(3.235.236.13) 您好!臺灣時間:2021/05/15 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡維哲
研究生(外文):Wei-Che Tsai
論文名稱:以水熱法成長P-N同質接面氧化鋅奈米線應用於光電元件之研究
論文名稱(外文):P-N homojunction ZnO nanowire fabricated by hydrothermal synthesis for photoelectronic devices
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
口試委員:吳文偉葉炳宏
口試委員(外文):Wen-Wei WuPing-Hong Yeh
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:水熱法氧化鋅奈米線p-n接面光感測
外文關鍵詞:HydrothermalZnOnanowirep-n junctionphotosensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
N型氧化鋅的研究已有相當的成果其製備技術也已經相當成熟,近年來許多學者相繼投入P型氧化鋅的研究增加氧化鋅應用方面的廣度。而在成長P型氧化鋅奈米線的研究中,添加摻雜物對氧化鋅奈米線的影響,目前為止相當稀少。再則P-N接面奈米線光感測元件可利用其整流特性在逆向偏壓下施予一崩潰電壓造成元件產生雪崩崩潰。
本實驗先以水熱法成長添加不同濃度磷酸二氫胺的磷摻雜氧化鋅奈米線,隨後再利用介電泳法製備奈米線元件,結果顯示,奈米線形貌隨著添加磷酸二氫胺的濃度越高,線徑與線長有遞增的趨勢,晶格有些許的膨脹,其發光波段有紅移的現象,電性結果顯示為P型半導體奈米線。
後續的P-N同質接面氧化鋅奈米線則先成長N型氧化鋅奈米線再接續成長P型氧化鋅奈米線,接著再以直流電與交流電誘發其排列製備成元件,元件分別呈現整流與線性的特性。其中整流特性元件在逆向偏壓下照光後產生的電子電洞對受強烈內建電場影響而迅速分離導致元件靈敏度大幅上升,而在逆向偏壓下之感光時間與回復時間皆較線性元件短。


N-type ZnO have been widely studied in the past decade,in recent years, many researchers had interest in researches of P-type ZnO nanowires for the further applications. On the other hand, p-n junction nanowire photosensors can enhance its sensitivity by breakdown bias application because of the avalanche effect.

In this study, phosphorus-doped ZnO nanowires were synthesized by Hydrothermal method with adding NH4H2PO4 in the synthesis solutions. The results show that the diameter and length of ZnO nanowires were both increased with the increasing of the concentration NH4H2PO4.The spacing of (0002) plane of P-doped ZnO nanowires increased by the addition of NH4H2PO4. Also, the slight red shift of UV emission peak in PL spectrum was observed. These P-doped ZnO nanowires have p-type semiconductor characteristic.

The p-n homojunction ZnO nanowires were grown using a two-step synthesis method. The rectifying and liner characteristics of p-n homojunction ZnO nanowires devices were achieved by electric field assembly with DC and AC electric field applications, respectively.Comparing with linear characteristic device, rectify characteristic device has higher sensitivity and shorter reaction time in the reversed bias application.


