(44.192.66.171) 您好!臺灣時間:2021/05/18 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳仕勛
研究生(外文):Shih-Hsun Chen
論文名稱:上升二氧化碳對花椰菜、斜紋夜蛾及其寄生蜂馬尼拉小繭蜂三營養階層之影響
論文名稱(外文):The impact of elevated carbon dioxide on Spodoptera litura and its parasitoid Snellenius manilae in cauliflower (Brassica oleracea var. botrytis L)
指導教授:黃紹毅黃紹毅引用關係
口試委員:莊益源洪巧珍
口試日期:2016-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:45
中文關鍵詞:上升二氧化碳花椰菜斜紋夜蛾馬尼拉小繭蜂三營養階層
外文關鍵詞:Elevated CO2Brassica oleracea var. botrytis LSpodoptera litura FabriciusSnellenius manilae AshmeadTritrophic level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據政府間氣候變遷小組(Intergovernmental Panel on Climate Change, IPCC)預測,未來大氣中二氧化碳濃度將持續不斷升高,對於全球生態系統的衝擊是可以預見的。昆蟲為陸域生態系中重要的組成分子,對於農業生態系更是舉足輕重。已有研究探討森林生態系中木本植物與植食昆蟲在高濃度二氧化碳下之交互作用,但鮮少研究針對農業生態系統,對於未來上升二氧化碳對作物-植食昆蟲-天敵間三營養階層之間互動關係更是所知甚少。因此,本試驗目的為探討上升二氧化碳環境下花椰菜(Brassica oleracea var. botrytis L)、斜紋夜蛾(Spodoptera litura Fabricius)、馬尼拉小繭蜂(Snellenius manilae Ashmead)三營養階層交互作用之關係。結果顯示,二氧化碳濃度上升顯著提高花椰菜之鮮重、乾重、含水率、株高及葉面積、且葉片之胰蛋白酶抑制劑活性及黑芥子苷含量顯著增加,但斜紋夜蛾相對生長速率,與寄生蜂寄生率、幼蟲發育時間及繭重,並未因花椰菜抗蟲次級代謝物上升而受到影響。推測與花椰菜本身營養改變與否以及斜紋夜蛾暴露於上升二氧化碳的時間有關,又馬尼拉小繭蜂為斜紋夜蛾之強勢寄生蜂,其對環境耐受性較高,較不易受影響。未來應可針對二氧化碳對昆蟲與天敵之長期影響進行試驗,在氣候變遷中,溫度上升也是重要的影響因子,探討溫度及二氧化碳交互作用的改變能更好的解釋未來氣候變遷對生態系的影響。

According to Intergovernmental Panel on Climate Change (IPCC) prediction, the atmosphere carbon dioxide (CO2) will increase in the future. The impact for the global ecosystem is predictable. Insect is the important component to the terrestrial ecosystems and the agricultural ecosystem. Lots of studies have been explored the forest ecosystem in woody plants and herbivorous insect interactions at high concentrations of carbon dioxide, but rarely research on agricultural ecosystems. Interaction among the three trophic level on crop - herbivorous insects - natural enemies in rise in carbon dioxide is poorly understood. Therefore, the purpose of this study is to explore the interaction under elevated atmosphere carbon dioxide on Spodoptera litura Fabricius and its parasitoid Snellenius manilae Ashmead in cauliflower (Brassica oleracea var. botrytis L). The results show that carbon dioxide levels rise significantly improve the fresh weight, dry weight, water content, shoot height, leaf area of cauliflower, and a significant increase in trypsin inhibitor activity and sinigrin content. But Spodoptera litura relative growth rate and Snellenius manilae parasitism rate, larval development time and cocoon weight, have not been affected by Cauliflower secondary metabolites. This is probably due to that the Snellenius manila is dominant parasitoid wasps of the Spodoptera litura, it has higher environmental tolerance and less susceptible. In the future, we should focus on long-term effects on herbivores insect and its natural enemies. The temperature rise is also an important factor in climate changes. To investigate the interaction of carbon dioxide and temperature change can better explain the impact of future climate change on the ecological system.

