1.L.L. Hench and J.M. Polak, “Third-Generation Biomedical Materials,” Science 295 (2002) 1014.
2.W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B.W. Darvell, W.W. Lu, J. Chang, L. Deng, D. Wang, and W. Huang, “Effects of strontium in modified biomaterials,” Acta Biomaterialia 7 (2011) 800.
3.C. Lindahl, S.P. Palmer, A. Hoess, M. Ott, H. Engqvist, and W. Xia, “The influ-ence of Sr content in calcium phosphate coatings,” Mater. Sci. Eng., C 53 (2015) 322.
4.D.G. Guo, Y.Z. Hao, H.Y. Li, C.Q. Fang, L.J. Sun, H. Zhu, J. Wang, X.F. Huang, P.F. Ni, and K. W. Xu, “Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr-incorporated hydroxyapatite,” J. Biomed. Mater. Res. Part B 101 (2013) 1275.
5.M. Šupová, “Substituted hydroxyapatites for biomedical applications : A review,” Ceram. Int. 41 (2015) 9203.
6.K. Lin and J. Chang, Hydroxyapatite (HAp) for Biomedical Applications, Wood-head Publishing Series in Biomaterials (2015) 3.
7.M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Prog. Mater Sci. 54 (2009) 397.
8.Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Mater. Sci. Eng., R 87 (2015) 1.
9.F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, “Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants — Is one truly better than the other?,” Mater. Sci. Eng., C 62 (2016) 960.
10.林佳福,以電漿電解氧化法在鈦基材上製備具有生物活性之TiO2厚膜研究,國立國立中興大學材料科學與工程學系碩士論文,(2010)。11.Y. Haldorai, S.-K. Hwang, A.-I. Gopalan, Y. S. Huh, Y.-K. Han, W. Voit, G. S.-Anand, and K.-P. Lee, “Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric ni-trite biosensor,” Biosens. Bioelectron. 79 (2016) 543.
12.C.C. Chien, K.T. Liu, J.G. Duh, K.W. Chang, and K.H. Chung, “Effect of nitride film coatings on cell compatibility,” dental materials 24 (2008) 986.
13.S. Piscanec, L. C. Ciacchi, E. Vesselli, G. Comelli, O. Sbaizero, S. Meriani, and A. D. Vita, “Bioactivity of TiN-coated titanium implants,” Acta Materialia 52 (2004) 1237.
14.A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C. L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, and B. Saramago, “A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications,” Surf. Coat. Technol. 203 (2009) 3701.
15.M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. B.-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal layers from a CMOS process for bioelectronic applications,” Surf. Coat. Technol. 204 (2010) 2055.
16.K. Kieswetter, Z. Schwartz, D.D. Dean, and B.D. Boyan, “The Role of Implant Surface Characteristics in the Healing of Bone,” Crit. Rev. Oral Biol. Med. 7 (1996) 329.
17.W. Querido, A. L. Rossi, and M. Farina, "The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches," Micron 80 (2016) 122.
18.M. K. Sharma, Y. Jang, J. Kim, H. Kim, and J.P. Jung, “Plasma Electrolytic Oxi-dation in Surface Modification of Metals for Electronics,” Journal of Welding and Joining 32 (2014) 27.
19.Y. Wang, H. Yu, C. Chen, and Z. Zhao, “Review of the biocompatibility of mi-cro-arc oxidation coated titanium alloys,” Mater. Des. 85 (2015) 640.
20.P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology : Science and engineering-An overview,” Surf. Coat. Technol. 201 (2007) 8746.
21.L. Wang, L Chen, Z. Yan, and W. Fu, “Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxida-tion of magnesium in different electrolytes,” Surf. Coat. Technol. 205 (2010) 1651.
22.T. Mi, B. Jiang, Z. Liu, and L. Fan, “Plasma formation mechanism of microarc oxidation,” Electrochimica Acta 123 (2014) 369.
23.K. Nan, T. Wu, J. Chen, S. Jiang, Y. Huang, and G. Pei,” Strontium doped hy-droxyapatite film formed by micro-arc oxidation,” Mater. Sci. Eng., C 29 (2009) 1554.
24.K.-C. Kung, T.M. Lee, and T. S. Lui,” Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation,” J. Alloys Compd. 508 (2010) 384.
