跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林欣儀
研究生(外文):Hsin-Yi Lin
論文名稱:以電漿電解氧化法於鈦塊材及氮化鈦膜上製備含鍶的氫氧基磷灰石及其特性分析
論文名稱(外文):Characterization of strontium-substituted hydroxyapatite coatings on bulk titanium and titanium nitride film prepared by plasma electrolytic oxidation
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:黃何雄楊家榮
口試委員(外文):Her-Hsiung HuangChia-Jung Yang
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:電漿電解氧化法含鍶的氫氧基磷灰石
外文關鍵詞:plasma electrolytic oxidationstrontium-substituted hydroxyapatite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究以電漿電解氧化法(PEO)於鈦塊材(Ti)上製備鍶置換氫氧基磷灰石(Sr-HAp),透過改變電解液中氫氧化鍶的濃度製備出HAp和Sr-HAp塗層,並探討添加量對塗層特性之影響;另外,以氮化鈦膜(TiN)作為基材,可透過改變反應電壓於短時間內製備出HAp以及摻雜0.05 M氫氧化鍶之Sr-HAp,突破以往TiN僅鍍著於材料表面應用於生醫領域,並比較兩組塗層之差異。
固定反應電壓為350 V反應15分鐘,透過摻雜不同鍶濃度進行反應皆能於Ti塊材上製備出Sr-HAp,試片表面形貌皆為片狀所構成之網狀結構,隨著摻雜量上升其結構越細緻,由橫截面可知摻雜量對於HAp的厚度並無顯著的影響。摻雜0.05 M氫氧化鍶所製備出的塗層,其生成的Sr-HAp相對強度最高(達51%),且表面最粗糙(2.7 ± 0.9 μm),呈現出的親水性及初期細胞活性亦為最佳,水接觸角為14 ± 2°,細胞活性可提升75%。另外,以TiN膜作為反應基材,當反應電壓≧ 350 V時能明顯觀察到火花放電且能製備出具結晶性之TiO2和Sr-HAp塗層,表面形貌亦呈現片狀結構,但比Ti塊材的更細緻,透過橫截面發現生成的HAp比Sr-HAp塗層厚,以350 V為例HAp和Sr-HAp分別為2.9 ± 0.2及0.5 ± 0.1 μm,和Ti塊材製備Sr-HAp塗層之差異可能是由於TiN膜反應僅15秒,提供能量不足所致。將兩種基材生成的Sr-HAp塗層進行比較,發現TiN膜生成Sr-HAp塗層的速度比Ti塊材快,膜厚平均生長速率分別為460 ± 27及22 ± 1 nm/s,相差約20倍,最後在Sr-HAp塗層做細胞貼附測試方面於TiN膜和Ti塊材上之細胞活性分別為181及164%,TiN膜高出17%。
綜合上述結果,以Ti塊材及TiN膜作為反應基材皆可利用PEO一步製備出具結晶相之Sr-HAp塗層,表面形貌皆為片狀結構,其中以TiN膜上生成的較細緻,而膜厚平均生長速率約為Ti塊材之二十倍,於細胞貼附結果顯示於氮化鈦膜上生成之Sr-HAp比純鈦上的細胞活性高了17%,表示氮化鈦膜初期貼附效果優於鈦塊材,透過以上推測氮化鈦膜在生醫領域將有更多的發展可能性。

In this study, the hydroxyapatite(HAp) and strontium-substituted hydroxyapatite coatings(Sr-HAp) has been prepared by plasma electrolytic oxidation(PEO) on bulk titanium(Ti). We modify the concentrations of strontium hydroxide in the electrolyte to synthesize the various Sr-HAp coatings and investigate the effects of Sr on the properties of the coatings. Furthermore, we for the first time report the success in us-ing the titanium nitride flim(TiN) as the substrate to deposite the HAp and 0.05 M strontium hydroxide substituted hydroxyapatite coatings in a short time by altering the voltage. It’s different from the past that TiN was only deposited on the surface of the material. The result was also compared with the coatings deposited on Ti.