摘要 i
前言 - 1 -
前人研究 - 3 -
一、 二氧化碳對植物、植食昆蟲及其天敵間交互關係之影響 - 3 -
(一) 二氧化碳對植物的影響 - 3 -
(二) 二氧化碳對植食昆蟲的影響 - 4 -
(三) 二氧化碳對天敵的影響 - 5 -
二、 測試植物-花椰菜 - 6 -
三、 測試昆蟲-斜紋夜蛾 - 6 -
四、 馬尼拉小繭蜂 - 7 -
材料與方法 - 8 -
一、 供試昆蟲飼養與植物來源 - 8 -
(一) 供試植物 - 8 -
(二) 斜紋夜蛾 - 8 -
(三) 馬尼拉小繭蜂之飼養 - 9 -
二、 二氧化碳濃度溫室配置 - 10 -
三、 上升二氧化碳對植物生長表現之影響 - 10 -
四、 上升二氧化碳對斜紋夜蛾幼蟲短期生長表現之影響 - 11 -
五、 上升二氧化碳對馬尼拉小繭蜂生長表現之影響 - 11 -
六、 植物多酚氧化酵素(Polyphenol oxidase, PPO)活性分析 - 12 -
七、 植物胰蛋白酶抑制劑(Trypsin inhibitor, TI)活性分析 - 13 -
八、 植物黑芥子苷(Sinigrin)含量分析 - 15 -
九、 統計分析 - 16 -
結果與討論 - 17 -
一、 植物生長表現 - 17 -
二、 植物化學防禦物質 - 18 -
三、 斜紋夜蛾幼蟲生長表現 - 19 -
四、 馬尼拉小繭蜂生長表現 - 20 -
結論 - 22 -
參考文獻 - 23 -



丁柔心。(2011)。利用馬尼拉小繭蜂防治斜紋夜蛾之生物學研究。碩士論文,國立國立中興大學昆蟲學系 1-45。
王炘。 (1957)。 臺灣之西瓜與花椰菜。 蔬菜研討會專題講演集專刊第七號。 國立臺灣大學農學院印行。 p. 83-89。
邱瑞珍、周樑鎰。(1976)。斜紋夜盜蟲(Spodoptera litura Fab.)之寄生蜂。台灣省農業試驗所報告第七六七號。227-240頁。
吳剛、陳法軍、戈峰。(2006)。CO2濃度上升對棉鈴蟲生長發育和繁殖的直接影響。生態學報 25:1732-1738。
林楨祐、羅惠齡、王三太、黃雅穗、洪桂煜、許秀惠、陳甘澍。 (2010)。花椰菜種原觀摩會暨花椰菜義大利種原觀摩會紀實。臺灣之種苗111:5-9。
高穗生。(1995)。 昆蟲之大量飼育。 藥毒所專題報導。37 : 1-8。
陳甘澍、林照能。(2005)。 花椰菜。p. 445-450。 刊於:臺灣農家要覽增修訂三版 策劃委員會編著。 臺灣農家要覽 農作篇(二)。 財團法人豐年社。 臺北。
陳文雄。(2007)。斜紋夜盜。農家要覽蔬菜害蟲 382-383。
黃淑琳。(2016)。上升二氧化碳對馴化與野生植物及昆蟲生長表現之影響。國立國立中興大學昆蟲學系 1-68。
費雯綺、王喻其。(2007)。植物保護手冊¬-蔬菜篇。行政院農業委員會農業藥物毒物試驗所。229頁。
彭淑貞。(2008)。苗栗地區夏果葡萄園斜紋夜蛾之發生與防治。苗栗區農業專訊41:14-16。
羅大偉、陳瑋婷、黃紹毅。(2015)。 二氧化碳上升及施肥對於番茄與斜紋夜蛾交互作用之影響。 Journal of Agriculture and Forestry, 64(1), 11-19.
Akey DH, Kimball BA. (1989). Growth and development of the beet armyworm on cotton grown in an enriched carbon dioxide atmosphere. The Southwestern Entomologist (USA).

Agrell J, McDonald EP, Lindroth RL. (2000). Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88: 259-272.
Ainsworth EA, Davey PA, Bernacchi CJ. (2002). A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology 8: 695-709.
Barbosa P, Saunders JA, Waldvogel M. (1982, March). Plant-mediated variation in herbivore suitability and parasitoid fitness. In Proceedings of the 5th International Symposium in Insect-Plant Relationships. Center for Agricultural Publishing and Documentation, Wageningen (pp. 63-71).
Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF. (1987). Allocating resources to reproduction and defense. BioScience, 37: 58-67.
Bazzaz FA, Fajer ED. (1992). Plant life in a CO2-rich world. Scientific American (USA).
Bai B, Luck RF, Forster L, Stephens B, Janssen JM. (1992). The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomologia Experimentalis et Applicata 64: 37-48.
Bernacchi CJ, Kimball BA, Quarles DR. (2007). Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiology 143: 134-144.
Bidart-Bouzat MG, Mithen R, Berenbaum MR. (2005). Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145: 415–424.
Bryant JP, Chapin III FS, Klein DR. (1983). Carbon/nutrient balance of boreal plan plants in relation to vertebrate herbivory. Oikos 40: 357-368.