目錄
摘要………………………………………………………………………i
Abstract …………………………………………………………………ii
目錄…………………………………………………………………iii
表目錄…………………………………………………………………vi
圖目錄…………………………………………………………………vii
第一章 前言……………………………………………………..1
第二章 文獻回顧………………………………………………..2
2-1氧化鋅簡介………………………………………………………..2
2-1-1氧化鋅的結構………………………………………………2
2-1-2氧化鋅的摻雜……………………………………………....3
2-2氧化鋅奈米結構的合成…………………………………….…….6
2-2-1熱蒸鍍法(thermal evaporation)……………………...……..6
2-2-2模板法(templating technology)………………………...…..6
2-2-3金屬有機化學氣象沉積法(MOCVD)……………………..6
2-2-4水熱法(hydrothermal mathod)……………………………...7
2-3奈米線元件架構…………………………………………………..9
2-3-1垂直式奈米線感光元件…………………………………....9
2-3-2平行式奈米線感光元件…………………………………..10
2-4介電泳(Dielectrophoresis)………………………………………..13
2-4-1電泳(Electrophoresis)……………………………………...13
2-4-2介電泳………………………………………………….….14
2-5研究動機……………………………………………………….... 16
第三章 實驗方法……………………………………………………...17
3-1實驗原理…………………………………………………….……17
3-2實驗步驟…………………………………………………..……...17
3-2-1晶種層製備………………………………………………...17
3-2-2氧化鋅奈米線製備…………………………………...18
3-2-3交流電電場排列磷摻雜氧化鋅奈米線…………………...19
3-3 P-N接面氧化鋅奈米線製備…………………………………..…20
3-3-1交流電與直流電電場排列P-N接面氧化鋅奈米線……..20
3-4光感測實驗……………………………………………………….21
3-5分析儀器………………………………………………………….21
3-5-1冷場發射掃描式電子顯微鏡……………………………...21
3-5-2場發射穿透式電子顯微鏡…………………………...……21
3-5-3 X光繞射儀…………………………………………….…..21
3-5-4奈米元件測試分析系統……………………………….…..21
3-5-5任意波型產生器……………………………..………….…22
3-5-6寬頻白光光源產生器…………………………………..….22
3-5-7 PL光譜儀……………………………………………...…..22
第4章 結果與討論……………………………………..…..24
4-1合成本質氧化鋅奈米線……………………………………...…..24
4-1-1微結構分析…………………………………………….…..24
4-1-2 X光繞射分析………………………………………..…….24
4-1-3 TEM分析…………………………………………………..25
4-1-4光激發光光譜(Photoluminescence,PL)分析…………….25
4-2合成磷摻氧化鋅奈米線………………………………………….26
4-2-1微結構分析……………………………………..………….26
4-2-2 X光繞射分析…………………………………………...…26
4-2-3 TEM分析……………………………………………….….27
4-2-4光激發光光譜(Photoluminescence,PL)分析……………27
4-2-5交流電場排列磷摻雜氧化鋅奈米線………………….…..28
4-2-6氧化鋅奈米現之電性……………………………..……….29
4-3改變溶液PH值對成長磷摻雜氧化鋅奈米線之影響………….31
4-3-1微結構分析…………………………………………….…..31
4-3-2 X光繞射分析…………………………………………...…32
4-3-3 TEM分析……………………………………………..……32
4-3-4光激發光光譜(Photoluminescence,PL)分析…………..…32
4-3-5氧化鋅奈米現之電性……………………………………...33
4-4合成P-N接面氧化鋅奈米線…………………………………….35
4-4-1微結構分析…………………………………………..…….35
4-4-2 TEM分析……………………………………………..……35
4-4-3電場誘發氧化鋅奈米線排列…………………………..….35
4-5 光學感測實驗……………………………………………..……..37
第五章 結論……………………………………………………………40
第六章 參考文獻……………………………………………….……..82


第六章 參考文獻
[2-1]L. S. Mende, J. L. M. Driscoll, “ZnO-nanostructures, defects, and devices”, Materials today 10 (2007) 40-48.
[2-2]N. M. S. Jahed, M. Mahmoudysepehr, S. Sivoththaman, “Highly conductive TCO by RF sputtering of Al:ZnO for thin film photovoltaics”, Photovoltaic Specialist Conference (PVSC) 2015 IEEE 42nd 1-4.
[2-3]M. Khaksara, M. Aminib, D. M. Boghaeia, “Efficient and green oxidative degradation of methylene blue using Mn-doped ZnO nanoparticles (Zn_(1-x) Mn_x O)”, Journal of Experimental Nanoscience 10 (2015) 1256-1268.
