J.-M. Chappe, N. Martin, J. Lintymer, F. Sthal, G. Terwagne, J. Takadoum, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253 (2007) 5312-5316.
[13]J.-H. Huang, C.-H. Ma, H. Chen, “Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering,” Surf. Coat. Technol. 201 (2006) 3199-3204.
[14]S. K. Rawal, A.K. Chawla, V. Chawla, R. Jayaganthan, R. Chandra, “Effect of ambient gas on structural and optical properties of titanium oxynitride films,’’ Appl. Surf. Sci. 256 (2010) 4129-4135.
[15]S. K. Rawal, A.K. Chawla, R. Jayaganthan, R. Chandra,“Structural, wettability and optical investigation of titanium oxynitride coatings: Effect of various sputtering parameters,’’ J. Mater. Sci. Technol. 28 (2012) 512-523.
[16]T. Asanuma, T. Matsutani, C. Liu, T. Mihara, and M. Kiuchi, “Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma,’’ J. Appl. Phys. 95 (2004) 6011-6016.
[17]G. Abadias, F. Paumier, D. Eyidi, P. Guerin and T.Girardeau, “Structure and properties of nitrogen-doped titanium dioxide thin films produced by reactive magnetron sputtering,’’ Surf. Interface Anal. 42 (2010) 970-973.
[18]詹慕萱,濺鍍法中以空氣做為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究,國立國立中興大學材料科學與工程學系博士學位論文 (2011)。
[19]李昆全,濺鍍法中以空氣為基底製備Zr-N-O薄膜之製程區間與特性研究,國立國立中興大學材料科學與工程學系碩士學位論文 (2013)。
[20]蔡承霖,直流磁控濺鍍法中空氣做為反應性氣體製備Cr-N-O薄膜之製程區間與特性研究,國立國立中興大學材料科學與工程學系碩士學位論文 (2011)
[21]P. M. Martin, Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, 2010, p.53.
[22]H. A. Macleod, ‘‘Recent development in deposition techniques for optical thin films and coatings,’’ Thin Film Center Inc. (2013) 3-25.
[23]P. J. Kelly, R.D. Arnell, “Magnetron sputtering: a review of recent developments and applications,’’ Vacuum 56 (2000) 159-172.
[24]O. Banakh, M. Moussa, J. Matthey, A. Pontearso, M.Cattani-Lorente, R. Sanjines, P. Fontana, A. Wiskott, S. Durual, “Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays,’’ Appl. Surf. Sci. 317 (2014) 986-993.
[25]T. Khumtong,R. Sakdanuphab, “The effect of O2:N2 gas ratio on structural, optical, electrical properties of TiOxNy thin film deposited by reactive DC magnetron sputtering,” Key Eng. Mater. 659 (2015) 540-544.
[26]T.-T. Chen, H.-P. Liu, Y.-J. Wei, I-C. Chang, M.-H. Yang, Y.-S. Lin, K.-L. Chan, H.-T. Chiu, and C.-Y. Lee, “Porous titanium oxynitride sheets as electrochemical electrodes for energy storage,’’ Nanoscale 6 (2014) 5106-5109.
[27]R. Lucio Porto, R. Frappier, J. B. Ducros, C. Aucher, H. Mosqueda, S. Chenu, B. Chavillon, F. Tessier, F. Chevire, T. Brousse, “Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors,’’ Electrochimica Acta 82 (2012) 257-262.
[28]C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W. S. M. Werner, H. Storl, “Sputter deposition of decorative boride coatings,’’ Vacuum 46 (1995) 1281-1294.
[29]S. Niyomsoan, W. Grant, D. L. Olson, B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films,’’ Thin Solid Films 415 (2002) 187-194.
[30]M. Kiuchi, A. Chayahara, M. Tarutani, Y. Takai, R. Shimizu, “The microstructure of transparent and electrically conducting titanium nitride films,’’ Mater. Chem. Phys. 54 (1998) 330-333.
[31]H. Zafer Durusoy, O. Duyar, A. Aydinli, F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,’’ Vacuum 70 (2003) 21-28.
[32]H. Akazawa, “Sputtering characteristics, crystal structure, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0001) and glasss substrates,’’ Appl. Surf. Sci. 263 (2012) 307-313.
[33]Standard Test Method for Sheet Resistance of Thin Metallic Films with a Collinear Four-Probe Array, ASTM International F390-11.
[34]H. Castro, J. Galvis, and S. Castro, “Automated setup for Van Der Pauw Hall measurements,’’ IEEE Trans.Instrum.Meas. 60 (2010) 198-205.
[35]X. Yang, C. Li, B. Yang, W. Wang, Y. Qian, “Optical properties of titanium oxynitride nanocrystals synthesized via a thermal liquid-solid metathesis reaction,’’ Chem. Phy. Lett. 383 (2004) 502-506.
[36]S. Van Steenberge, W. P. Leroy, D. Depla, “Influence of oxygen flow and film thickness on the texture and microstructure of sputtered ceria thin films,’’ Thin Solid Films 553 (2014) 2-6.
[37]C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Physical Electronics Division, Eden Prairie, Minnesota, USA, (1979) p.190.
[38]N. Arshi, J. Lu, Y. K. Joo, C. G. Lee, J. H. Yoon, F. Ahmed, “Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow,’’ Mater. Chem. Phys. 134 (2012) 839-844.
[39]D. S. Ginley, H. Hosono, D. C. Paine, Handbook of transparent conductors, Springer New York Heidelberg Dordrecht London, (2010) p.2.