Caulfield F, Bunce JA. (1994). Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology 23: 999-1005.
Change I P O C. (2007). IPCC. Aspectos Regionais e Setoriais da Contribuição do Grupo de Trabalho II ao 4º Relatório de Avaliação “Mudança Climática 2007” do IPCC.
Cheng S. (2007) Elevated CO2 changes the moderate shade tolerance of yellow birch seedlings. Journal of Environmental Sciences-China 19: 502-507.
Christmann A, Grill E. (2013). Plant biology: electric defence. Nature 500: 404-405.
Coley PD, Bryant JP, Chapin FS. (1985). Resource availability and plant antiherbivore defense. Science, 230: 895-899.
Cotrufo MF, Ineson P, Scott A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43-54.
Coviella CE, Trumble JT. (2001). Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions. Conservation Biology 13: 700-712.
Coviella CE, Stipanovic RD, Trumble JT. (2002). Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. Journal of Experimental Botany 53: 323–331.
De Leo F, Bonade-Bottino M, Ceci LR, Gallerani R, Jouanin L. (2001). Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochemistry and Molecular Biology 31: 593-602.
Dixon GR. (2007). Origins and diversity of Brassica and its relatives, p. 1-33. In: G. R. Dixon (ed.). Vegetable brassicas and related curcifers. CAB International, London.
Drake BG, Gonzàlez-Meler MA, Long SP. (1997). More efficient plants: a consequence of rising atmospheric CO2?. Annual Review of Plant Biology 48: 609-639.
Dury SJ, Good JEG, Perrins CM, Buse A, Kaye T. (1998) The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology 4: 55-61.
Fajer ED. (1989). The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia (Berlin) 81: 514–520.
FAOSTAT. (2009). Food and Agriculture Commodities Production: Cauliflowers and Broccoli. Italy. 03 Feb. 2011.
Goverde M, Bazin A, Shykoff JA, Erhardt A. (1999). Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaenidae): effects of elevated CO2 and plant genotype. Functional Ecology 13: 801-810.
Goverde M, Erhardt A, Niklaus PA. (2002). In situ development of a satyrid butterfly on calcareous grassland exposed to elevated carbon dioxide. Ecology 83: 1399-1411.
Gu H, Dorn S. (2000). Genetic variation in behavioral response to herbivore-infested plants in the parasitic wasp, Cotesia glomerata (L.) (Hymenoptera: Braconidae). Journal of Insect Behavior 13: 141–156.
Gutbrodt B, Mody K, Dorn S. (2011). Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120: 1732–1740.
Harris DC. (2010). Charles David Keeling and the Story of Atmospheric CO2 Measurements†. Analytical Chemistry 82: 7865-7870.
Harvey JA, van Dam NM, Raaijmakers CE, Bullock JM, Gols R. (2011). Tritrophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166: 421–431.
Hare J D, Luck RF. (1994). Environmental variation in physical and chemical cues used by the parasitic wasp, Aphytis melinus, for host recognition. Entomologia Experimentalis et Applicata 72: 97-108.
Holton MK, Lindroth RL, Nordheim EV. (2003). Foliar quality influences treeherbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137: 233–244.
Hopkins RJ, van Dam NM, van Loon JJA. (2009). Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annual Review of Entomology 54: 57–83.
Houghton J, Ding Y, Griggs D, Noguer M, Van Der Linden P, Xiaosu D, Maskell K, Johnson C. (2001). Climate change : The scientific basis. Cambridge University Press, Cambridge.
Hughes L, Bazzaz FA. (1997). Effect of elevated CO2 on interactions between the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) and the common milkweed, Asclepias syriaca. Oecologia 109: 286-290.
Karowe DN, Grubb C. (2011). Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). Journal of Chemical Ecology 37: 1332–1340.
Karowe DN, Seimens DH, Mitchell-Olds T. (1997). Species-specific response of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology 23: 2569-2582.
Kimball B, Kobayashi K, Bindi M. (2002). Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy 77: 293-368.
Klaiber J, Dorn S, Najar-Rodriguez AJ. (2013). Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. Journal of Chemical Ecology 39: 653-665.
Klaiber J, Najar-Rodriguez AJ, Dialer E, Dorn S. (2013). Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biological Control 66: 49-55.
Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S. (2013). Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237: 29-42.
Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LEM, Dicke M, van Loon JJA. (2012). Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. Journal of Chemical Ecology 38: 100–115.
Kruger NJ. (2002). The Bradford method for protein quantitation. Pp 15-22. In: Walker JM(eds). The protein protocols handbook. Humana Press, Totowa
Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F. (2011). Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences 108: 4035-4040.