[2-4]S. C. Padmanabhan, D. Ledwith, S. C. Pillai, D. E. McCormackc, J. M. Kelly, “Microwave-assisted synthesis of ZnO micro-javelins”, Journal of Materials Chemistry 19 (2009) 9250–9259.
[2-5]K. C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, Z. L. Wang, “Piezotronic effect in solution-grown p-Type ZnO nanowires and films”, Nano Letters 13 (2013) 2647−2653.
[2-6]B. N. Pawar, S. R. Jadkar, M. G. Takwale, “Deposition and characterization of transparent and conductive sprayed ZnO:B thin films”, Journal of Physics and Chemistry of Solids 66 (2005) 1779–1782.
[2-7]Y. K. Tseng, G. J. Gao, S. C. Chien, “Synthesis of c-axis preferred orientation ZnO:Al transparent conductive thin films using a novel solvent method”, Thin Solid Films 518, (2010) 6259–6263.
[2-8]V. Bhosle, A. Tiwari, and J. Narayan, “Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO”, Applied Physics Letters 88 (2006) 032106.
[2-9]R. Vidya, P. Ravindran, H. Fjellvåg, “Ab initio studies on Li doping, Li pairs, and complexes between Li and intrinsic defects in ZnO”, Journal of Appiled Physics 111 (2012) 123713.
[2-10]C. G. Van de Walle , D. B. Laks , G. F. Neumark , S. T. Pantelides , “First principles calculations of solubilities and doping limits Li, Na, and N in ZnSe”, Physical Review B 47 (1993) 9425-9434.
[2-11]A. Sáaedi, R. Yousefi, F. J. Sheini, M. Cheraghizade, A. K. Zak, N. M. Huang, “Optical and electrical properties of p-type Li-doped ZnO nanowires”, Superlattices and Microstructures 61 (2013) 91–96.
[2-12]W. Ko, S. Lee, G. Baek, J. P. Hong, “Na mole concentration dependence on optical p-type behaviors of Na-doped ZnO nanowires”, Current Applied Physics 14 (2014) S103-S106.
[2-13]C. B. Tay, S. J. Chua, K. P. Loh, “Stable p-Type doping of ZnO film in aqueous solution at low temperatures”, Journal of Physical Chemistry C 114 (2010) 9981–9987.
[2-14]Q. X. Xia, K. S. Hui, K. N. Hui, D. H. Hwang, J. Singh, Y. R. Cho, S. K. Lee, W. Zhou, Z. P. Wan, C. N. H. Thuc, Y. G. Son, “High quality p-type N-doped AZO nanorod arrays by an ammonia-assisted hydrothermal method”, Materials Letters 78 (2012) 180–183.
[2-15]C. H. Ahn, S. K. Mohanta, H. K. Cho, “Donor and acceptor dynamics of phosphorous doped ZnO nanorods with stable p-Type conduction photoluminescence and junction characteristics”, Journal of Nanoscience and Nanotechnology 12 (2012) 5571–5576.
[2-16]M. Sun, Q. F. Zhang, J. L. Wu, “Electrical and electroluminescence properties of As-doped p type ZnO nanorod arrays”, Journal of Physics D: Applied Physics 40 (2007) 3798–3802.
[2-17]C. L. Hsua, K. C. Chen, T. Y. Tsai, T. J. Hsueh,“Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires”, Sensors and Actuators B 182 (2013) 190–196.
[2-18]G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, S. T. Lee, “p-type ZnO nanowire arrays”, Nano Letters 8 (2008) 2591-2597.
[2-19]S. H. Hwang, K. J. Moon, T. I. Lee, W. Lee, J. M. Myoung, “Controlling phosphorus doping concentration in ZnO nanorods by low temperature hydrothermal method”, Materials Chemistry and Physics 143 (2014) 600-604.
[2-20]A. B. M. A. Ashrafi, I. Suemune, H. Kumano, S. Tanaka, “Nitrogen doped p type ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy”, Japanese Journal of Applied Physics 41 (2002) L1281–L1284.