[40]C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B. K. Tay, H. Huang, H. Zhang, W. Mai, and H. J. Fan, “All metal nitrides solid-state asymmetric supercapacitors,’’ Adv. Mater. 27 (2015) 4566-4571.
[41]X. Wang, B. D. Myers, J. Yan, G. Shekhawat, V. Dravid, and P. S. Lee, “Manganese oxide micro-supercapacitors with ultra-high areal capacitance,’’ Nanoscale 5 (2013) 4119-4122.
[42]A. Achour, R. L. Porto, M.-A. Soussou, M. Islam, M. Boujtita, K. A. Aissa, L. Le Brizoual, A. Djouadi, T. Brousse, ‘‘Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morpholopy on the capacitance,’’ J. Power Sources 300 (2015) 525-532.
[43]F.-H. Lu, B.-F. Jiang, J.-L. Lo, and M.-H. Chan, ‘‘Influence of oxygen impurity contained in nitrogen on the reaction of titanium with nitrogen,’’J. Mater. Res. 24 (2009) 2400-2408.
[44]楊浚揮,以物理氣相沉積法通入空氣/氬氣製備TiN薄膜,國立國立中興大學材料科學與工程學系碩士學位論文 (2007)。
[45]P. M. Martin, Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, 2010 pp. 68
[46]D. R. Gaskell, Introduction to the Thermodynamics of Materials, Fifth Edition: Taylor & Francis New York London.
[47]N. Nayan, R. Sanudin, and T. N. T. Ibrahim, ‘‘An introduction to optical emission spectroscopy and laser-aided spectroscopy techniques for low-temperature plasma analyses,’’ MUCEET (2009).
[48]R. Walker, Atomic Emission Spectroscopy with Spark-or Arc Excitation, Version 2.0 (2012).
[49]M. Hill, Encyclopedia of science and technology, 5th McGraw-Hill (1993).
[50]李正中,薄膜光學與鍍膜技術,藝軒圖書出版社 (2009) p.144。
[51]S. Crabtree and P. Beudert, Scenic art for the theatre: history, tools, and techniques, Focal Press (1998).
[52]A. Lousa, J. Esteve, J. P. Mejia, A. Devia, ‘‘Influence of deposition pressure on the structural mechanical and decorative properties of TiN thin films deposited by cathodic arc evaporation,’’ Vacuum 81 (2007) 1507-1510.
[53]詹惠晶,溝通色彩學:四季基因色彩系統診斷(第三版),新文京開發出版社 (2014) pp.14。
[54]李正中,薄膜光學與鍍膜技術,藝軒圖書出版社 (2009) p.37。
[55]R. E. Hummel, Electronic Properties of Materials, Third Edition Springer-Verlag New York (2001) p.208.
[56]H. Xiao, Introduction to Semiconductor Manufacturing Technology, Pearson Education Taiwan Ltd., (2002) p.141.
[57]E. Aperathitis, M. Bender, V. Cimalla, G. Ecke, and M. Modreanu, ‘‘Properties of rf-sputtered indium-tin-oxynitride thin films,’’J. Appl. Phys. 94 (2003) 1258-1266.
[58]S. W. Shin, and S. M. Pawar, ‘‘Effect of film thickness on the structural and electrical properties of Ga-doped ZnO thin films prepared on glass and Al2O3(0001) substrates by RF magnetron sputtering method,’’ J. Mater. Res. 24 (2009) 441-447.
[59]D. Rademacher, G. Brauer, B. Fritz, and M. Vergohl, ‘‘Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering,’’ Appl. Opt. 51 (2012) 8047-8051.
[60]G. Hass, and R. E. Thun, Physics of Thin Film, vol. 4 Academic Press. N.Y. (1967).
[61]H. Do, Y.-H. Wu, V.-T. Dai, C.-Y. Peng, T.-C. Yen, L. Chang, “Structure and property of epitaxial titanium oxynitride grown on MgO(001) substrate by pulsed laser deposition,” Surf. Coat. Technol. 214 (2013) 91-96.
[62]P. Ettmayer, W. Lengauer, Nitrides: Transition Metal Solid State Chemistry, in Encyclopedia of Inorganic Chemistry, R.B. King ed. John Weily& Sons, New York, (1994) 2498.
[63]N. Kumar, J. T. McGinn, K. Pourrezaei, B. Lee, and E. C. Douglas, ‘‘Transmission electron microscopy studies of brown and golden titanium nitride thin films as diffusion barriers in very large scale integrated circuits,’’ J. Vac. Sci. Technol. 6 (1988) 1602-1608.
[64]I. M. Ismail, B. Abdallah, M. Abou-Kharroub, O. Mrad, ‘‘XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge,’’ Nucl. Instrum. Methods B 271 (2012) 102-106.
[65]E. P. Gise, R. Blanchard, Semiconductor and integrated circuit fabrication techniques, Reston, Va. Reston Pub. Co. (1979).
[66]Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, ‘‘Characterization of Ti(NxOy) coatings produced by the arc ion plating method,’’ Surf. Coat. Technol. 98 (1998) 934-938.
[67]R.-S. Yu, C.-J. Huang, R.-H. Huang, C.-H. Sun, F.-S. Shieu, ‘‘Structure and optoelectronic properties of multi-element oxide thin film,’’ Appl. Surf. Sci. 257 (2011) 6073-6078.
[68]J.-H. Huang, K.-W. Lau, G.-P. Yu, ‘‘Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering,’’ Surf. Coat. Technol. 191 (2005) 17-24.
[69]R. Banerjee, R. Chandra, P. Ayyub, ‘‘Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films,’’ Thin Solid Films 405 (2002) 64-72.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top