La GX, Fang P, Teng YB, Li YJ, Lin XY. (2009). Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.). Journal of Zhejiang University SCIENCE B 10: 454–464.
LaMarche VC, Graybill DA, Fritts HC, Rose MR. (1984). Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019-1021.
Lampert EC, Zangerl AR, Berenbaum MR, Ode PJ. (2008). Tritrophic effects of xanthotoxin on the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). Journal of Chemical Ecology 34: 783-790.
Lincoln DE, Couvet D, Sionit N. (1986). Response of an insect herbivore to host plants grown in carbon dioxide enriched atmospheres. Oecologia 69: 556–560.
Lindroth RL, Kinney KK, Platz CL. (1993). Responses of diciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74: 763-777.
Marks S, Lincoln DE. (1996). Antiherbivore defense mutualism under elevated carbon dioxide levels: a fungal endophyte and grass. Environmental Entomology 25: 618–623.
Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S. (2001). Systemically induced plant volatiles emitted at the time of ‘‘danger’’. Journal of Chemical Ecology 27: 2233–2252.
Ode PJ. (2006). Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annual Review of Entomology 51: 163–185.
Osbrink WLA, Trumble JT, Wagner RE. (1987). Host suitability of Phaseolus lunatus for Trichoplusia ni (Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology 16: 639–644.
Owensby CE, Ham J, Knapp A, Auen L. (1999). Biomass production and species composition change in a tallgrass prairie ecosystem after long‐term exposure to elevated atmospheric CO2. Global Change Biology 5: 497-506.
Pearcy RW, Bjorkman O. (1983). Physiological effects. In C02 and plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide, ed. E. R. Lemon, pp. 65-106. Boulder, Colo: Westview 96. Peterson, K. M., Billings.
Poorter H, Berkel YV, Baxter R, Hertog JD, Dijkstra P, Gifford RM, Wong, SC. (1997). The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell & Environment 20:, 472-482.
Qin HG, Ye ZX, Huang SJ, Ding J, Luo RH. (2004). The correlations of the different host plants with preference level, life duration and survival rate of Spodoptera litura Fabricius. Chinese Journal of Eco-Agricultur 12: 40-42. In Chinese.
Reddy GV, Tossavainen P, Nerg AM, Holopainen JK. (2004). Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. Journal of Agricultural and Food Chemistry 52: 4185-4191.
Roth SK, Lindroth RL. (1995). Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biology 1: 173–182.
Roumet C, Laurent G, Roy J. (1999). Leaf structure and chemical composition as affected by elevated CO2: genotypic responses of two perennial grasses. New Phytologist 143: 73-81.
Ryan JD, Gregory P, Tingey WM. (1982). Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry, 21: 1885-1887.
Saxe H, Ellsworth DS, Heath J. (1998). Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist 139: 395-436.
Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S. (2005). New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15: 97–104.
Schonhof I, Kläring HP, Krumbein A, Schreiner M. (2007). Interaction between atmospheric CO2 and glucosinolates in broccoli. Journal of Chemical Ecology 33: 105-114.
Scriber JM. (1984). Host-plant suitability. In Chemical ecology of insects (pp. 159-202). Springer US.
Scriber JM, Slansky Jr F. (1981). The nutritional ecology of immature insects. Annual Review of Entomology 26: 183-211.
Singh J, Upadhyay AK, Bahadur A, Singh B, Singh KP, Rai M. (2006). Antioxidant phytochernicals in cabbage (Brassica oleracea L. var. capitata). Scientica Horticulturae 108: 233–237.
Stiling P, Cornelissen T. (2007). How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2- mediated changes on plant chemistry and herbivore performance. Global Change Biology 13: 1823–1842.
Thacker JR. (2002). An introduction to arthropod pest control. Cambridge University Press, United Kingdom. 360 pp.
Tsao R, Yu Q, Friesen I, Potter J, Chiba M. (2000). Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. Journal of Agricultural and Food Chemistry
48: 1898-1902.
Vannette RL, Hunter MD. (2011). Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Global Change Biology 17: 1277–1288.
Veteli TO, Kuokkanen K, JULKUNEN‐TIITTO R, Roininen H, Tahvanainen J. (2002). Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biology 8: 1240-1252.
Watt AD, Whittaker JB, Docherty M, Brooks G, Lindsay E, Salt DT. (1995). The impact of elevated atmospheric CO2 on insect herbivores. Insects in a changing environment. Academic Press, London 1:197- 217.
Waldbauer GP. (1968). The consumption and utilization of food by insects.Advances in insect physiology 5: 229-288.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top