[2-21]D. Yu, T. Trad, J. T. McLeskey Jr. , V. Craciun, C. R. Taylor“ZnO nanowires synthesized by vapor phase transport deposition on transparent oxide substrates”, Nanoscale Research Letters 5 (2010) 1333–1339.
[2-22]L. Luo, Y. Zhang, S. S. Mao, L. Lin, “Fabrication and characterization of ZnO nanowires based UV photodiodes”, Sensors and Actuators A 127 (2006) 201–206.
[2-23]M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physics Letters 363 (2002) 123–128.
[2-24]W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Applied Physics Letters 80 (2002) 4232-4234.
[2-25]Y. Tak, K. Yong, “Controlled Growth of Well-Aligned ZnO nanorod array using a novel solution method”, The Journal of Physical Chemistry B 109 (2005) 19263-19269.
[2-26]W. Zhang, R. Zhu, V. Nguyen, R. Yang, “Highly sensitive and flexible strain sensors based on vertical zincoxide nanowire arrays”, Sensors and Actuators A 205 (2014) 164-169.
[2-27]R. A. Laudise, A. A. Ballman, “Hydrothermal Synthesis Of Zinc oxide And Zinc Sulfide”, J. phys. Chem. 64 (1960) 688-691.
[2-28]L. Vayssiers, “Growth of arrayed nanorod and nanowires of ZnO form aqueous solution”, Advanced Materials 15 (2013) 464-466.
[2-29]Y. Zhang, M. K. Ram, E. K. Stefanakos, D. Y. Goswami, “Synthesis, characterization, and applications ofZnO nanowires”, Journal of Nanomaterials 2012 (2012) 2-22.
[2-30]Y. E. Kalay, H. E. Unalan, “Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt”, Journal of Materials Research 27 (2012) 1445-1451.
[2-31]C. J. Chang, E. H. Kuo, “Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods “, Colloids and Surfaces A: Physicochemical and Engineering Aspects 363 (2010) 22–29
[2-32]J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, Z. L. Wang, “Si nanowire metal–insulator– semiconductor photodetectors as efficient light harvesters”, Nanotechnology 21 (2010) 095502.
[2-33]G. Chen, B. Liang, Z. Liu, G. Yu, X. Xie T. Luo, Zh. Xie, D. Chen, M. Q. Zhu, G. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays”, Journal of Materials Chemistry C 2 (2014) 1270-1277.
[2-34]G. Chen,B. Liang, X. Liu, Z. Liu, G. Yu, X. Xie, T. Luo, D. Chen, M. Zhu, G. Shen, Z. Fan, “High-performance hybrid phenyl- C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors”, American Chemical Society Nano 8 (2014) 787-796.
[2-35]E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E.l Ozbay, “Silicon nanowire network metal-semiconductor-metal photodetectors”Applied Physics Letters 103 (2013) 083114.
[2-36]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain”, Nano Leters 7 (2007) 1003-1009.
[2-37] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La roche, S. J. Pearton,“UV photoresponse of single ZnO nanowires”, Applied Physics A 80 (2005) 497–499.
[2-38]S. N. Das, K. J. Moon, J. P. Kar, J. H. Choi, J. Xiong, T. Lee, J. M. Myoung, “ZnO single nanowire-based UV detectors”, Applied Physics Letters 97 (2010) 022103.
[2-39]Y. Guo, Y. Zhang, H. Liu, S. Lai, Y. Li, Y. Li, W. Hu, S. Wang, C. M. Che, D. Zhu, “Assembled Organic/Inorganic p-n Junction Interface and Photovoltaic Cell on a Single Nanowire”, Journal of Physical ChemistryLetters 1 (2010) 327–330.
[2-40] Z. Zhong, F. Qian, D. Wang, C. M. Lieber, “Synthesis of p-Type gallium nitride nanowires for electronic and photonic nanodevices”, Nano Letttters 3 (2003) 343-346.