While using the bulk Ti as the substrate, the PEO process was implemented with a applied voltage at 350 V for 15 min through adjusting the concentrations of Sr in the electrolyte to prepare the Sr-HAp coating. The surface morphology of the coatings were all sheet-like mesh structure and became denser with the strontium increase. However the concentrations of Sr have no significant impact on thickness of the Sr-HAp coatings. The Sr-HAp coating prepared by adding 0.05 M strontium hydrox-ide generated the highest relative intensity of Sr-HAp(51%) and obtained the surface with highest roughness (2.7 ± 0.9 μm). The hydrophilicity and cell viability of the coatings achieved to optimum as well, the contact angle was 14 ± 2 °, and cell viability enhanced 75%. For TiN film, the spark discharge can be clearly observed when the reaction voltage reached 350 V and above, whose coatings contained the crystalline TiO2 and Sr-HAp. In comparision with the coatings on bulk Ti, the surface morphology of the Sr-HAp also showed lamellar structure but more fine. When the applied voltage at 350 V, the thickness of the HAp and Sr-HAp coatings were 2.9 ± 0.2 μm and 0.5 ± 0.1 μm respectively. It demonstrated that the HAp coatings were thicker than Sr-HAp. The differences between bulk Ti and TiN film might be that the energy was not enough when the coatings deposited on TiN only for 15 seconds. By comparing the Sr-HAp coatings on these two kinds of substrate, the deposition rate on TiN film was faster than on bulk Ti, and the average growth rate of the thickness were 460 ± 27 nm/s and 22 ± 1 nm/s individually, with difference of about twenty times. In cell adhesion test, the cell viability of the Sr-HAp coatings on TiN film and bulk Ti are 181% and 164%, the former was 17% higher than the later.
Based on the results, the crystalline Sr-HAp coatings can be synthesized on bulk Ti and TiN film in single-step by PEO method. The surface topography are all sheet-like structure, in which the Sr-HAp film on TiN was more fine, and the average growth rate of the thickness is about twenty times compared to the coatings on bulk Ti. The cell adhesion analysis shows that the cell viability of the Sr-HAp on TiN is 17% higher than bulk Ti, which means the initial cell-attached of TiN film is better than bulk Ti. It is believe that there are more possibilities on TiN film for biomedical field in the future.

摘要 i
Abstract ii
表目次 vii
圖目次 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 研究目的 5
第二章 理論背景與文獻回顧 6
2.1 置換型氫氧基磷灰石 6
2.2 電漿電解氧化法簡介 8
2.3 利用電漿電解氧化法於鈦及其合金上製備Sr-HAp塗層 12
2.4 氮化物作為基材應用於生醫領域 15
2.5 本實驗室利用電漿電解氧化製程以膜層作為反應基材的相關應用與結果 19
第三章 研究方法 21
3.1 實驗流程 21
3.2 原始試片製備 21
3.2.1 鈦塊材之製備 21
3.2.2 氮化鈦膜之製備 21
3.3 利用電漿電解氧化法製備含鍶氫氧基磷灰石 24
3.3.1 以鈦塊材作為反應基材 25
3.3.2 以氮化鈦膜作為反應基材 25
3.4 分析儀器 25
3.4.1 X光繞射分析儀 25
3.4.2 冷場發射掃描式電子顯微鏡 25
3.4.3 場發射穿透式電子顯微鏡 26
3.4.4 多功能聚焦離子束系統 26
3.4.5 X光能量散譜儀 26
3.4.6 傅立葉轉換紅外線光譜儀 27
3.4.7 四點探針 27
3.5 抗菌及細胞貼附試驗 28
3.5.1 抗菌試驗 28
3.5.2 細胞貼附試驗 28
第四章 結果 29
4.1 原始試片分析 29
4.1.1 鈦塊材之結晶相與微結構分析 29
4.1.2 氮化鈦膜之結晶相與微結構分析 30
4.2 以電漿電解氧化法於鈦塊材製備含鍶氫氧基磷灰石 33
4.2.1 經不同Sr2+電解液濃度反應後之試片外觀及粗糙度 34
4.2.2 Sr-HAp/Ti之結晶相及微結構分析 34
4.2.3 Sr-HAp/Ti之成分及化學鍵結分析 41
4.2.4 Sr-HAp/Ti之親水性分析 45
4.2.5 Sr-HAp/Ti之抗菌及細胞貼附分析 47
4.3 以電漿電解氧化法於氮化鈦膜製備含鍶氫氧基磷灰石 51
4.3.1 於TiN膜上製備HAp塗層 52
4.3.2 於TiN膜上製備Sr-HAp塗層 68
第五章 討論 74
5.1 不同Sr2+濃度對Sr-HAp塗層的影響 74
5.2 於不同基材上製備Sr-HAp塗層之比較 85
5.3 利用電漿電解氧化法製備Sr-HAp的成膜機制 92
5.4 未來發展 100
第六章 結論 103
參考文獻 105


1.L.L. Hench and J.M. Polak, “Third-Generation Biomedical Materials,” Science 295 (2002) 1014.