25.C.-J. Chung and H.-Y. Long, “Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast re-sponses,” Acta Biomaterialia 7 (2011) 4081.
26.S. P. Yang, T. M. Lee, and T. S. Lui,” Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications,” Appl. Surf. Sci. 346 (2015) 554.
27.G.T. Liu, J.G. Duh, K.H. Chung, and J.H. Wang, “Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys,” Surf. Coat. Technol. 200 (2005) 2100.
28.B. Subramanian, C.V. Muraleedharan, R. Ananthakumar, and M. Jayachandran, “A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and
titanium aluminum nitride (TiAlN), as surface coatings for bio implants,” Surf. Coat. Technol. 205 (2011) 5014.
29.M. Annunziata, A. Oliva, M. A. Basile, M. Giordano, N. Mazzola, A. Rizzo, A. Lanza, and L. Guida, “The effects of titanium nitride-coating on the topographic
and biological features of TPS implant surfaces,” journal of dentistry 39 (2011) 720.
30.H. Wang, R. Zhang, Z. Yuan, X Shu, E. Liu, and Z Han, “A comparative study of the corrosion performance of titanium(Ti), titanium nitride(TiN),titanium diox-ide(TiO2) and nitrogen-doped titanium oxides (N–TiO2), as coatings for biomedi-cal applications,” Ceram. Int. 41(2015) 11844.
31.曾珠玲,以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2011)。32.蔡汶榆,以電漿電解氧化法於Ti/Si基材上製備鈦酸鋇膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2013)。33.蕭全熯,以電漿電解氧化法於空氣濺鍍之ZrN/Si基材上製備氧化鋯膜及其特性分析,國立國立中興大學材料科學與工程學系碩士論文,(2014)。34.許弘文,以電漿電解氧化法於TiN/Si上製備BaxSr1-xTiO3膜及其特性研究,國立國立中興大學材料科學與工程學系碩士論文,(2015)。35.X. Bokhimia, A. Moralesa, M. Aguilara, J.A. Toledo-Antoniob and F. Pedrazab, “Local order in titania polymorphs,” Int. J. Hydrogen Energy, 26 (2001) 1279.
36.K. Matsunaga, H. Murata, T. Mizoguchi, and A. Nakahira, “Mechanism of incor-poration of zinc into hydroxyapatite,” Acta Biomaterialia 6 (2010) 2289.
37.O. Kaygili, S. Keser, M. Kom, Y. Eroksuz, S. V. Dorozhkin, T. Ates, I. H. Ozercan, C. Tatar, and F. Yakuphanoglu, “Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance,” Mater. Sci. Eng., C 55 (2015) 538.
38.J.H. Lee, J.W. Lee, G. Khang, H.B. Lee, “Interaction of cells on chargeable
functional group gradient surfaces,” Biomaterials 18 (1997) 351.
39.Q. Huang, X. Yang, R. Zhang, X. Liu, Z. Shen, and Q. Feng, “Enhanced hydro-philicity and in vitro bioactivity of porous TiO2 film through the incorporation of boron,” Ceram. Int. 41 (2015) 4452.
40.M. Sandhyarani, T. Prasadrao, and N Rameshbabu, “Role of electrolyte composi-tion on structural, morphological and in-vitro biological properties of plasma elec-trolytic oxidation films formed on zirconium,” Appl. Surf. Sci. 317 (2014) 198.
41.S. Ferraris and S. Spriano, “Antibacterial titanium surfaces for medical implants,” Mater. Sci. Eng., C 61 (2016) 965.
42.A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano, “Strontium-substituted hy-droxyapatite nanocrystals,” Inorg. Chim. Acta 360 (2007) 1009.
43.Y. Huang, H. Zeng, X. Wang, and D. Wang, “Corrosion resistance and biocom-patibility of SrHAp/ZnO composite implant coating on titanium,” Appl. Surf. Sci. 290 (2014) 353.
44.Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang, and S. Han, “Improving the bioactivity and corrosion resistance properties of electro-deposited hydroxyapatite coating by dual doping of bivalent strontium and man-ganese ion,” Surf. Coat. Technol. 291 (2016) 205.
45.Z. Geng, Z. Cui, Z. Li, S. Zhu, Y. Liang, Y. Liu, X. Li, X. He, X. Yu, R. Wang, and X. Yang, “Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating,” Mater. Sci. Eng., C 58 (2016) 467.