[2-41] L. Guo, H. Zhang, D. Zhao, B. Li, Z. Zhang, M. Jiang, D. Shen,“High responsivity ZnO nanowires based UV detector fabricated by
the dielectrophoresis method”, Sensors and Actuators B 166– 167 (2012) 12– 16.
[2-42]A. Tiselius, “A new apparatus for electrophoretic analysis of colloidal mixtures”, Transactions of the Faraday Society 33 (1937) 524-231.
[2-43]A. H. Knechtel, M. Wiens, M. Lakatos, A. Heerwig, F. Ostermaier, N. Haufe, M. Mertig, “Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures” Journal of Nanotechnology 7 (2016) 948–956.
[2-44]N. M. Kiasari, P. Servati, “Dielectrophoresis-assembled ZnO nanowire oxygen seneor”, IEEE Electron Device Letters 32 (2011) 982-984.
[2-45]S. Suzuki, T. Yamanashi, S. I. Tazawa, “Quantitative analysis of DNA orientation in Stationary AC Electric Fields Using Fluorescence Anisotropy”, IEEE Transactions on Industry Application 34 (1998) 75-83.
[2-46]H. A. Pohl, “Some effect of nonuniform fields on dielectrics”, Journal of Applied Physics 29 (1958) 1182-1188.
[2-47] L. Dong, J. Bush, V. Chirayos, R. Solanki, and J. Jiao, “Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects”, Nano Letters 5 (2005) 2112-2115.
[2-48] O. Harnack, C. Pacholski, H. Weller, A. Yasuda, and J. M. Wessels, “Rectifying behavior of electrically aligned ZnO nanorods”, Nano Letters 3 (2003) 1097.
[2-49] X. Li , E. Chin, H. Sun, P. Kurup, Z. Gu,“Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing”, Sensors and Actuators B: Chemical 148 (2010) 404-412.
[4-1]呂承翰“以水熱法與介電泳法製備氧化鋅奈米線元件於氣體
感測之應用”, 碩士論文, 國立國立中興大學材料科學與工程學
系, 民國一百零四年
[4-2]G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M.Willande,“Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method”, Journal of Nanomaterials 2011 (2011) 269692.
[4-3] B. Panigrahy , D. Bahadur, “p-type Phosphorus doped ZnO nanostructures: an electrical, optical, and magnetic properties study”, RSC Advances 2 (2012) 6222–6227.
[4-4]郭憲政“氧化鋅奈米結構之光致激發螢光光譜之研究”, 碩士論文, 國立清華大學物理系, 民國九十二年
[4-5] Y. T. Chang, J. Y. Chen, T. P. Yang, C. W. Huang, C. H. Chiu, P. H. Yeh, W. W. Wu,“Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications”, Nano Energy 8 (2014) 291–296.
[4-6] P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. L. Wang, N. Wang, D. P. Yu,“Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires”, Nano Letters 9 (2009) 2513-251.
[4-7] H. Wang, J. Xie, K. Yan, M. Duan,“Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method”, Journal of Materials Science & Technology 27 (2011) 153-158.
[4-8] A. B. Djuriˇsi´c, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L.Tam, K. W. Cheah, W. M. Kwok, D. L. Phillips, “Defect emissions in ZnO nanostructures”, Nanotechnology 18 (2007) 095702.
[4-9] C. H. Lee, D. R. Kim, X. Zheng,“Orientation-controlled alignment of axially modulated pn silicon nanowires”, Nano Letters 10 (2010) 5116–5122.
[4-10] J. Zhou, Y. Gu, Y. Hu, W. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang,“Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization”, Applied Physics Letters 94 (2009) 191103.
[4-11] C. H. Chen, S. J. Chang, S. P. Chang, M. J. Lic, I.C. Chen, T. J. Hsueh, C. L. Hsu, “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction”, Chemical Physics Letters 476 (2009) 69–72.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top