2.W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B.W. Darvell, W.W. Lu, J. Chang, L. Deng, D. Wang, and W. Huang, “Effects of strontium in modified biomaterials,” Acta Biomaterialia 7 (2011) 800.
3.C. Lindahl, S.P. Palmer, A. Hoess, M. Ott, H. Engqvist, and W. Xia, “The influ-ence of Sr content in calcium phosphate coatings,” Mater. Sci. Eng., C 53 (2015) 322.
4.D.G. Guo, Y.Z. Hao, H.Y. Li, C.Q. Fang, L.J. Sun, H. Zhu, J. Wang, X.F. Huang, P.F. Ni, and K. W. Xu, “Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr-incorporated hydroxyapatite,” J. Biomed. Mater. Res. Part B 101 (2013) 1275.
5.M. Šupová, “Substituted hydroxyapatites for biomedical applications : A review,” Ceram. Int. 41 (2015) 9203.
6.K. Lin and J. Chang, Hydroxyapatite (HAp) for Biomedical Applications, Wood-head Publishing Series in Biomaterials (2015) 3.
7.M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Prog. Mater Sci. 54 (2009) 397.
8.Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Mater. Sci. Eng., R 87 (2015) 1.
9.F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, “Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants — Is one truly better than the other?,” Mater. Sci. Eng., C 62 (2016) 960.
10.林佳福,以電漿電解氧化法在鈦基材上製備具有生物活性之TiO2厚膜研究,國立國立中興大學材料科學與工程學系碩士論文,(2010)。
11.Y. Haldorai, S.-K. Hwang, A.-I. Gopalan, Y. S. Huh, Y.-K. Han, W. Voit, G. S.-Anand, and K.-P. Lee, “Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric ni-trite biosensor,” Biosens. Bioelectron. 79 (2016) 543.
12.C.C. Chien, K.T. Liu, J.G. Duh, K.W. Chang, and K.H. Chung, “Effect of nitride film coatings on cell compatibility,” dental materials 24 (2008) 986.
13.S. Piscanec, L. C. Ciacchi, E. Vesselli, G. Comelli, O. Sbaizero, S. Meriani, and A. D. Vita, “Bioactivity of TiN-coated titanium implants,” Acta Materialia 52 (2004) 1237.
14.A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C. L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, and B. Saramago, “A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications,” Surf. Coat. Technol. 203 (2009) 3701.
15.M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. B.-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal layers from a CMOS process for bioelectronic applications,” Surf. Coat. Technol. 204 (2010) 2055.
16.K. Kieswetter, Z. Schwartz, D.D. Dean, and B.D. Boyan, “The Role of Implant Surface Characteristics in the Healing of Bone,” Crit. Rev. Oral Biol. Med. 7 (1996) 329.
17.W. Querido, A. L. Rossi, and M. Farina, "The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches," Micron 80 (2016) 122.
18.M. K. Sharma, Y. Jang, J. Kim, H. Kim, and J.P. Jung, “Plasma Electrolytic Oxi-dation in Surface Modification of Metals for Electronics,” Journal of Welding and Joining 32 (2014) 27.
19.Y. Wang, H. Yu, C. Chen, and Z. Zhao, “Review of the biocompatibility of mi-cro-arc oxidation coated titanium alloys,” Mater. Des. 85 (2015) 640.
20.P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology : Science and engineering-An overview,” Surf. Coat. Technol. 201 (2007) 8746.
21.L. Wang, L Chen, Z. Yan, and W. Fu, “Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxida-tion of magnesium in different electrolytes,” Surf. Coat. Technol. 205 (2010) 1651.
22.T. Mi, B. Jiang, Z. Liu, and L. Fan, “Plasma formation mechanism of microarc oxidation,” Electrochimica Acta 123 (2014) 369.
23.K. Nan, T. Wu, J. Chen, S. Jiang, Y. Huang, and G. Pei,” Strontium doped hy-droxyapatite film formed by micro-arc oxidation,” Mater. Sci. Eng., C 29 (2009) 1554.
24.K.-C. Kung, T.M. Lee, and T. S. Lui,” Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation,” J. Alloys Compd. 508 (2010) 384.
25.C.-J. Chung and H.-Y. Long, “Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast re-sponses,” Acta Biomaterialia 7 (2011) 4081.
26.S. P. Yang, T. M. Lee, and T. S. Lui,” Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications,” Appl. Surf. Sci. 346 (2015) 554.
27.G.T. Liu, J.G. Duh, K.H. Chung, and J.H. Wang, “Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys,” Surf. Coat. Technol. 200 (2005) 2100.
28.B. Subramanian, C.V. Muraleedharan, R. Ananthakumar, and M. Jayachandran, “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and
titanium aluminum nitride (TiAlN), as surface coatings for bio implants,” Surf. Coat. Technol. 205 (2011) 5014.
29.M. Annunziata, A. Oliva, M. A. Basile, M. Giordano, N. Mazzola, A. Rizzo, A. Lanza, and L. Guida, “The effects of titanium nitride-coating on the topographic
and biological features of TPS implant surfaces,” journal of dentistry 39 (2011) 720.
30.H. Wang, R. Zhang, Z. Yuan, X Shu, E. Liu, and Z Han, “A comparative study of the corrosion performance of titanium(Ti), titanium nitride(TiN),titanium diox-ide(TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedi-cal applications,” Ceram. Int. 41(2015) 11844.
31.曾珠玲,以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2011)。
32.蔡汶榆,以電漿電解氧化法於Ti/Si基材上製備鈦酸鋇膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2013)。
33.蕭全熯,以電漿電解氧化法於空氣濺鍍之ZrN/Si基材上製備氧化鋯膜及其特性分析,國立國立中興大學材料科學與工程學系碩士論文,(2014)。
34.許弘文,以電漿電解氧化法於TiN/Si上製備BaxSr1-xTiO3膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2015)。
35.X. Bokhimia, A. Moralesa, M. Aguilara, J.A. Toledo-Antoniob and F. Pedrazab, “Local order in titania polymorphs,” Int. J. Hydrogen Energy, 26 (2001) 1279.
36.K. Matsunaga, H. Murata, T. Mizoguchi, and A. Nakahira, “Mechanism of incor-poration of zinc into hydroxyapatite,” Acta Biomaterialia 6 (2010) 2289.
37.O. Kaygili, S. Keser, M. Kom, Y. Eroksuz, S. V. Dorozhkin, T. Ates, I. H. Ozercan, C. Tatar, and F. Yakuphanoglu, “Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance,” Mater. Sci. Eng., C 55 (2015) 538.
38.J.H. Lee, J.W. Lee, G. Khang, H.B. Lee, “Interaction of cells on chargeable
functional group gradient surfaces,” Biomaterials 18 (1997) 351.
39.Q. Huang, X. Yang, R. Zhang, X. Liu, Z. Shen, and Q. Feng, “Enhanced hydro-philicity and in vitro bioactivity of porous TiO2 film through the incorporation of boron,” Ceram. Int. 41 (2015) 4452.
40.M. Sandhyarani, T. Prasadrao, and N Rameshbabu, “Role of electrolyte composi-tion on structural, morphological and in-vitro biological properties of plasma elec-trolytic oxidation films formed on zirconium,” Appl. Surf. Sci. 317 (2014) 198.
41.S. Ferraris and S. Spriano, “Antibacterial titanium surfaces for medical implants,” Mater. Sci. Eng., C 61 (2016) 965.
42.A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano, “Strontium-substituted hy-droxyapatite nanocrystals,” Inorg. Chim. Acta 360 (2007) 1009.
43.Y. Huang, H. Zeng, X. Wang, and D. Wang, “Corrosion resistance and biocom-patibility of SrHAp/ZnO composite implant coating on titanium,” Appl. Surf. Sci. 290 (2014) 353.
44.Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang, and S. Han, “Improving the bioactivity and corrosion resistance properties of electro-deposited hydroxyapatite coating by dual doping of bivalent strontium and man-ganese ion,” Surf. Coat. Technol. 291 (2016) 205.
45.Z. Geng, Z. Cui, Z. Li, S. Zhu, Y. Liang, Y. Liu, X. Li, X. He, X. Yu, R. Wang, and X. Yang, “Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating,” Mater. Sci. Eng., C 58 (2016) 467.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